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1. Introduction* Let the bounded, simply connected, open region
R of the (Xj ?/)-plane have the boundary curve C. If a uniform ideal
elastic membrane of unit density is uniformly stretched upon C with
unit tension across each unit length, then λ, the square of the funda-
mental frequency, satisfies the conditions (subscripts denote differentia-
tion)

Δu=uxx-\-Uyy=—λu in R,

λ=minimum ,

with the boundary condition

(lb) u(x, 2/) = 0 on C .

Variational methods of the Rayleigh-Ritz type are frequently used
to approximate λ. They always yield upper bounds for λ, and the up-
per bounds can be made arbitrarily close.

Another common practical method of approximating λ is to calculate
the least eigenvalue λh of a suitably chosen finite-difference operator
Δn over a network with small mesh width h. For one choice of Δh it
was shown by Courant, Friedrichs, and Lewy [3, p. 57] without details
that λnr+λ as /&->0. For convex regions R of a special polygonal form
the author has shown [4] that a special case of (11) below is valid for
a common choice of Ah, and hence that λh is asymptotically a lower
bound for λ as &-»0. For an unusual finite-difference approximation to
problem (1) when R is the union of squares of the network, Polya [12]
has found that λ^>λ for all h, and also for the higher eigenvalues.
The author knows of no other study of the sign or order of decrease
of λ-λh to 0.

In the present paper the investigation of [4] is extended to a much
wider class of regions: those with piecewise analytic boundary curves
and convex corners. The new theorems are stated and proved in §§ 3
and 4. Theorem 2 contains the theorem of [4] as a special case.
Lemmas used in the proof of Theorem 1 are given in § 5. Identity
(31) of Lemma 7 is interesting in itself.

Received December 2, 1953. Presented to the American Mathematical Society Sep-
tember 4, 1953. The preparation of this paper was sponsored in part by the Office of
Naval Research, U.S.N.

691



692 GEORGE E. FORSYTHE

When C is no longer made up of line segments of the network, it
is necessary when using finite-difference methods either to move C or
to alter Δh near the boundary. The latter procedure is potentially
more accurate, and has been adopted in deriving the rather delicate
results proved below. The definition of Δh given in § 2 is a self-adjoint
modification of Mikeladze's approximation [10; 11], and is believed to
be new. The cruder approximations to Δ near C proposed by Collatz
in 1933 and expounded in [2, p. 357], while easier to compute in prac-
tice, appear to introduce an unmanageable term 0(Kι) into (19). It is
therefore doubted that Theorem 2 would remain valid for these cruder
operators.

The technique of the present paper could be applied to study the
asymptotic behavior of λh also for other difference approximations to Δ
in the interior of R—ioτ example, for those associated with a triangular
net [2, p. 367].

It is not clear that one could revise the argument of the paper to
prove an inequality of the type

- < 1 + bh2Λ-o{Kz) .

2. Definitions. Assume the bounded, simply connected, open region
R to have a closed boundary curve C: x(s) + iy(s) ( 0 < s < s m ) which is
pίecewise analytic. That is, x(s) and y(s) are real analytic functions of
the arc length s of C in each of a finite number m of closed intervals

O=sQ<s<sι, sί<s<s2J , s m _ 1 <s< t s m .

Moreover, we demand that the corners of C be convex that is, at any
point x(Sj)-\-iy(Sj) (0<j<Cm) where distinct analytic curves meet, the
interior angle of C must be less than π.

For h^>0, let a net consist of the lines x=μh, y=vh (μ, v=0, ±1,
±2, •). The points (μh, uh) in R are the interior nodes Rh of the
net. The boundary nodes Ch of the net consist of (i) all points (μh, vh)
on C, and (ii) all isolated points of intersection of the net with C.
Thus each node (μk, vh) of Rh has two neighboring nodes in Rh\JCh

on the line x=μh, and two in Rh\JCh on the line y=vh. Moreover,
each node in Ch has at least one neighbor in Rh\jCh.

We now move toward a definition of the difference operator Δh.
Let.us denote the neighboring nodes of the node

(2) (x, y) of Rh by (x-hu y), (x + h2,y), (x, y-h3), and (x, y + hj,

where 0<hι<h for i = l, 2, 3, 4. For nodes remote from Ch, all ht=h.
Let v be any net function defined on the nodes of Rh\JCh, vanishing
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on Ch. Define Df^v as the (constant) second derivative of the quadratic
polynomial function of x assuming the three values v(x — hu y), v(x, y),
and v(x+h3, y). That is,

3 \ TΊOOΛU™ nΛ u i V\ΛJ-T ivii y) — v{Xf y) V\X, y)

7 • τ ' h, h

a? — ̂ i , 2/) Ί β

λ J '

Also, Ώψv{x, y) is defined analogously. We next define

, y)

v(x, y)( +
( 4) \hιhz hji

, y)

h'Ah -\- hi) hA/

The operator Δ^ is the approximation to Δ recommended in [10].
It linearly transforms the net function v defined over Rh into the net
function Δ^v, also defined over Rh. But # / ι ) is not a self-adjoint linear
operator that is, the matrix ACK) of the linear transformation of v in-
to Δ^v is not symmetric.

We define the matrix Ah as the symmetric part of the matrix AQι):

(5) Λ = i [ A ^ + 4 w η ,

where T means transpose. Finally, we define Δh to be the self-adjoint
linear operator corresponding to Ah.

The explicit expressions for Δh assume 16 different forms, depending
on the location of (x, y) with respect to Ch. Although we shall not
need these expressions for the present paper, we describe them briefly.
If, in any of the four directions from (x, y), the neighboring node—say
(x — hi, y), for definiteness—is in Rh, then hx=h, and there is another
node (x — h — hi, y) in Rh\JCh. Then the t e r m 2v(x — hu y)lh1(h1-hh2) of

(4) is to be replaced by

For any (x, y), the expression for Δh is obtained from (4) by making
replacements like (6) corresponding to all neighbors of (x, y) in Rh.

When (x, y) is more than two nodes away from Ch, so that all
h{=hi''=h, the values of both Δ°^ and Δh reduce to the familiar form
used in [4]:
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(7) Δhv(x,y)=Δ<»v(x,y)

=—[v(x—h, y)-hv(x + h, y) + v(x, y—h) + v(x, y-hh) — £v(x, y)] .
h"

Let λh satisfy the following difference equation for a net function
v defined in Rh\JCh :

Δhv=-λhv in Rh ,

λh=minimum ,

where v is extended to satisfy the boundary condition

(8b) v = 0 on Ch.

It is readily shown that λh is the minimum over all net functions
v satisfying (8b) of the quotient

Rn.

(This is simply the minimum principle for a definite quadratic form.)
By (5), we can write ph(v) in the following equivalent form, simpler to
use:

( 9 ) ^ ) β - * % " "

Rn.

The reason for not using the least eigenvalue μh of Δ^ in this
investigation is that μh does not have the foregoing minimum property
and, in fact, might turn out to be complex. On the other hand, it is
known [9, p. 27] that lh<& (μh), so that when μh is real it could con-
ceivably be a better approximation to λ than λh is. The relative
magnitude of UΛ —Λ| to \μh — λ\ is not known.

3 The results* The following new result will be proved in § 4:

THEOREM 1. Let R be a bounded, open, simply connected region
bounded by a piecewise analytic curve C whose corners are convex in the
sense of § 2. Let τ be the angle between the tangent to C and the x
axis. Let u solve problem (1) for R, and let un be the normal deriva-
tive of u on C. Define λh as in § 2. Let

1 \ (u2

xx 4- u2

yy)dxdy -f \ un

2 sin2 2τ dτ

(10) a=a(R)= "B
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Then — oo<α<oo and, as h->0, one has

(11) ^<l-α/*2-fo(&2) (Λ->0).

In Theorem 1 the quantity a can probably be negative for certain
nonconvex R, because dτ in (10) will be negative at some points of C.
But if R is convex we get a stronger result, as an immediate con-
sequence of Theorem 1.

THEOREM 2. Under the hypotheses of Theorem 1, if Ris also convex,
then 0<α<oo, and there exists A0>0 such that 4<Λ for all

For the operator Δh of § 2 the methods of [3] can undoubtedly be
followed to show that λh~±λ as h—>0 the author has not attempted to
carry through the details. When λh->λ as &->0, the lower bounds λhQ

can be made arbitrarily close by choice of hQ sufficiently small. Thus
for these R the Rayleigh-Ritz methods and the finite-difference methods
(8) are theoretically complementary, and together could confine λ to an
arbitrarily short interval if one knew an upper bound for h0.

The author has not developed an upper bound for h0 in Theorem 2,
although it would be desirable to do so by estimating the term o(h?).
One could always make an intelligent guess based on the behavior of
λh for certain h.

The constant a of (10) is the best possible for certain rectangular
regions see [4]. That the corners of C be convex seems essential to
the validity of Theorem 1. Indeed, for one nonconvex polygon some heuris-
tics and an experiment mentioned in [4] make it appear that λh=λ +
Ahφjrθ(hφ), where >l>0. It would be interesting to know the sign
of a for the general case of Theorem 1, or in particular when C is a
nonconvex analytic curve.

Corners of angle π are frequent in engineering practice, and it
would be desirable to know how λh behaves when R has such corners.
For such corners Lemma 2 is no longer valid. Lewy [7] provides new
tools for an attack on corners of angle π.

4. Proof of Theorem 1. Let u henceforth be the solution of
problem (1) for the fundamental eigenvalue λ. It is known that

(12)

The proof of Theorem 1, following [4], consists in setting the
values of the function u at the nodes of Rh\JCh into the Rayleigh
quotient (9) of problem (8). It will be shown that
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(13) P-^^l-atf + oih*) (A->0) .

Since λh<^ph(u), the theorem follows from (13).
The denominator Kι Σ ^2 of ph{u) differs from a Riemann sum for

ifdxdy at most by the terms corresponding to squares or part-squaresI \

at the boundary C. The total contribution of these terms does not
exceed the order of magnitude LhmsiXRu\ where L is the length of
C. Hence a fortiori

(14) h% Σ u 2

Rh

Let the nodes of Rh be divided into three classes:

RJ: those within a distance h of some corner of C

Rj? : those not in RJ but within a distance h of C

JRΛ

3 : the other nodes of Rh .

(15)

Split the numerator of ph(u) accordingly:

* - - >-*•

There are a fixed number of corners, not exceeding m, and at
most two nodes of Rh

ι per corner. Moreover \f7u(x, 2/)|3->O as (x, 2/)->a
corner of C, by Lemma 1 in § 5. At any node (x, y) of Rh

ι with
neighbors denoted as in (2), we find from (3) that

__ 4/&2 max ψu\2 ,
mm /

where the ut are the values of u at the four neighbors of (x, y), and
where the maximum of \pu\% is taken over all points within a distance
2h of some vertex. Hence

(16) \Sh

ι{u)\<8mh2 max \yu\*=o(

Using the notation and assertion of Lemma 3, we have

(17) sh

2{u)=-hΣuM

Since u satisfies (la),

(18) -h? Σ uΔu=λh% Σ ^2

By (17), (18), and Lemma 4,
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R1 Σ

Thus

(19) Σ
R,?

Similarly, using the notation and assertion of Lemma 5, and by
(la), we have

(20) Sh\u) = λh* Σ ^ ~ ~ Σ u{ιϊxxxx + < w y ) .
12/e

Now

(21) h* Σ %2=Aa Σ %a-Λa Σ w8=As

R*R R Rι

since %(a?, ?/)->0 as (a?, 2/)-^C, and since there are at most 2m vertices
in Rh\ Adding (19) and (20), and using (21), we find that

Sh

2(u) + Sf?(u) = IK' Σ ^ " , o Σ U(%ϊχxxx + Uyyyy) + θ(/^)
Rh 12 743

" ' '"IXXXX 4" Uyyyy)dxdy 4" θ ( ^ ) ,

by Lemma 6. Adding Sh

ι(u) to the above, and dividing by (14), we
find that

Σ sh>(u)

h Σ ^
(22) Rh

7,2 \\ u{uxxxx

Finally, dividing (22) by /!, and applying Lemma 7 and (12), one proves
(13) and hence Theorem 1.

5* Some lemmas. The following lemmas are basic to the proof of
Theorem 1. In all of them R satisfies the conditions stated at the
start of § 2, while u^u(x, y) solves problem (1).

LEMMA 1. The function u is an analytic function of x and y in
R\JC, except possibly at the corners of C. Let r be the distance of (x, y)
from a corner P with interior angle πjoc, l<^a<^&>. Then for m = 0 , 1,
2, , any partial derivative ofu of order m has the local representation
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(23)
oxμ'dyy

(x, y)

where fm is continuous at P.
Proof. By [1, p. 179], u is analytic in R. The representation

(270 below shows that the interior normal derivative uH is integrable
on C. Then the analyticity of u on C (corners excluded) was shown
by Hadamard [5, p. 25].1

Let t=ξ-\-iτ] and z=x-hiy. For each teR let w=Φ(z, t) map R

conformally onto the circle M < 1 , with Φ(t, t) = 0. We may assume
without loss of generality that P is at z=0, and that 0(0, £) = 1.
Lichtenstein [8, pp. 255-256 and footnote 273] showed2 that for m=0,
1, 2, , and zeR,

(24) ! ^

where ψm is continuous at z=0. It follows from (24) that

(25) ^ψ'V^φ^t),
uZ

where ψm is continuous at 2=0. Let G(z, t) = G(ξ, η x, y) be Green's
function for Au in R. Since

G(z, ί)=~(2τr)-1 log |/(2, ί)| ,

it follows from (25) that for m=0, 1, 2, and zeR,

(26) dn§^)

where Ψm is continuous at 2=0.
Now the function u has the integral representation [1, pp. 182-183]

u(x, (x, y; ξ,

Hence

(27) , y)-u(x, y)
Ax

1 The author wishes to thank Professor Lewy for this reference.
2 Lichtenstein actually asserts that (24) is without question true for all α, but that his

proof is valid only for irrational α. Warschawski [13] has found a simple proof of (24),
valid for all α in the range | < α < o o .

Added in April 1954: For asymptotic expansions of φ at a corner, see R. Sherman
Lehmann, " Development of the mapping function at an analytic corner," Technical Report
No. 21, Applied Mathematics and Statistics Laboratory, Stanford University, California,
March 31, 1954, 17 pp.
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Δx

(x + ΘΔx,y; ξ,y)u(ξ, y)dξdy ,

where 0<#=#(#, y, Δx)<Cl. Since G(z, t) = G(tf z), it is clear that dG/dx
= dGldξ and, as a function of t, dG/dx behaves like lί — ^!"""1 at any
corner ί0 of i?, uniformly in z for 2 bounded away from C. Hence
(dGjdx)u(ξ, 7j) in (27) is dominated by an integrable function of ξ, -η,
uniformly with respect to Δx. By Lebesgue's convergence theorem,
letting Δx-*0 in (27) proves that

(270 - ~ = λ\ ~(x, V, ξ, Φ(ξ, V)dξdr].
OX JJβ OX

Setting the expression (26) for m=μ=l into the last equation proves
the case m=μ=l of (23).

In a similar way one can prove all the cases m=0, 1, 2, 3, 4 of
(23), and the lemma is established.

LEMMA 2. The functions u2

xx, uxuxxx, uuxxxx, u2

yy, uyιtyyy, anduuvmfare

Lebesgue integrable in R. The Lebesgue integrals \ uxuxxdy and
[
1 t(/ylΛ/yyaJϋ eXvSΊ/

Proof. By Lemma 1 the functions uxx, , uuyyyy are continuous
in R\JC except possibly at the corners, where they are O(r2Λ"4). Since
0<tf, the first sentence follows. The second sentence is proved analo-
gously.

REMARK. The proof of Lemma 2 breaks down for corners of angle
π (cc — ϊ), as r"2 is not integrable.

LEMMA 3. At any node (x, y) of Rh whose neighbors are denoted as
in (2), one has

where —1<CΘX<^1, —l<^θy<Cl, and where

u'xxx=uxxx(xf, y) , x—h

{ uyyy=Uyyy(x, yf) , y-)

Proof By Lemma 1, uxxx is continuous in the open line segment
from (x — hu y) to (x-\-h2, y)f but may become infinite if the endpoint is
a corner of C Since u is continuous in R\JC, it nevertheless follows
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from Taylor's formula as stated in [6, p. 357] that, if we fix y and
set φ(x)=u(x, y),

±£=φ,{χ)Λ_ h2φlf(χ)+ hlφ,
h% 2 6

where O<0 2 <1.
Writing a similar formula for hx and subtracting, we find in the

notation of (3) that

If one writes k=m&x(hu ht)<h, the last term can be bounded in ab-
solute value by

and hence can be written in the form (2hjS)θxu
/

xxx. Addition of a
similar expression for Dy

h}u(x, y) proves the lemma.

LEMMA 4. For each node (x, y) of Rh

2 defined in (15) use the nota-
tion of (28). Then, as λ->0, one has

(29) A Σ a ( l a U + K^ | )=o( l ) (h-+0) .

Proof The lemma is proved much like Lemma 6 of [4]. The func-
tions u\uxxx\ and u\uyyy\ are continuous in R\JC, except at a corner of
interior angle πa, where Lemma 1 states that they behave like r2α"3

with 2a — 3 > — 1. The sum (29) can be majorized by the Lebesgue
integral of a step function over a polygonal arc in R which converges
in length to C as λ->0. The integrability of r2Λ"3 in (0, 1) permits the
application of Lebesgue's convergence theorem as h-+0. Since w=0 on
C, (29) follows. Details are omitted.

LEMMA 5. At each node in Rh

d, defined in (15), one has

Δ^U = ΔUΛ~ --- h?(UΛXXX + Uyyyy) ,
Λ-Δi

where

uxxxx=uxxxx{x-\-θ'h, y) , -

Proof In [4] the points of Rh* all have four neighbors in Rh\
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each at a distance h.

LEMMA 6. At each node of Rh\ defined in (15), use the notation of
(30). Then, as h->0, one has

+ Uyyyy) = \ \ U{Uχχχχ 4" Uyyyy)dxdy 4" θ(ΐ)

Proof. In [4].

LEMMA 7. Define un and τ as in Theorem 1. One then has

\ \ u(uxxxx 4- UyyyV)dxdy = I I (ulx 4- u2

yy)dxdy + \ ŵ  sin2 2rcZr ,

where the latter is a Riemann-Stieltjes integral.

Proof. The proof repeats that of Lemma 7 in [4] down to (29) of
that paper. It then remains only to prove for smooth convex curves
C that

(31) \ Uyy(uydx + uxdy)=\ un

2si

Let s denote arclength on C, and let primes denote dlds. Differ-
entiating the relations ux=—unύnτ, uy=un cos τ, we find that, on C,

ί uj = —un' sin τ — unτ' cos τ=uxy sin τΛ-uxx cos r ,
(oZ) "I

( Uy ' = ww

r cos τ — unτ' sin τ=uxy cos Γ 4 M W sin r .

Changing %.τa, to — %yy by (1), we can solve (32) for uyy on C:

Uyy=Un sin 2r4-^nr ; cos 2τ .

Since d^=cZscosr and dy=-ds sin r, we obtain

(33) \ Uyy(uydx 4- w xφ) = I (wn

r sin 2r 4- ̂ wr r cos 2r)(wn cos 2τ)ds
jc Jc

= \ un

zτf cos2 2r ds + \ %»%„' cos 2r sin 2r ds .

By partial integration, we have

(34) 1 ^ ^ / c o s 2 r s i n 2 r d s = ^ l (un

2Y sin 4τds

= l[un

2 sin 4r]tf-- \ ww

2rr cos 4r ds .

Since cos 2 2r-cos4r=sin 2 2r, substitution of (34) into (33) shows that
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S uyy(Uydx + uxdy) = I u£τ sin2 2r ds .

Since τ'ds=dτ, the identity (31) is proved, and with it, the lemma.
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