FOURIER ANALYSIS AND DIFFERENTIATION OVER
REAL SEPARABLE HILBERT SPACE

F. H. BROWNELL

1. Introduction. Let [, denote as usual the space of square sum-
mable real sequences, the prototype of real separable Hilbert space.
It is well known that [, possesses no non-trivial, translation invariant
Borel measures. However, [, does have infinitely many subspaces X,
locally compact in the [, norm relative topology, which we may call
translation spaces and for which such measures ¢ exist [2]. Here the
spaces X are not groups under [, vector addition, so the notion of
translation invariance must be appropriately modified. For any such X
we may of course use the corresponding ¢ to define over zel, a Fourier
transform F' of fe L(X, <, ¢) by

P~ r@ede@) .

However, in order to get the expected inverse formula, it seems neces-
sary to be able to make X into a group—roughly speaking to define a
vector in X corresponding to x4y when this I, vector sum ¢ X. This
is a severe restriction on our translation spaces X, and the only natural
ones still available seem to be essentially ‘modifications of Jessen’s in-
finite torus [9]. With orthogonal coordinates this is the space X, de-
fined below, a modified Hilbert cube.

Since X, is a locally compact abelian topological group, Fourier
analysis upon it becomes standard procedure. We are able to extend
some standard one-variable theorems (see [1]), relating Fourier trans-
forms and the operation of differentiation, to the situation here, which
seems new. In a summary at the end we discuss the significance of
these results as related to the work in functional analysis of Fréchet,
Gateaux, Lévy, Hille, Zorn, Cameron and Martin, and Friedrichs.

2. Fourier integrals on X,. Let
Xo={xel, | —h,<a,<h, for integer n>1}
where the ﬁxed sequence of extended real 4,, 0<A,<<+ o, has
S b+ oo
n=N+1

for some fixed integer N>>0. For simplicity we assume 4,=+ o for
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1<n<N if N>1. Define +' addition as /., vector addition modulo the
subgroup I,={z €, |z,=0 for <N, x,/2h,=m,, an integer, for n>N+1}.
Define P(x) for xel, as the unique element of X, in the coset z+1;;
thus clearly 2+ 'y=Px+y)e X, for x and ye X,. After defining the
inverse —’x=P(—x) for xe X,, we see that X, becomes a group under
+’ and —’. However, the operation +’ is not continuous under the
metric |@—y| defined by the I, norm

oi=| Sa]'.

Thus, following Gelfand [5], we introduce the modified norm [jz|=
|P(x)| for xel,. That +’ and —' are continuous under the resulting
metric ||x—y|| is clear from the easily verified statements

1@ +'9) =@+ |=|P@—z+7—p)|<|P@—2)+ PG —v)|
<lz—zll+llg—yl and [I(="y)—(="2)l=lly—=].

Thus X, is a topological group under the metric topology of the modi-
fied norm. Note that P(x) is continuous from 7, onto X, under the ap-
propriate /, and modified norm metrics, since

I1P@)— P@)ll=IP—y)|<|z—y] .

We can easily verify that the as yet unused condition

Sy Bt oo

N=N+1
is necessary and sufficient for X; to be locally compact under either
the [/, norm or modified norm metric topologies. Thus X, under the
latter topology, possesses a regular Haar measure ¢ defined over <7,
the Borel subsets of X, ; and ¢ is unique up to constant factors. Hence
¢ is non-trivial and invariant under +’, though, as we remarked above,
this ¢ could be constructed for + alone without making X, into a
group, (see [2]). To fix ¢, let

Vi={zxe Xy | |2,|<3% for n<N};

thus Vi, being non-void and open with compact closure, must satisfy
0<g(Vy)<+ . We specify ¢ uniquely by requiring ¢(V;)=1.

In order to get Fourier analysis on X, following Godement [6] or
Weil [11], we need to determine the continuous characters on X, that
is all continuous complex valued functions ¢(z) on ze X, with |¢(z)|=1
and ¢(@+'y)=¢(@)¢(y). Here let

Z(,={zel2 | 2,= 7;3)" with p, an integer for n>N+ 1} .

n
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Note that since “Z h2<+ o and zel, make A,—0 and z,—0 as n—>o,
n=N+1

each ze Z, must have p,=0 and thus z,=0 for sufficiently large n=.
Let

(x, ?/): ;:41 TplYr
denote the [, inner product.

LEMMA 1. The group of characters X, is isecmorphic with Z,, each
character having the form ¢(x)=¢e“>™ with ze€ Z,

Proof. Let exp [i@(x)]=¢(P(x)) for any ¢ € X,, with @#(0)=0 and O (x)
defined uniquely by requiring continuity. Thus @(x) is a continuous linear
functional over I,, so @(x)=(x, 2)=(2, ) for some unique zel,. For
h,<+ oo, taking x;=2h, if j=n and x,=0 if not, we see that P(x)=0.
Hence 2zp,=@(x)=(z, x) makes z,=zp,/h,, S0 z€ Z,.

Let Z,Cl, be topologized relatively from /,. Clearly this topology
is equivalent to the product of the euclidean FE, topology with the
discrete topology on the part »>>N, where z,=zp,/k, and k,—0. Z, so
topologized forms a locally compact abelian topological group under [,
vector addition, 7 denoting its Haar measure. Clearly this topology on
Z, is equivalent to the Hausdorff space topology with neighborhoods as
finite intersections of sets of the form

N, r(2)=1{z€ Z, | [(z—2, )|<p for xe F},

p>0 and F' a norm bounded subset of X,. Equivalently on X, this
topology is given by

Ni o) ={¢ € X, | [f(x) — $y(@)|< o for ze F} .

Now (X, <2, ¢) is a o-finite measure space, so L.(X,, <%, ¢) is the
conjugate space of L,(X, <7, ¢). Thus the argument of Godement,
[6, p. 87], is valid and Z, is homeomorphic to X,ZL.(X,, <7, ¢) under
the weak topology defined by L(X,, <7, ¢).

We may normalize 7 uniquely by requiring the Fourier inversion
formula (2.2), which must hold as stated in Lemmas 2 and 3 following.
The formulae are:

(2.1) @)= ¢ f@)p(a)
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2:2) f(x):L e~ F(2)dn(2) -

Here we note that any f e L,(X,, <%, ¢) has its Fourier transform F(z)
defined and continuous on Z, by (2.1); and if such Fe L(Z, <%’, ),
#'" being the Borel subsets of Z;,, then the right side of (2.2) also
exists and is continuous. For Lemmas 2 and 3 let .Z be the class of
all convolutions

[wxo)@) = | (e ="sp)de@)

of continuous funections u(x) and v(x) vanishing outside compact subsets
of X,. (For proof of these following well-known lemmas see [6, p. 90-
94]. The density of .~ in Lemma 2 follows from the regularity of ¢.)

LEMMA 2. .« 4s demse in L(X,, <7, ¢) and L(X, &, ¢), and
each fe . 7 has its Fourier transform FeL\(Z, <%’',7) with (2.2)
holding at each x € X, for the inverse transformation.

LEMMA 3. If feLJ(X, 22, ¢), then there exists a unique Plancherel
transform F e LJZ,, %', 7) such that every sequence {f.} .2 with the
L, norm | f— fi].—0 also has |F—F,|,—0. Moreover, every sequence
{(f}C 7 with |F—F.|,—>0 also has ||f—fi|.—0. This Plancherel
transformation takes L.(X,, <&, ¢) onto L\(Z,, <z’, 7) as a Hilbert space
180morphism,

23) [, r@i@ee -, FEGEEME . figels.

In order to determine 7 explicitly, let S be the set of all integer
valued sequences ¢= {p,} over n>>N such that p,=0 for large enough
n for each sequence; thus S is countable. Let z=(w; ) be defined
for we Ey, €8S by z,=w, for n<N and z,=np,/h, for n>N. Letting
1.4(?) be the characteristic function of any Ae &5/, with py Lebesgue
measure on F,,

e 1-(,) = {SE 1uw; 0) dyﬁ(«»)}=5E {Sueso} i)

follows, by applying Lemma 8 to the Gaussian

f@=exp(- 3 Sat)

n=1

to determine the normalization.

3. Fourier transforms and X, differentiation. Here let X, denote
X, with the nth coordinate omitted, ¢, the corresponding measure over
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the os-algebra <7, of Borel subsets of X,, and % the Borel os-algebra
of E, if »n<N, of (—h, h,) if »>>N. Then [7, p. 222], we see that
C 7 =2, % 72, as the uncompleted product; also, using the uniqueness
of Haar measure, ¢= 59,1></11 or =g¢,x (m/2h,) according as n<<N or >N.
Now consider f e L(X,, &, ¢), let & denote 2« with the nth coordinate
omitted, and define K,(¢, xn) 1if —7p,<t<zx, K(t, x,)=0 if not. Clear-
ly K.t @) (@, -+, o1y b, Tyyry -+ ) 1S measurable (7, x &, x &,
=(2 x %) over (%, @, t)eX,xE xE, if n<N, or X,x(—hy h,]
X (—hy, hy] if n>>N. Thus if we define

S f(x)dw,L—S K¢, 3,)f(, t)dt,

then the Fubini theorem makes S f@)de,e L(X,x1, &7, ¢) for any

finite «, interval I.

For the following theorems we will say that f(x) is «, absolutely
continuous if for all xe X,—A, where A is some set e <%, having
¢,(A)=0, we have f(P(Z, x,)) absolutely continuous as a functlon of x,
over every finite interval of E..

THEOREM 4. If feL(Xy, &, ¢), if [ is @, absolutely continuous,
and if fr, the resulling x, first partial, is € L(X,, <7, ¢) also, then
the (2.1) defined Fourier transforms F, and F of f’, and f have F,(z)=
= —iz,F'(2) over ze Z,.

Proof. Consider first %,< + o, so we know almost everywhere (¢)
on X, that

F@ (i) do,+ 1@ —h) =@t 1@, ).

Now

by .

RIS PR for 2z,~<0,

—Iw

S0
b
Fo)-| o Fidm, } L ap, @
X, —hn 2h
But
B s

|

eW{g fi@E, t)dt}ds
h, h
iznh Ten 1 ha .

= e e s

’&zn —~h, _ hn
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by integrating by parts, and

hy,

S Ful®, tydt=f (PG, b)) — F(PFE, —hy)=0 .
h.

—

Thus F(2)==— (1/iz,)F,(2) for z,2<0. If z,=0, then

hy,
S Fu@, t)dt=0
— hn

makes F,(2)=0, so F,(z)= —1iz,F(2) for all ze Z,.
Secondly if h,= + o, we know

f@=|ri@ds,+c@)
almost everywhere (¢,) over e X,. Thus f(&, «,)—>C(%) as x,—>—oo,
so f(&, x,)e L,(E,) in x, almost everywhere (¢,) requires C(Z)=0,
f(x)=S fr@)dx, , and similarly SN fr@@, t)dt=0 almost everywhere
(¢,). Thus
Sm e'iZnS f((i, s)dszgm e'izns{gs f;l(at, t) dt }'ds

1. e'izns s o~ b 1 oo izns o~
=lim | ——\ f(&, t)dt e i e fo(&, s)ds

ap—e L 42, J-o

=;71.S°° ™8 /(3 s)ds, so F(z)=—-é~F,z(z) for 2,2<0.

If 2,=0, then S’" S (&, t)dt=0 makes F(2)=0, so F,(2)= —1z,F(z) for
all ze Z,.

For the next lemma we need to remark that T'(z; y)=(x; y—'x) is
a homeomorphism of X,x X, into itself, and hence leaves unchanged
the Borel class <2 x =%, [7, p. 2567]. Thus Ae & has T(X,xA)e &

x ., so clearly any f(x) measurable (£77) has f(x+'y) measurable
(% x <2). Let ,e€l, be defined by ,6,=0,:, and we then easily see, using

{@; y)e Xox X, |yr=0 for k=n} € &2 x &,

that such f also have f(x+'t,¢) measurable (7 x &) over xe X, and
t real.

LemMA 5. If feL(X,, &, o) with real r=>1, of f is x, absolutely
continuous, and if the resulting f.,e L(X,, &, ¢), then defining



FOURIER ANALYSIS AND DIFFERENTIATION 655
1 /h 1
nfh(x)z—};‘ {(f@+'he)— f(@)]

over real h=<0 yields
]]}‘II.] “nfn'_f;”'r':o .
Proof. Since z+'h e=P(x+h ), we know that

Sil@) = Fi@) = (Fia ) - Fiaat

almost everywhere (¢,) over e X,. With 1/r'=1-1/r if »>1, 1/+’
replaced by 0 if r=1. The Schwarz-Holder inequality thus yields

|nfn($) — () |_<_I}L|1 [ -1

[ i@+ to - ri@ra .
Then by the Fubini theorem

—_ £ 1 I ) , . r ]

Wi sit<p U], i@ to— riards @la

< sup |g.—g|\

tI<Ih|

where g(@)=f.(x)e L, and g,(x)=g(x+'t ). The functions u(x), con-
tinuous on X, under the modified norm topology and vanishing outside
compact subsets of X;, are L, norm dense in L.X,, <7, ¢) by the
regularity of ¢; and such u have |u,—u|,—0 as t—0 by their uniform
continuity. Also [g,—u.|,=[|g—u|. by ¢ invariance, so

Infum Fal<2lg=ul+ sup Ju~ul,

and hence |,f,— f.|.—0 as 2—0.
We also have the following converse for r=2.
LEMMA 6. If f and ge L(X,, &, ¢) and if lim|,f,—g|.=0, then
h—0

f (x)=}‘(x) almost everywhere (¢) for some F () measurable (7)) which

is x, absolutely continuous and has its derivative f',}(x)=g(x) almost
everywhere (¢).

Proof.

hn

nfi=gli=&| |

n Y —h,

o 1(@) — g(@) P, dipal )
f

by the Fubini theorem, so using a Riesz-Fischer subsequence A=t;,—0
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we have

hy
tim [ £, @) - 0@lde,~0
T

L0

for almost (¢,) all ze X,. This reduces our statement to the one real
variable analogue, where the result is well known (see for example
Bochner, [1, p. 181], if &,= + ). Since we may take

T

F@y={ " 9@ tae+ f@, 0

‘0
almost everywhere (¢,) with
~ 1 a - s -
7@, 0=1{"{r@ 9| o@ vat}as
a Jo 0
for 0<la<’h,, clearly f () may be taken measurable (7).
The L, counterpart of Theorem 4 now follows.

THEOREM 7. If feLJ(X, 7, ¢), if f is x, absolutely continuous,
and if the resulting f.e€ L(X,, 22, ¢) too, then the Plancherel trans-
forms F' and F, of f and f; satisfy F,.(2)=—1z,F(z) almost everywhere

(7).

Proof. Using the Fubini theorem in (2.1) and the translation in-
variance of ¢, we have

Fu() =% (e~ _1)F(z)

for the transform of ,f, in case f e L,NL,, and hence for all fe L, by
the Plancherel Lemma 8 with L,NL, dense in L,. Since

lim L (¢ =%k —1)= iz,
0 B

and since |, F,—F,|,—0 as ~2—0 by Lemma 5 and (2.3), the Riesz-
Fischer theorem yields F(z)=—iz,F(z) as desired.

It is easy to get an extended converse of Theorem 7.
THEOREM 8. If f and ge L(X,, &%, ¢) and have transforms F and
G satisfying G@)=(—12,)'F(z) for integer k>0, then f(x)=f(x) almost

everywhere (¢) for some f (x) measurable (7) such that F (x) possesses
everywhere up to (k—1)st order x, partials which are € L,(X,, <, ¢),
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the (k—1)st f Gl o (@) is @, absolutely continuous, and
F B () =9(@)
almost everywhere (¢).

Proof. From (—iz,)*F(2) and F(2) € L,(Z,, 27, 7) clearly (—1z,)"F(z)
e L, also for p=0,1, ..., k—1, and by taking inverse Plancherel trans-
forms we get g€ L,(X,, <7, ¢) transforming into (—iz,)"F(z). As we
have seen before the difference quotient ,g, of ,¢ will have the trans-
form

}l, (e =B _1)(—iz)"F(z) — {Soe ~inht gy }( —iz)"ME @) .

Since |{ }|<1 and { }—1, this transform —(—dz,)*"'F(z) in L, norm
as ~—0. Hence |,0,—,+9/.—0 as 2—0 by the Plancherel lemma, and
so Lemma 6 with (g=f and ,g=g¢g gives the result.

The following converse of Theorem 8 is considerably deeper than
Theorem 7. We remark that if f and ge L,(X,, &, ¢), then fxgel,
also and has the Fourier transform F(2)G(z), where

Lrxale) = Fla—nawds)
J

exists almost everywhere (¢). More important for us, if f and
g€ L(X,, <7, ¢), then fxg is the inverse Fourier transform of
F(2)G(2) e Li(Z,, <7, 1), defined pointwise by (2.2), and hence also the
inverse Plancherel transform if FGe L, This follows by noting
that e“®F(z) is the transform of f(x—'y) as a function of y and by
using (2.3).

THEOREM 9. If feL,(X, <7, ¢) and possesses everywhere up to

(k—1)st order x, partials, if fEL.(x) is x, absolutely continuous, and if

won(@) e Ly(X,, &, ¢), then also fP...(x)e L(X,, 7, ¢) for p=1, 2,
cvo, k, and such f., have the transforms (—1iz,)"I'(2).

Proof. First we construct rather arbitrarily a smoothing transform
_ 1& ., 1,
G(z)—exp = Z wj'—' - Tuln P(C)
2 = 2

for 2=(w; &) of we K, and ¢e€S using the notation of (2.4), where
7.=0 if »<N and r,=1 if »>>N. S being countable we may set
S={«} and define p({) on S by setting p(.£)=e*. We see clearly from
(2.4) for each integer p=>0 that (—4z,)’G(2) € LNL,NL.. for the measure
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space (Z,, #’, 7), since

3257

|2:] Pe ™

is bounded and O(e~I#sl) as [z,]>. Also G(2)>>0 everywhere on Z,
these two conditions being all we really need. Take g as the unique
element of L,(X, <, ¢) transforming into G, and by Theorem 8 we
may take g(x) to possess all order derivatives in =z, with ¢@. €L,
transforming into (—iz,)?G(z).
Now for %,<+ o« and 0<p<k, by integrating by parts we see that
hn hn
| sse—nr@an=|  sa—1)s..00a,
~T, —hn

existent finite for almost (¢,) all ye X, for each xe X, using the
periodicity of ¢g(P(x—y)) and f(P(y)) at the endpoints y,=+h,. If
h,=+ o we still get the same result by a slightly different argument.
Here we know f&. .(x)€ L,(—, ») over z, for almost (¢,) all Ze X,,
so by the Schwarz inequality follows

Srn(@)=0(2,))
as |¢,|>o for such Z. Thus by further integration
2. (@) =0(|z,|")

as |x,|> o for such %, 0<p<k—1. Now clearly

g(@)=e"1g,(3)
)
2.0 (@)=0(e =17
as |x,|—>o. These two estimates are enough to make the endpoint

terms vanish in integration by parts, so

|_o we—mr@an=|"_ste—v 720w

Thus with K=1 or 1/24, we have

Iy

[980-.0% F1(0)=K] [ se—0r at)ande.m
X, ~hy

existent finite in the order written for 0<p<<k and all xze X,.
Now for p=Fk we are given f&..,e L, so the Schwarz inequality
shows g(z—"y)S¥..(y) to be e L,. Thus by the Fubini theorem
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at all xe X,. By our remarks preceding this theorem, since (—12,)*G(?)
and G(z) e L., make (—i2,)*G(2)F(2) and G(2)F(z) € L,, for the Plancherel
transforms we have [(—i2,)*G(2)]F()=G(2)F(2) . Thus since G(z)>0
everywhere, Fi(2)=(—1iz,)"F(z) with F\e L, the transform of f{..,€ L,.
Thus Theorem 8 gives the result.

THEOREM 10. If f and ge L(X,, &, ¢) and if their transforms F
and G satisfy

G@=—( S =)@,

then there exists a sequence of functions ,f(x) measurable (<7) such that
f (@)=f(x) almost everywhere (¢), .f(x) ©s x, absolutely continuous as
well as its everywhere existent first w, derivative ,fn(x), .f» and

afmn € L(X., &, ¢), and f‘, of v converges in L, norm to g as M—c.
n=1
Proof. Let g,eLly X, < ,¢) be defined uniquely by requiring
G.(2)=—2F(2), since |&2F(z)|<|G(z)| makes #2F(2) € L(Z,, &', 7). Now

i 2% is actually a finite sum for each ze€ Z,, and also

n=1

54 | IFEI<6EIe L,

M
so by dominated convergence 3 G,.(2)—>G(z) in L, norm as M—, and
n=1

M
hence also Y g,—¢ in L, norm. Finally Theorem 8 for each n gives

n=1
the desired ,f(x)=f(x) almost everywhere (¢), ,.f» and ,f.€ L,, and
oSon(@)=¢,(x) almost everywhere (¢) as desired.

THEOREM 11. Let f and ge L(X,, &%, ¢) and let a sequence of
Sfunctions ,f(x) measurable (%) satisfy the conditions: ,.f(@)=f(x)

almost everywhere (¢); .f everywhere possesses a first x, partial ,.f.
M

which is x, absolutely continuous; ,fm€L.(X, Z, ¢); and 3 .9

n=1

m L(X,, &, ¢) norm as M—c. Then the transforms F and G satisfy

Go——( 52 )FE)
almost everywhere (7).

Proof. By Theorem 9 we also have ,f,eL, and ,f,. has the

M
transform G,(2)=—22F(z). From 3 ,fn.—g in L, we thus know

n=1
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M
> G,—~G in L, norm as M—o, where

é G.(2) = — ( é zi)F(z) .

Since izi is actually a finite sum at each ze Z, Riesz-Fischer sub-

n=1

sequences yield

Ge)——( S2)Fe
as desired.

4. Significance of results. The main results of this paper are
Theorems 7 through 11 relating Fourier transforms over X,, a modi-
fication of the Hilbert cube, to the operations of differentiation in an
L, sense. It is clear that Theorems 10 and 11 allow one to use Fourier
transforms to define a generalized Laplace differential operator for
scalar functions on X,. This definition is in a global L, sense, which
gives a pointwise definition only by using Riesz-Fischer subsequences.
The ideas of pointwise infinite dimensional derivatives seem to go back
to Fréchet and Gateaux. Hille [8, pp. 71-90], Zorn [12], and others
have developed a notion of analyticity from similar complex differenti-
ability on complex Banach spaces.

To be precise, for real I, consider a real valued function f(x) over
xel, and define the gradient /f(x)=y at each x such that there exists
y€l, having over uel,

(41) Tim £ (2+20) = f (@)= (@, 9)I=0,

such y being clearly unique. This is a Fréchet type definition. If we
let {w,} be a complete orthonormal system in /,, we have where V f(x)
exists that

4.2) (w7 F (@)= (%f(wﬂwn)]

A=0

This equation could also serve as a GAteaux type definition of Ff(x),
possibly depending on {w,}, wherever the squares of the right hand
terms are summable. For the divergence, if T'(x)el, for each xel,
we may formulae the Gateaux type definition

(4.3) 7, T(@)= g (Wn, V(@) for ¢u(@)=(T (), w.) ,

which is independent of the choice of base {w,} if
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(4.4) S 7du@)| <+ and

~lim jul-| £ W+~ 6@ =@, PA@F |

Finally we can define the Laplacian /2f(x)=(, V f(x)), so that

v.rran-5] L rerim)]

s

shows this definition to agree pointwise with the expression in Theorems
10 and 11, S £ ().
n=1

Lévy has also constructed a vector analysis for Hilbert space,
though he is led to define

tim 2 { % F1@)}

as the Laplacian, [5, p. 248]. He differs more seriously from our ap-
proach by using a development of mean values of functions instead of
integration with respect to a non-trivial, translation invariant measure.
Thus he has no need to reduce I, to X,, though naturally his theory
of mean values must pay for this by certain anomalous features.
Cameron and Martin have also done a great deal of functional analysis
in terms of Wiener measure on the continuous functions ([3] and
others), but since this is not translation invariant, it has little contact
with our work.

It seems that our results relating Fourier transforms and different-
iation over real Hilbert space may be useful in a mathematical formu-
lation of quantum radiation theory, just as finite dimensional differential
operators are very conveniently defined self-adjointly in terms of Fourier
transforms. Friedrichs has discussed such problems and is led to still
a different method of integration over Hilbert space, [4, p. 60]. How-
ever, the set functions induced by his method are not os-additive and
apparently not translation invariant either.
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