ON CHAINS OF INFINITE ORDER
T. E. HARRIS

1. Introduction. We consider stationary' stochastic processes Z,,
n=0, +1, ---, where Z, can take D distinct values, D>2. It is con-
venient to let the values be Z,=0,1, -.-, D—1. Let u be any sequence
of integers, u=(uy, U,, --+). Then the transitions of the process are
described by the functions Q;(u),

(1'1) Qi(u)ZP(Z7z:i|Zn—1:uly Zn—-‘z:u‘z) “') ’ 7/=0y 1; Tty D-1.

Our aim will be to relate some stochastic properties of the Z,-process
to functional properties of the Q;(x). Because of the fact that the
future behavior of Z, depends in general on its complete past history,
we shall refer to these processes as stationary infinite-order chains.

The first systematic study of such chains was made by Onicescu
and Mihoc [13], and was carried on in further papers [14], [15], and
[16] by Onicescu and Mihoe, and [12] by Onicescu. These authors
considered chains of a somewhat more special type which they called
chaines a liaisons completes. Further results were obtained by Doeblin
and Fortet [6], who applied the term chaine & liaisons completes to any
chain for which the relations

P(an?; [Zn—I:uU cty Zn—k:uk)

are specified for every sequence u, *+-, U, k=1,2, -+, o. See also
Fortet [8] and Ionescu Tulcea and Marinescu [17].

The authors cited prove, under various hypotheses on the functions
Q, of (1.1), that P(Z,=¢|Z_,=u,, +++, Z_,=u,) has a limit as n—c, and
obtain various other generalizations of the limit theorems for Markov
chains. Also, in [6] the case of cyclic motions is considered. We shall
not treat this case. The case of infinitely many states, stronger hypo-
theses, is treated in [17].

Our point of view is somewhat different. We introduce the random
variables X, n=0, +1, .---, defined by
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1 Throughout this paper a “stationary ” process, Markov or not, will be a process
which not only has transition laws independent of time but also has a stationary absolute
distribution.
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(1.2) X,= j}"j} Z,_|D .

That is, X, is the number whose representation in the D-ary numeral
system is .Z,-.Z,_.--- . (If we make the proper conventions, ambiguities
will have total probability 0.) Thus X, contains the complete past
history of the Z, process, and is a Markov process whose transition
probabilities are defined in the following way. Let 0<<x<(1 be a number
whose D-ary expansion is

= Uy .

Observe that X,==x is equivalent to Z,_,—u,, Z,_,=u,, -+ . Now if
Z,—i, then X,,,—.tuu,---=(G+2z)/D. Now let f,(x) be functions of
defined by

(1.3) Fi@)=Qiu) i=0, +++, D—1

where .uu,-++ is the D-ary expansion of a and the @, are defined by
(1.1). If X,==, then X,,, is formed by applying with probability f.(x)
the transformation [+ ( )]/D to X,; that is

(1.4) P(X,MJD*—‘—” | X,Lxx)=fz(x) :

The representation (1.2) was used by Borel [3] for the case where
the Z, are independent and equidistributed. Apparently it has not been
systematically exploited for other cases, although an abstract analogue
of (1.2) is used in [17]. The representation (1.2) has the advantage
that Fourier and Laplace transform methods can be used to deal with
the distribution of the complete past history of the Z,-process.

After making precise the relation between the Z,- and X,-processes,
we show the existence of a unique stationary Z,-process whose condi-
tional probabilities

P(anq' IZu—lzun b ')

are equal to specified functions Q,;, provided the latter satisfy certain
conditions. This extends a result of Doeblin and Fortet. Next we
study the distribution G(z) of X,. It is shown that this has one of
three forms, provided certain general conditions of mixing behavior
hold. (1) G(x) has a single jump of magnitude 1 at one of the points
i/(D-1), 4=0, -+, D—1. This is true if and only if P(Z,=i)=1. (2)
G(r)=x, 0<a<{1. This is true if and only if the Z, are independent
and equidistributed on 0, 1, .-+, D—1. (8) G(2) is continuous and purely
singular.?

. ?The fact that G is singular if the Z, are independent and not equidistributed was
pointed out to the author by Henry Scheffé.
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Next we consider processes which we shall call grouped Markov
chains. Let Y,, n=0, +1, -.-, be the variables of a stationary Markov
chain whose states are divided into D mutually exclusive and exhaustive
nonempty subsets By, By, -+, Bp_;,. Define Z,=% when Y,eB,, =0, 1,
«+-, D—1. We shall refer to this type of Z,process as a grouped
Markov chain; it is in general not Markovian. We study such chains
for the case where Y, has a finite number of possible states and where
each element of the transition matrix of the Y,-process is positive.
Using the Laplace transform, we show how to determine the functions

P(Zn:_"?; IZn-J:uly ctty Zn—lczuk)
and
P(ani |Zn-1=ulr Zn-zzuzy i ') y

as well as the corresponding functions of a real variable f(x) given
by (1.8). This may be considered a solution of the prediction problem
for grouped Markov chains.

The X,-process is closely related to models which have recently
been used for learning and decision processes by Bush and Mosteller
[4], Bales and Householder [1], Flood [7], and others. The author wishes
to thank these men for stimulating the present line of work. .

Theorem 3 can be extended to certain types of these “learning
models.” A discussion of certain learning models has been given by
Bellman, Harris, and Shapiro [2] and by Karlin [11]. Karlin’s work has
points of contact with ours.?

2. Relation of the Z,- and X, -processes. In this section we make
explicit the relation between the Z,- and X, -processes and give a general
condition which implies the existence of a Z,-process with prescribed
Q;. Later sections will show that this condition is satisfiled in many
instances.*

Let D>2 be an integer and let = (u,, 4., - - -) represent a sequence
of integers with 0<<u;<<{D—1. Let Q(u) be functions of u,:=0,1, ---,
D—1, with

@.1) Quu)=>0 , =0, -+, D=1,
(2.2) 1:2: Quu)=1.

Now if z is a real number, 0<ax<1, we adopt the following con-
vention about the D-ary expansion of = in the ambiguous cases. The

3See §4.
*Further discussion of the relationship follows Theorem 6.
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D-ary expansion of =1 will be taken as x=.(D—1)(D—1)---. Inall
other ambiguous cases, an expansion terminating in 0’s will be preferred
to one terminating in (D—1)’s. Thus in the decimal system the ex-
pansion of =1 will be .999--. while the expansion of x=1/2 will be
.5000- .+ rather than .499.... Thus the D-ary expansion of 2 is un-
ambiguously defined.

Now define functions fi(x), 0<x<1, by
(2.3) Si@)=Qi(u)

where a=.uu,---.

THEOREM 1. Suppose functions Q(u) are given satisfying (2.1) and
(2.2) and such that the f.x) defined by (2.3) are Borel-measureable;
suppose there exists a distribution G(x), G(0—)=0, G(1)=1, which satisfies
the functional equation

(2.4) 6= S| rwacw 0<a<1 .

j=0
Then there exists a stationary process «--Zy, Zy, +++ , such that Z, has
possible values 0,1, ---, D—1, and such that
(2°5) P(Zn=z [Zn—ly Zn—27 b ')=Q1(Zn-1’ Zn—2! °* ')

with probability 1.
Proof. We consider a real-valued Markov process :--X,, X 41, ***
whose transition probabilities are given by

(2.6) P(Xn=?'%”f

X,_, =x)= Fu@) 0<e<1,

where the f,(x) are the functions defined by (2.3). It can be verified

that if G satisfies (2.4), then G is a stationary absolute distribution for

this Markov process; we shall suppose that X, has this distribution.
Define the function A(x), 0<z<1, by

2.7) h(z)=1st digit in D-ary expansion of .
Now define random variables Z, by
(2.8) -1 =MX,) , n=0, £1, «--

The Z, then form a stationary process, whose nature is clearly com-
pletely determined by G(x). It can be shown that

Zoer | Zo-
2.9 P X~ Ty 2o z+...:|=1,
(2.9) R

since P[X,_,=DX,—n(X,)]=1 for all n. Also
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(2.10) Qs ez =) = £ Pt Frcee )

holds with probability 1. The only sequences (Z,_., Z,-», *++) for which
the two sides of (2.10) might be different are sequences other than
(D—-1, D—1, ---) which terminate in unbroken (D—1)’s, and these can
be shown to have probability 0.

It can be shown from this that Q,(») is a permissible version of
P(Z,=1|Z, =Wy Zopyey=y, **+) .

3. Continuity properties of the @;,, We assume that functions @,
are given satisfying (2.1) and (2.2) and that functions f, are then defined
by (2.3).

We shall refer to a point x whose D-ary expansion terminates in
an unbroken sequence of 0’s as a lattice point.

If w*=(u?, u?, ---) is a sequence for each n=1, 2, -+, then u"->u
will mean that for each k, u?=uwu, for all n sufficiently large.

CONDITION A. For each i and wu, u"—>u implies Q,(u")—>Q,(u) as
n—>oo,
THEOREM 2. Under Condition A the f(x) are continuous to the right
for each x, 0<x<_1, and continuous to the left except possibly at lattice
points. Left-continuity holds at x=1.

COROLLARY. Under Condition A the f(x) are Borel-measurable (in
fact, belong to Baire class 1.).

The proof follows from the definition of the f.(x). The corollary
follows from the well-known fact that a function with only countably
many discontinuities belongs to Baire class 1.

4, Existence of stationary Z,- and X,-processes. Our procedure will
be as follows. We consider a Markov process X, with transition pro-
babilities defined by (2.6), where the f,(«) are given functions. We
give conditions on the f,(x) which insure that the probabilities P(X»<x
| X,=y) are C-1 summable to a distribution G(x) which is independent
of y. The distribution G(x) satisfies (2.4) and is the only stationary
distribution for the X,-process.

Now let functions Q,(x) be given satisfying (2.1) and (2.2). Making
use of Theorem 1 we show that under certain restrictions on the @,
there is a uniquely determined stationary process Z, satisfying (2.5)
with probability 1. This process is ergodie. It is discussed in Theorem 6.

Under somewhat stronger conditions Doeblin and Fortet proved
essentially that

lim P(Z,=t|Z_,, Z_,, +++)

N—r00
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exists with probability 1 and is independent of Z_,, Z_,, ---.°* We shall
show the C-1 anologue of this under the weaker conditions.

The method we use is a development of one used originally by
Doeblin in [5].

Now consider given functions f,(2)>0, i=0, ---, D—1; 0<x<1;
>S.f{x)=1. We use the notation

(4.1) (x=Y)n

to mean that the first m digits in the D-ary expansion of x are the
same as the first m in the expansion of y. We define

4.2) En=_sup |[f@)— I, m=0,1, --.
t, (Z=Y)m

Doeblin and Fortet used a condition which would be equivalent in the

present context to

4.3) S el oo .

m=0
We shall use Condition B, expressed by the requirements

(4.4) lim &,=0,

Nn—o0

(4.5) I (1— %Dek):oo .

m=0 k=0

We shall understand that any of the factors (1—V;VD8,C) in (4.5) which

is zero or negative will be replaced by 1. As an example, Condition B
is satisfied provided we have for sufficiently large %
2
& —_— .
Dk
In addition to Condition B, some sort of condition of positivity will
be required. We shall choose the simplest one.

ConpiTiON C. For some 4, f;(x)>4>0, 0<z<1.

It is easy to see how C can be replaced by weaker conditions. For
example, in the case D=2, f,(x)=z, Condition C is not satisfied but it
will be clear from the subsequent arguments that a condition sufficiently
like C is satisfied.

THEOREM 3. Let f,(x), =0, -+, D—1, be nonnegative functions with

5Simpfe examples show that the existence of limiting probabilities does not, in general,
imply the existence of a stationary distribution. The existence of at least one stationary
Zy-process can be shown under quite weak conditions. The difficulty is to show uniqueness.
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>.fi=1. Let X,, n=0,1, ---, be the variables of a Markov process with
Xo=y, 0<y<1 and with transition law defined by (2.6).
Define

(4.6) Gu(y; 2)=P(X,<x| Xi=y) .

Then Conditions B and C imply that G,(y;x) is summable C-1 to a
distribution G(x) which is independent of y. If (4.8) holds then the
ordinary limit exists. In either case the limit is uniform in y.°

For the proof of Theorem 3 we require the following lemma about
sums of (not necessarily independent) random variables.

LemMmA 1. Let x,, @, - - -, be positive integer-valued random variables.
Let s,=x,+ +- - +a, and let u,, be the probability that for some j we have
s;=m, m=1, 2, -+-. Suppose

(4'7) P(xn>7’ lxlv Loy =, xn—-l)le

where the R, are nonnegative numbers which are independent of xy, +--,
z,-, and n and satisfy

(4.8) S R=co .
Then

4.9 lim L S, —0
( . ) nglonL}:lum__ .

The proof of the lemma, which is closely related to a standard
renewal theorem, is simple, and is omitted.

Proof of Theorem 3. The method is related to an idea of Doeblin
[5], who proved the ergodic theorem for Markov chains with a finite
number of states by considering two particles starting in different
states, which move independently until they simultaneously occupy the
same state, after which they merge. An idea similar to Doeblin’s
original one is used in [6], and a related device has been used by Hodges
and Rosenblatt [9].

In order not to obscure the main idea by details we give the proof
for the case D=2. Since Condition C holds we can just as well take
So(@)>4>0. Then

];Dek —led<1, k=01, - .

Let ¢, ¢, - - -, be independent random variables uniformly distributed

“Wé use conditional probabilities G, (y;x), etc., to mean those probabilities which are
uniquely determined by the Markov transition operator, starting from a given value .
They are thus uniquely defined for all y.
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on (0,1). Define processes X, and X, as follows: X,=vy, X;=vy’, 0<y, %’
<1. Suppose X, and X, are determined. Then

;Xn for ¢, <fo(X,)
Xn+1=
l»—{— 1 Xn fOI' tn>fu(Xn) ’
2 2
while
;X; for ,<fu(X,)
‘X/'nﬂ=
;+;x; for t,>fu(X,).

It is convenient to let U, (U,) designate the transformation applied
to X, (X)). That is, U,=i[U,=1] if X,..=0+X,)2[X,.=0@+X")/2].
Then
(4.10) PU<U,| X,, X;) <| fo(X,)— fo(XDI .

From (4.10) we then have
4.1 PU,=U,, U,u=U, -+, Uy =Un) >(1= &)1 —=8&)- - - (1= &) ,

independently of X,, X,.
Now the event {U,=U,, -+, U,.+=U,..} implies’

(4.12) (X7z+k+IEX;L+k+l)k+l
which in turn implies
(4.13) IXn+k+1_ ;z+k+1|_£2—k_1 .

Let us say that an “engagement” occurs on the nth step if
U,.=~=U,_, U,=U,. If we interpret the random variables =z, x,, ---
of Lemma 1 as the intervals between successive engagements, we see
from (4.11), (4.12), Conditions B and C, and Lemma 1 that

(4.14)  1im EXpected no. engagﬁg,entf in 1st NV steps _
N —oo

’

the limit in (4.14) being uniform in the starting points y and v/'.
It can be shown from (4.14) that for any &>0, we have,

(4.15) lim zirNZ: P(IX,—X,|>€)=0,

N o0

' 777A s_hg;l—mt modification is necessary if y=1 or y/=1.
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uniformly in ¥ and . The argument is roughly as follows. Whenever
U,><U,, the length of time till an engagement occurs is small, with
uniformly high probability, because of Condition C. Therefore, if only
a small number of engagements have occurred in the first N steps,
where N is large, then the probability is high that Uy=Uy, Uy-1=Uyx_,
cer, Uyy=Upy_ where k is large. Thus (4.15) follows from (4.13). (It
is easy to make this argument precise.) A simple type of argument
then shows that P(X,<wx|X,=y) is C-1 summable to a distribution G(x)
which is independent of y. Moreover the difference

(4.16) oS P e =)= 6 @)

goes to zero uniformly in y at all points of continuity of G(x).
If the stronger condition (4.3) holds, as well as Condition C, we
can replace (4.15) by the stronger statement

(4,17) P(|X,— X, >€)—0.

In fact, with probability 1 we have U,=U, for all sufficiently large n
in this case. We then get actual convergence, rather than just C-1
summability, of the distributions to G(x).

THEOREM 4. Assume that Conditions B and C hold. Then G(x) of
Theorem 3 either has a single discontinuity of magnitude 1 at one of the
potnts 0, 1/(D—1), 2/(D—1), --+, 1 or is continuous.

Proof. First let ¢ in Condition C be 0. If f,(0)=1 it is clear that
G(x) has a jump of magnitude 1 at =0, and conversely. If f,(0)<1,
G(xz) is everywhere continuous. First, G(x) must be continuous at 0.
For let K and n be integers, 0< K< n. Consider an X, -process with
an arbitrary starting point X,=y. If the D-ary expansion of X, begins
with K 0’s then U,.,=U,_,=---=U,_+=0. Hence

(4.18) P(X,<D)<PU,-1=U,_y=++-=U,_x=0) .
Now no matter what is the value of X, =&, we have
(4.19) P(U, 1=+« =T, x=0| X, c =)= £o(B) Fo(E[2) Fu(Z]2)- - - Ful&[25).

Because f,(0)<1 and f(x) is continuous at 0, the right side of (4.19)
—0 as Koo, uniformly in Z. Using (4.18) and (4.19), we have continuity
of G(z) at 0.

Similar arguments show continuity of G(x) at other points . The
argument is almost the same if the ¢ of Condition C is not 0.

THEOREM 5. Under the conditions of Theorem 3, G(x) is a stationary
absolute distribution for the X,-process and satisfies (2.4). It is the only
stationary distribution.
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Simple examples show that if the f,(x) do not satisfy the proper
continuity conditions, there can be a limiting distribution independent
of the starting point which is nevertheless not a stationary distribution.

The uniqueness of the stationary distribution, once its existence is
known, is an immediate consequence of the existence of a C-1 limiting
distribution for X, uniformly independent of X,.

In the case f(¢/(D—1))=1 it is readily verified that P(X,=1/(D—1))
=1 is a stationary distribution satisfying (2.4). We can thus limit
ourselves below to the case where G(x) is continuous. (Theorem 4.)

Instead of starting with a fixed value for X, it is now convenient
to give X, an arbitrary continuous distribution G(x) assigning probability
1 to the interval (0, 1). Letting G, (x)=P(X,<x) we have

(4.20) Gonle)= 5| £ )36, n=0,1, -

Then G, (x) is continuous for each 7, and we know from Theorem 3
that G,(z) is summable to G(x). It follows from Condition B that it
is justified to pass to the limit under the integral sign in (4.20) (C-1
limit if necessary), and Theorem 5 follows.

We can now give the main results of the present section. As
before % and ' will denote sequences of integers between 0 and D—1
inclusive. For convenience we let V denote the set of all sequences
which terminate in unbroken (D—1)’s, with the single exception of the
sequence, each of whose members is D—1. For any stationary process
whatever it can be shown that

Prob[(Z.,, Z_;, -+ -)eV]= Prob [(Z, Z,, --+)cV]=0 .
We use the notation (u=u’), to mean that the first m elements in
the u sequence are the same as the first m elements in the u’ sequence.
Now let Q,(x) be nonnegative functions of u with ilQi(u)El and
define -

(4.21) En=_sup |Qu)—Qyu")|.

7, (U=u")m
ugV,u' ¢V
Then the quantities &, defined by (4.21) are identical with those defined
by (4.2) if functions f,(z) are defined by (2.3).
We shall say that the Q; satisfy Condition B if (4.4) and (4.5) are
satisfied. These are requirements that the future is conditioned only
slightly by the remote past. Condition C will mean that for some j

(4.22) Q,(u)=>4>0, udV.

Now let I be a finite sequence of integers,
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l=(":o; 'I;u ctcy "/k)
and let

(4.23) Qi(w)=P(Z, =1y, *+ *y Zpsr="x| Z1=s, =+ +) .

The quantities @%(x) are to be interpreted as defined, relative to the
“past” u, by means of the @,(x); they thus have meaning even before
it is known that there is a stationary absolute distribution.
THEOREM 6. Let the functions Q(u) satisfy Conditions B and C.
Then
a) there exists a stationary process Z, such that (1.1) holds with
probability 1;
b) this is the only stationary process for which (1.1) holds;
c) the C-1 limit of QNu) exists for every u (except those in the set
V defined above) for every I, and is equal to the stationary
measure of I. The C-1 limit is approached uniformly in w.
d) For every u not in V we have, for each 1=0,1, «--, D—1,

(4.24) lim P(Z,=i|Z_1=w,, +++, Z_y=u) = Q(u) ,
k—>c0

provided the left side of (4.24) is defined for each k.

Proof. Define functions f,(x) by (2.83). From Theorem 38 there is a
unique distribution G(x) satisfying (2.4). From Theorem 1 there exists
a stationary Z,-process for which (1.1) holds with- probability 1. As
remarked in §2, the nature of the Z,-process is determined by the
distribution G. Hence, since G is uniquely determined, so is the Z,-
process. This proves (a) and (b) above.

The proof of (¢) is an immediate consequence of the relation be-
tween the Z,- and X, -processes, together with Theorems 3 and 5. A
slight modification is required if u=(1, 1, ---).

The relation in (d) above is, it is well known, true for almost all
u. A simple argument shows that it holds for every «# not in V.

5. Further properties of G(x). We now change our point of view
somewhat. Suppose we are given a stationary infinite-order chain Z,
as defined in the introduction. Define

(5.1) X,=Zys| D+ Zpo| P+ -+, n=0, +1, --- .

Then X, is a stationary process.

We shall further suppose throughout § 5 that the Z,-process is of the
mixing type.! The X ,-process then is likewise.

Let the functions Q;(z) be defined by

o Qi(u)=P(Zn=7:]Z =Wy Loy =1y, ***) .

8See [10, p. 36]. Roughly, if 4 and B are events, and B(n) is the event B translated
7 units in time, then P[AB(n)]—>P(A)P(B).
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As in §2 we then define functions f(x) by
(5‘2) f’l(x)=Qi(u) ’ 7;20} M) D'—]- 9

where .u,u,--- is the D-ary expansion of . The functions @Q,(u) are
defined at least for almost all u-sequences (“almost all” in the sense of
the measure on sequences in the Z,-process.)

Let G(x) be the distribution of X,. It is then clear that the
functions fi(x) are defined for almost all # (G-measure). It is also
readily seen that the X,-process is Markovian and that G(x) satisfies
(2.4) with the f(x) defined by (5.2).

Remark on uniqueness. Let G* be a distribution satisfying (2.4),
with G*(0—)=0, G*(1)=1, and suppose G* is absolutely continuous with
respect to G. Then G and G* are identical. This follows from the
general theory of Markov processes.

LEMMA 2. Let Z, be a stationary infinite-order chain as defined in
the introduction. Suppose Z, is mixing. Let

X,= 3. Z, /D’
j=1

and let G(x) be distribution of X,. Then G either has a single dis-
continuity of magnitude 1 at one of the points 0, 1/(D—1), -+, 1 or s
continuous. :

The proof is similar to that of Theorem 4 and is omitted.

LEMMA 3. Under the conditions of Lemma 2, G(x), if it is continous,
is either purely singular or purely absolutely continuous.

Proof. Suppose we have the continuous case. To obtain a con-
tradiction let us suppose

G=cG,+(1—0¢)G,, 0<e<1,
where G, and G, are the singular and the absolutely continuous parts
of G respectively, neither being identically zero.

If we write (2.4) in the operator form G=TG, then we have

(5.3) (G —TG)=—(1-c)G:—TG).

Now it is easily seen from the nature of T that TG, is singular and
TG, is absolutely continuous. Moreover, neither G,—TG, nor G,—TG,
can vanish identically. This follows from the remark above on uniqueness.
Thus (5.3) is a contradiction.

LEMMA 4. Under the conditions of Lemma 2, the f; are determined
uniquely by G up to a set of G-measure 0.

For from (2.4) we have

G4 G@-G(1)={" rwicw),  I<oldtliizo, ot
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Uniqueness of the f; follows from (5.4) and the Nikodym-Radon theorem.
THEOREM 7. Let Z, be a stationary infinite-order chain of the mixzing
type. Let

X,= S 2|’
j=1
and let G(x) be the distribution of X,. Then G(x) is one of the three
following types.

(a) G(x) has a single jump of magnitude 1 at one of the points
i/(D—-1), =0, «-+, D—1. This is true if and only if P(Z,=i)=1.

(b) G(x)=z, 0<x<1. This is true if and only if the Z, are inde-
pendent, each being equidistributed on 0,1, ---, D—1.

(c) G(x) s continuous and purely singular.

Proof. If G(x) has any discontinuities, then (a) follows from Lemma
2. Next we introduce the moment-generating function (s is any com-
plex number)

qb(s):S:e”dG(x) :

From (2.4) it follows that ¢ satisfies

(5.5) HDs)=9(5) + 3 ("~ 1)| e f (@)dG(@)

Setting s=2xki, t=1/—1, we have
(5.6) 2k Di)=¢p(27k1) , k=+1, +2, --- .

First suppose ¢(27ki)=0, k= +1, +£2, ---. Since ¢(st) is the characteristic
function of a distribution on (0, 1), it is uniquely determined by its
values at the points 27ki; hence in this case

. _67”—1
P(it)= it

and G(x)=«. It can be verified directly that (2.4) is satisfied with
G(z)== and f,x)=1/D. From Lemma 4, this is the only case where
G(x)=a can occur.

Next suppose that for some integer & we have ¢(27ki)=<0. Iteration
of (5.6) shows that ¢(it) does not—0 as t—c or t——c and hence G
is not purely absolutely continuous. Thus Lemma 3 shows that G, if
continuous and not of type (b), is purely singular.®

9 The fact that G has in general no absolutely continuous component can be seen from
a simple argument not involving Fourier transforms.



720 T. E. HARRIS

6. Grouped Markov chains. Let Y, be the variables of a Markov
chain with a finite number of states, which we shall call 1,2, ---, K.
Let the transition matrix be M=(p;), 4, j=1, -+, K. We assume
p;;>>0. Otherwise, even if some power of M has all positive elements,
there may be complications. We also assume K >>1. Now let the states
of the chain be divided into D mutually exclusive and exhaustive
nonempty subsets B, ---, B,_,. We can define an infinite-order chain
Z, by

(6.1) Z,=i2Y,eB, .

We shall call such a process a grouped Markov chain. We shall be
particularly interested in the case where the Y, -process, and hence the
Z,-process, is stationary. We show that Conditions B and C are satisfied,
determine the distribution of the “past” of the Z,-process, and show
how the functions Q,(x) and the corresponding f,(x), can be determined.
The @, or f; give the solution to the problem of predicting the future
values of Z,, given the past.

We first give a result about Markov chains.

THEOREM 8. Let M=(p,;) be the transition matriz of a Markov chain,
4, j=1, -+, K>1; p;;>>0. Let Y, be the variables of the chain. Let

(6.2) 1= min PruPu
bg bt K 35D
(Note that 0<A<1.) For each n=1, 2, ---, let A, be a nonempty subset
of states of the chain. Let g and h be two states. Then
(6.3)  |P(Yun€AuulYi=g, Yic A, -+, V,e4,)
"'P(Ynﬂ € An+1‘Y0=hy Yl € Aly M 9Yn € An)

<-4,
n=1,2, -+ .
The proof is omitted. It can be carried out with Doeblin’s “two-
particle ” method.
It is readily shown that for every u, 0<<u,<<D-—1, the limit

lim P(ZO-T—?;I Z—1=u1y M) Z—-kzuk)

ko0

exists, for the grouped Markov chain. We may take this limit as a
permissible version of @,u) for the Z,process defined by (6.1). It can
also be seen that

(6.4) Q) — Qua) <L — ™, m=1,2, -+,

whenever the first m terms of # and «’ coincide. Thus Condition B is
satisfied with®

10 The stronger condition (4.3) is of course, also satisfied.
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En(1—=2)"1, m=1,2, «-- .

Condition C is a consequence of the obvious fact that the Q,(«) are
uniformly positive.

THEOREM 9. Let Z, be defined by (6.1). Let
(6.5) Xy= 3\ Z | D’
j=1

and let G(x) be the distribution of X,. Then G(x) is continucus, 0<x<1,
and strictly increasing, 0<a<1.

Theorem 7 is applicable since Z, is of the mixing type. Since Z,
has a positive probability of taking at least two distinct values (we are
assuming D>>1), continuity follows. The strictly increasing character
of G follows from the fact that the event (Z.,=wuy, -+, Z_,=u;) has
positive probability for every sequence 0<lwuy, ---, u,<<D—1.

DEFINITIONS. Let Y, and Z, be as in (6.1) and let X, be defined
by (6.5). Define

(6.6) Hx)=P(X,<w|Y,=j), 0<z<1,j=1,2, .+, K,
6.7) a,.(s)=glewdﬂ,.(x) : 1,2, e, K,
0
s any complex number.
Let =, j=1, -+, K be the (unique) set of stationary probabilities
satisfying

K
(6.8) = Zl‘n-rij , j=1, .-+, K.

Let pf be the set of inverse probabilities

(6.9) pl=D;m,[7; .
Let M(s) be the matrix defined as follows:
(6.10) M(s)=(p}e™?)

where »(j)=k when j belongs to the group of states B.

THEOREM 10. (See preceding definitions.) The function 6,s), j=1,
<o+, K, 18 the sum of the elements in the jth row of the convergent
matrie product

(6.11) M(s|D) M(s|D*) M(s| D)+ - - .

Proof. Let Y} be the variables of a stationary inverse Markov
chain with transition probabilities given by (6.9) and let Zj}=i when
Y e B;,. It is clear that ZF is inverse to the Z,process in the sense
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that the process Z*, obeys the same probabilistic laws as the Z,-process.
Define

Xi= S Z5,D .
r=1

(Incidentally X, and X; follow the same law, not inverse laws.)
It is clear that Hi(xz), as defined in (6.6) above, is also given by

(6.12) Hyx)=P(X;<x |Y=) .

We now use (6.12) to find the functions H,(x).
Suppose  is an integer, 0<"r<(D—1, and suppose r/D<a<(r+1)/D;
that is, x=.ru,u;---. Then
(6.13) Ha)=P(Z*|D+Z*|D*+ « « « < vuye -+ | Yo* =7)
:P(Zl*<’r|Yo* =.7)
+P(ZF=r, ZF D+ ZF D4 -+ - <ty | Y5 =5)
=PZ*<r|Y*=)+ >, vk H(Dzx—7r), r/D<x<(r+1)D.
meB,

Next we note that X7 has the same distribution G(z) as X,. Moreover

(6.14) G(2)=P(X; <z)=

K
1

nH.(z) .

7=

Since G(zx) is continuous (Theorem 9), the H,(x) must also be continuous.
Now (6.13) implies the differential relationship

(6.15) dH(x)= ZB o A[H (Dx—7)] ,
me L,

7 _r+1 el e K.
Dgw\ D J= 1,
Defining 6,(s) by (6.7) and letting &(s) be the column vector whose

components are the 4;, we see that (6.15) implies (multiplying both sides
of (6.15) by ¢” and integrating)

(6.16) O(Ds)=M(s)8(s) ,

where M(s) is defined in (6.10). Iterating (6.16) and replacing s by s/D
gives

6(s)=M(s|D)- - - M(s/D")O(s/D") -

Since 6,(0)=1, O(s/D") approaches the column vector each of whose
components is 1 as n—co, while M(s/D") approaches the stochastic
matrix (p#). The powers (pf)" converge exponentially as n—co, and it
is readily seen that the elements of the difference M(s/D")—(pf;) are
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O(D-"), where O is uniform in s for any bounded s-region. Hence the
matrix product in (6.11) converges uniformly in any bounded s-region,
and Theorem 10 follows.

The 0,(s) and the H,(xr) can be calculated in various ways. One
possibility is to determine the coefficients in the power-series expansions
of the ¢, by differentiating (6.16) at s=0. The values of the 64, on
some interval near 0 on the imaginary axis can be calculated, and (6.16)
can then be used to determine the @, on the rest of the imaginary
axis.

We can now find the functions Q,(x) and f,(x) for grouped Markov
chains. In theorem 11, Z, is a grouped Markov chain as defined above.

THEOREM 11. Let u,, «--, u; be integers, 0<u,<<D—1. Then

P(Z, =0l Zy1=ts, -+, Zyor =)= _% L H(,) — Hy(,)]/[G(@:) — G(@,)]

je
where
Ty=u/D+u,|D*+ « -« +u,/D*,  2o=u/D+ -+ +u,/[D+DF,

and
K
G(x)= ]; m;Hx) .

The proof is merely a reinterpretation of Theorem 10.

We thus have an expression for the conditional distribution of Z,
if a finite segment of the past is known.

Next we consider the situation when the complete past is known.
Consider the X,-process and the associated functions f,(x). Then, if
T= .Uy,

6.17) Fl@)=-2 S H (@)= P(Zy=i| Zaor=tts, Zyoy=tty +~ )
dG(2) jeb

where (6.17) holds for every @, 0<a<(1, provided we take right-hand

derivatives on the right side. Thus (6.17) gives the conditional distri-

bution for Z, if the complete past is known.

Example. Suppose

(pis)=

PO o [
N N
S I
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Then = =4/11, =,=3/11, z,=4/11, and in this case p}=p,;. Take states
1 and 2 as B,, state 3 as B,, so that D=2. The 60,(s) then satisfy the
equations

(6.18) 04(25)— 101(3) + iaz(s) + ; 0y(s)
1 1 1,
0.(2s) 3 0:(s) + 3 0,(s) + 3 e'0(s)
0,(28)— ;01(3) + ifoz(s) +fi.esag(s) ,

which, with the conditions ¢,0)=1, determine them uniquely. The
Hj(x) can then be determined by Fourier inversion.
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