ON UNIFORM DISTRIBUTION MODULO A SUBDIVISION

W. J. LEVEQUE

1. Let A be a subdivision of the interval (0, @): A=(zy, z;, -+ ), where

0=12,<2zy <+++ and lim z; = 0.

n —oo

For z,_, < x < z,, put

x-[x]A

5(x)

[x]A = 2Zp-1» 8(,’&') = 2Zp = Zp-1 (x>A = ’ ¢(x) = n+(x)A’

so that 0 <(x), <1. Let {x, } be an increasing sequence of positive numbers, If
the sequence {(x; ), } is uniformly distributed over [0, 1], in the sense that the
proportion of the numbers (xl)A, N (xk) A which lie in [0, &) approaches o as
k— o, for each a.€ [0, 1), then we shall say that the sequence {x, } is uni-
formly distributed modulo A. If A is the subdivision A, for which z, = n, this
reduces to the ordinary concept of uniform distribution (mod 1), since then [x]A =
[x], 8(x) =1 for all », and (x)A = x —[x] is the fractional part of x. Even in
other cases, the generalization is more apparent than real, since the uniform dis-
tribution of one sequence (mod A) is equivalent to the uniform distribution of
another sequence ( mod 1). But most of the known theorems concerning uniform
distribution (mod 1) are not applicable to the sequences {(xk)A }, if A is not A,
for in such theorems %, is ordinarily taken to be the value f(%) of a function
whose derivative exists and is monotonic for positive x. Here, on the other hand,
(xk)A = d)(xk) (mod 1), and ¢, although a continuous polygonal function, is
not necessarily everywhere differentiable; and unless §(x) is assumed mono-
tonic, ¢’ is not monotonic even over the set on which it exists. This lack of
monotonicity introduces serious difficulties; it is the object of the present work

to show how they can be dealt with in certain cases.

For brevity, ‘“‘uniformly distributed’’ will be abbreviated to ‘‘u.d.”’. The sym-
bols ¢4, 7% ¢}’ and ‘“\’’ indicate monotonic approach: increasing, non-

decreasing, decreasing, and non-increasing, respectively.
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2. Put

Nia,z) = 22 1, N(x)=N(1,2);
%, <x
(xk)A<ot
then {x, } is u.d. (mod A) if and only if, for each a € [0, 1),

. N(O(" x)
x—o00  N(x)

THEOREM 1. A necessary condition that {xk} be u.d. (mod A) is that
N(znﬂ) ~ N(zn)
as n— w.
For suppose that { % }is u.d. (mod A). Then since

1 2Zn+2zp Zn + 2,
N(-—, -"—-3-‘-)- N(1/2, z,) = N(—”—z—*i)- N(z,),

2 2
we have
1 N(1/2, (zp + zp4,)/2) N(1/2, z,) N((zp + 2z41)/2) = N(z,)
2 N((zn + 2001)/2)  N((zn + 20s0)/2) — N((zn + 2n21)/2)
N(1/2, z,;) N(z,) N(zp)
T TN Ntz T N(ent zmen)/2)
N(Zn) N(1/2, zn) 1 N(zn)
= — ~ 1 -—
L N((z + 2741)/2) N(z,) 2 N((zp+ zp41)/2)

as n — w, and so
Zp t+ Zp+y
Ve = M)

In the same way it can be shown that

Zn + zn+l
M(ET) e,

and consequently N(z,) ~ N(z,4,).
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3. The following theorem, due in a slightly different form to Fejer (see [1,
p.88-891), expresses the fact that if f is sufficiently smooth and [f(x)] is
constant over increasingly long intervals as x increases, such that the length of
the n-th interval is of smaller order of magnitude than the total length of all
preceding intervals, then f (%) is u.d. (mod 1):

Suppose that f(x) has the following properties:

(1) fis continuously differentiable for x > x,

(ii) f(x) * © as x * o,

(iii) f(x) N0 as x * w0,

(iv) x2f(x) 9 owas x— .

Then f(k) is u.d. (mod 1).
The following theorem uses the same general idea:

THEOREM 2. Suppose that, for a given subdivision A and a sequence {x },
N(zp)=N(zp-y) — @ as n —> ®. Then {x; } is u.d. (mod A) if the following
conditions are satisfied:

(i) N(zp_y) ~ N(zp) as n— o,

(ii) except possibly on a sequence of intervals [ zp,-y, 2p,) such that

(1) > (N(2n,) = N(zn=1)) = 0(N(zs,)),

=1

the relation
max (%, — %, _ ) ~ min (%, =%, _ )
holds as n — o, the maximum and minimum being taken independently, for given
n#ny, ngy e, overall k for which at least one of x;,_ and x; is in [zp-1s 2nl.
Give the name §, to the interval [ z,_,, z,], and put
N((X, 8,,) = N(zn-l + O((Zn - zn-l)) - N(Zn_l),
N(5,;) = N(1, &p) = N(Z,,) - N(zn-l)'

It will be shown that

. N(o, 8,)
lim —_— =y
n—o0 N(&,)

n#nl,nz,---
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in other words, that in the limit the x,’s which lie in §, # §,, are u.d. there. This
implies the theorem, for using it, (1), and (i) we have, for x € §,,

n-1
N(a’x)_ 1 Z N(a, an)-‘l"N(min(x, zn_l+a(zn—zn_l)))"‘N(zn"l)

N(x) — N(x) |57,
1 o
e 2 N(«,5,) +o(1)

2 (a+ o(1) N(5,)
_ + o(1)

2 N(5,) +o(Z N(Sv))+N(x) ~N(zp-y)

o
= -i—+0—(-l_s +0(1l) = a+o(1),

o
where 2 denotes summation from v=1to v =n — 1, v # My, Mgy soe

To prove (2), suppose that n# ny, ny + -+, that z,.; € (xkn, xk,,n]’ and that

min (xk—-xk__l)=X

kp<k<kn+, "

Then for k, <k <kp+y, we have x; —x, _ =(1+€,,) Xy,, where €, is a posi-
tive quantity tending to zero as n — . Put

€ = max €
b ka<k<kny,
and put Ax) =%, ~ LT Now if

X g S Fpy t alz, —z,_,) < X 4t41?

then
kptt

alz, -z, ) = ("’/1\:,,+1_"‘n-1)+ 2 Ax+(z,_ +0lzn=zp-1) =2 o))
k=kp+2

t
4
2 Axlx:n+s + & Xn’

s=1

where 6r:=0(1) as n — . But
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t
tX, < 2 Azy o S tXn + t& Xy < tXy + uén Xp,
s=1

where u = N(z,) - N(z,-,). Hence

Zyp — Zp -y Zp = Zp-1

f————— — €’ —ue, <t <A - €.
Xn n Xn n
Similarly,
A 2p = Zp-1 ,
- € —ue, <u < ’
Xn Xn ?
so that

(zp = 2p-1)/ Xy —€, —u€, ¢ (zp = 25-1)/Xp — €,
<=—< .
" (2p = 2p-1)/Xn - €, - ugy

(Zn ""zn-l)/Xn - 6,:

Since N(z,) ~N(zp-y) —> @ as n—» w, also (z, -zp_ )/ X — 0, and so

a+0(l)-ueXp/(2p = 25-y)

t a+o0(l)
<=< = .
1+0(1) TuT 1+0(1)-ugXy/(zp - 25_y)
But since
kn+1
uXp <0 Ax <zp ~z,_,
k=kp+1
uX, =0(z, — z,-,); thus
a+o(l) ¢ a+0(1)
=L,
1+0(1) “u~ 1%+0(1)
and therefore
N(a, 8,) ¢

This completes the proof.

In case A = A, and %, = f(k), it is easily seen that the hypotheses of
Fejér’s theorem imply two of the hypotheses of Theorem 2, namely that N( z,) —
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N(z,-,) *@wand N(z,_,) ~N(z,) as n — . But I do not know whether Theo-
rem 2 includes Fejér’s theorem; the most that I can show is that the exceptional
sequence { z,,} = { n;} mentioned in (ii) of Theorem 2 is in this case of density
zero, which does not imply (1) for all functions f satisfying the hypotheses of
Fejér’s theorem. Certainly, however, Theorem 2 deals with cases not covered by
the following direct extension of Fejér’s theorem, since it does not require the

monotonicity of either z, — z;- or A x,.

THEOREM 3. The sequence { x, }is u.d. (mod A) if the following conditions

are satisfied:
(i) zp = zp, 2.2p-1 — Zp-2 forn=2,3, ...,
(ii) Axk d0ask o,
(iii) N(zp-y) ~ N(zz) asn— .
We sketch the proof. Let yy be the continuous polygonal function such that

Y(%,) =k; then 0 < (%) —N(x) <1. Let { €, } be such that € =0(Ax,) and
0<€g < Axk/2 fork=1, 2, +++. Define Y, as follows:

1 xte, 1 1
¢l(x)=-5-€—k- e, Y(t)dt for x€ x-——z-Axk,xk+-§Axk“

(k=23-+).

Then ¢ is continuously differentiable, and is identical with ¢/ except at the cor-

ners of iy, where it is smooth. For0<a<1,n=1,2,3,---, put

p(n+a) = ¢l(zn_l+a(zn—zn_l));

p is continuously differentiable except at x =1, 2, ---. A function p, can now be
defined in terms of p, just as Y, was determined from ¢, so that p,is everywhere
continuously differentiable, and p  differs from p only on an interval about x =
n(n =1, 2, .--) whose length 6’: is of lower order of magnitude than Axk,, if

z, € [xkn_‘, xk,,)‘ If x=n + a is such that
p,(x) =p(x), o (2, +a(zp=25-1)) = ¢(z,_ +a(zp = 2p-1)),
and
Zpoy + (2, ~2p-1) € (x,_, %),

then
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, %n = 2p-
plx) = =22

.
9

A:\:,‘7
it follows that p: (x) /' . Moreover, since

pl(n+1)~ Y(z,)  N(zp)
Pl(n) l/’(zn-l) N(Zn-l)

— 1,

it follows that p;(x)/pl(x) — 0 as x — 0. But if f is the function inverse to
Py these facts imply that f(x) * @, f’(x) \ 0, and xf °(x) —> ® as x * . Since
f(k)— =, as the arbitrary numbers €, and € approach zero, the conclusion fol-
lows from Fejér’s theorem.

A trivial variation of Theorem 3 has, instead of (i) and (ii), the hypotheses
(i) zp = zp-y ooy
(ii”) Axk_1_>_Axk for £=2,3, .

For then it will still be true that p;(x) 7 oasx ta.

4. It follows from Theorem 2 (and also from the variation of Theorem 3 just
mentioned ) that if z, — z,-, 7 win such a way that z,—, ~ z,, the sequence { k6}
is u.d, (mod A) for eachk 6> 0. In this section we examine the distribution of
{0} (mod A) when §(x) \0. This is a problem of a very different kind from the
earlier one; the result is expressed in the following metric theorem:

THEOREM 4. If 8(x) N0 and §(x) =0(x"!) then {0} is u.d. (mod A) for
almost all 6 > 0.

The proof depends on a principle used in an earlier paper [2]:

If C and € are positive constants and { f, } is a sequence of real-valued func-

tions such that

(3) U” i) = e g | ¢ : (ik=1,2,-..),
a

= max(1, |j-k]€)
then { f, (%)} is u.d. (mod 1) for almost all x € (a, b).

This will be applied with f; (%) = ¢(kx), where ¢ is the function defined in
§1; it was noted there that the u.d. (mod A) of {xk} is equivalent to the u.d.
(mod 1) of {(x;)}. Let a and b be arbitrary positive numbers with a < b, and
put
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Iy - ]‘ b = D) gy,
a

since ka and /;, are complex conjugates, it suffices to consider the case j> k.
For fixed j and k, denote by £ , -++ £ all the numbers of the form z_/j or z_ /k
in the interval (a, 6), so named that §0 <+++ < £ Then the function

j _ k []x]A [ch]A
5(jx) olkx)|  \5(x) ~ 8(kx)

fj(x)—fk(x)=( ) = xA(x) + B(x)

is linear in each interval [fl_l, fl), A(x) and B(x) being certain constants 4,

and Bl there. Hence

r ez(AlflJ{Bl) _ ei(Alfl_l+Bl)

¢, i(4;x+B;) .
]jk = Z e dx = Z
l=1 fl--1 =1

iA,

Since f is continuous,
A&+ By =4, &+ By
andsoforl << r,
t , . . .

z [e'(Al§l+Bl) _ ez(Alfl_l+Bl)] _ ez(At £,+B,) ez(Al §°+Bl)

l=1
Thus, using the relation
n

n-1 m
a,b, = 2 (2 ap’) (b, -86,,,)+b, z ay
m=1

p=t p=1

M

1.

m=1

we have

1 r

4, " Apay

-1 3 .
]ik -~ (e‘(At§t+Bt) _ et(Al go+31))( 1 1 )

13 t=1
(A, &, By) _ ei(Al fo"’Bl)) _L

+
(e A,

and so
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r-1

(4) Tgl <2 2

t=1

1 2

+——

| 4r]

t At+l

By the facts that §t2a> 0, 5(x) N 0 as x — o, and

4, = J - k
! 8(j &) B(k‘ft—x)’

it is clear that
4,> C(j-k)>0

fort=1,2,+++, r, so that (3) will follow from (4) if it can be shown that for
some ¢, €> 0, the inequality

U I | 1 c
> |—- <
T e AN
holds. Moreover, writing
1 1
Ct N e—
4, 4,4y
and
r-1 r ‘ 4
1 1
2 lCtl=Z Ct-ZZ Cp=m = -2 z Cp»
t=1 t=1 A, A4

where 2- is the sum over those ¢ for which C, <0, we see that it suffices to
show that

’ c
2 |C,| < ——.

(j=k)€
We consider three cases. Suppose first that ¢ is such that £, = z /j for
some m, but that for no lis £, | = z;/k. Then
j k j k

A

= - , A, = - ,
Eo8(zm-r)  B(RE) T MY 8(zm)  8(KE)

4
so that 4,4, > A;, and the term C; does not occur in & . If
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$oar = 2n/1 = 2/k,
then z, >z and

1 1
<, = -
b8 (am-) — /82 ) j/8(zm) = k/8(z))

~k(1/8(2)) - 1/8(z,_)
2 /X ame1) ~ /52, ) (/8 zm) — /B(2))

Finally, if &,

= zl/k for some [, but ftﬂ # zm/j for every m, then
—k(1/5(zl)— 1/5(21_1))

C = .
T G/6GE,, ) - k/o(z,_)) (i/5(i &) - k/8(2)))

Thus, writing §(x*) and §(x7) for limg +6(¢) and limf x_5(§), we have
—x —

1/8(z)) - 1/8(z;_)
G/8GEL) —k/8(2, ) (i/8(j &% ) - k/8(2)))
. 1/8(21)-1/5(21_1)
(j/8(jz]/k) = k/8(z,_ ) (j/8(jz)}/k) - k/8(2}))

Z'|ct| <k >

where £ " denotes summation with respect to I with z,/% € (a, b). But
5Uizy/k) < 8(z_,)

and
5(jzf /k) < 8(z),

and so

1/6(z) - 1/8(z,_,)
(j-k)/8(z,.)8(z))

k “ 2k 5 (ka)
=(j—k}2 Z {5(21_1)—5(21)}5—(7_—10);.

> cl<k I

If now §(x) =0(1/x), then

Z'|ct|=0(

)
(j-k)?J
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and the proof is complete,

5. The preceding result can be generalized considerably by using the fol-
lowing transfer theorem:

THEOREM 5. Suppose that {x; } is u.d. (mod A), where A =1{z, }, and that
f is a function which is differentiable except possibly at the points zy, z,, «++,
such that f(x) Y as x * © and '

(5) inf fr(x) ~ sup f(x).

x€(zp-1,2p) X €(2p~1» 2)
Then the sequence { x;: b= 1{f( x;) }is u.d. (mod A*), where A* ={f(z,)}.
Put

N(a,x) = & 1, N(L %) = N(2), N* (&, x) = &= 1, N*(1, z) = N*(x),

. . *
where 2 denotes summation with x, <x and (x; )y <& and 2 denotes

summation with xz < x, (x,’:) A* <O Since f is an increasing function,

N(f(x))= 2. 1= 2 1=N(x).

flxp)<f(x) xpSx
By assumption, the relation
. N(a, x)
lim ——— =
x—=0  N(x)

holds for a € [0, 1]. So we need only show that N*(a, f(x)) ~ N(a, x) as
x—, and by Theorem 1 it suffices to prove this as x runs through the sequence

{ z, }. But

N(a, z;) = Z: {N(zpey + A( 2 = Zm—1)) = N(zm-)},

m=1
and so

N (o flzn)) = 3 IN (o, + 0(zh = 25 )) = N (25 )

m=1

= N(x, z,) + Z {N*(z;_l+ O((z;"n-z;_l))—N(zm

m=1

l+OL(2:m—zm_l))}.
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Thus the problem reduces to showing that
n
> IN"(z_ + - 2%_ )= N(z,_ +alz, ~z, _ )} = o(N(a, z,)),
=1
or what is the same thing, that

(6)2 {N(]r-l(z;"n_l +a(zr —z5_)))=-N(z, _ +a( z, -z, _ ) }=0(N(z,))

m=1

Put

TRz + ozt =25 _ ) =u (&),

Zm-1 + a(zm - Zm—l) = z)m(o‘)'

If it can be shown that

(7) lum(a)—vm(a)]<€m(zm—z ),

m=1

where € — 0 as m — w, then for every € > 0,

2 tNQu,(a)) = N(v, (a))}

m =1

=0 3 N(v (a) +€(z, ~z

m=1

)) = N(v, (@)}

m-1

=0(N(¢, z,)) =0(eN(z,)),
which implies (6).
Now
u,(0) =v, (0),u (1)=1r (1),

and

u, (@) = v, (&) = fH(f(z,_ )+ alf(z,) = f(z,_ )

+0L(zm—z ));

-(z me-1

m-1

hence
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f(zm)—f(zm—-l)
FA N (fCzmmt) + & (f(2m) = f(zZm-p )}

ur;(a)-v,;(a) = (zm = 2m-1).

To maximize u, () — vy, (&), we must have
f(zm)"‘f(zm—l) "‘(Zm _Zm—l) f'if—l(f(zm-l) +a(f(zm)"f(zm—1)))}=0-
There is a Zy € (z;y-y, 2y ) such that

f(zm)'"f(zm—l)

Zm = Zm-1

= [(Zo),

and a corresponding &, € (0, 1) such that
fQzmay) + 0o (f(zp) = f(zpn-1)) = f(Zy),
(so that u”( ao) - v,;l(ao) =0) for which
lu, (@) =v ()] < lu, (o) =v, (a)]| =2, ~v,(a)]
for all € (0, 1). But

f(Zy) = f(zp=y)
+ (zp
f(zm)“f(zm-l)

f(Zo)'_'f(zm—l)

V(%) = Zp—y - Zp—y)

=2p-1 t+ 7 ’
f(Zgy)
so that
f(Zo)"f(zm—l)
Zo—vp(0g) = Zo— 2~y — (Zo)
and
|ty (@) = v () | z |y - L2 )
m %) = vp (& < ““m- - ’
‘ i 28 147 (Z=2m-1) [(2)
whence
U (&) = vy (&) £ (W)
—_— < suwp |l - ——],
Zm — Zm-1 ZE€es, f'(Z)

WeEsy,
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and this last upper bound is 0(1) as m —> . Thus (7) holds, and the proof is

complete.

If the f of Theorem 5 is taken to be an arbitrary increasing polygonal function,
with vertices on the abscissas x = z, z,, -+, then the condition (5) on the de-
rivative is trivially satisfied. Such a transformation merely represents a change
of scale inside each interval §,, and the distribution modulo A of any sequence
tx; ] is identical with the distribution of { f(x;)} modulo A*.

In case f”is monotone, (5) can be replaced by the simpler condition
(57 f(zpoy) ~ f(2zp) as n — .
Combining this version of Theorem 5 with Theorem 4, we have:

THEOREM 6. The sequence { f(k0)} is u.d. (mod A) for almost all > 0 if
f(x) * 0, [”is monotonic, and

[ za) = fTH(zp-) N O,

) ) 1
[T zn) = [T (2p-1) =0(m),

[ zn)) ~ 7 (2mg)) s
where { ™! is the function inverse to f.

COROLLARY. The sequence {*} is u.d. (mod A) for almost all a> 1 if
z, = g(n), where g is an increasing function with monotonic logarithmic deriva-
tive such that

(8) 62 oy,
g(x)
For writing &* as e¥ 198 & we see that we can take the fof Theorem 6 to be

the exponential function, and the conditions displayed there become

log z, — log z,_, \ O,

1
log z, — log z,~;, = 0( ),

log z,
Zn ~ Zp_q.

Of these, the third is implied by the first. Since
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d
7&: log g(x) N O,

it is clear that log g(n) — log g(n — 1) \0. From the extended law of the mean,

G(xy-G(x-1) G(X)

= 7 ’ XE(x—l,x),
H(x)-H(x-1) H (X)

it follows that if G'(x) =0(H(x)), then

G(x) - G(x—1) =O0(H(x) - H(x-1)).
Taking

C(x) = log g(x), H(x) = log e’ = V7,
we have by (8) that

log g(n) - log g(n-1) =0(n"12),

But it also follows from the relation G'(x) =O(H'(x)) that G(x) =0(H(x));
hence

log g(x) = 0(x'/2), n7'2 = 0((log g(n)7!),
and the proof is complete.

For sufficiently smooth g, (8) can be replaced by the condition g(x) =
O(exp x).
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