
EIGENVALUES OF CIRCULANT MATRICES

RICHARD S. VARGA

1. Introduction. The integral equations

(1) U ( Z J ) = λ f A{z,Zj)u(z)dq + Φ ( Z J ) ,

where C is a smooth closed curve, and

A(z,Zj) = d arg (z - ZJ)/dq ,

has many important applications. Thus [ 6 ] , iteration of ( 1 ) gives a solution

for the conformal mapping problem for the interior and exterior of C.

In numerical work, the rate of convergence of such iterations depends on the

eigenvalues of the integral operator A(Z,ZJ). It is known that the absolute

values of the nontr iv ia l 1 eigenvalues of the integral operator A(Z,ZJ) are l e s s

than one. A recent paper [ 1] gives a sharper bound to the eigenvalues.

However, in numerical computation, equation ( 1 ) must be replaced [ 6 ] by a

discrete equation of the form

N

( 2 ) ur+1 ( ZJ ) = λ ] Γ Aj k uΓ( ZJ ) + Φ ( ZJ ) .

This makes it important to know the relation between the eigenvalues of A{z9 Zj)

and those of the matrix Aj ^ .

We determine this relation below in the special case that C is an ellipse.

In particular, we show that the eigenvalues of Aj^ approach /V/2 times those

of A(Z9ZJ) with exponential convergence. Since trapezoidal integration based

on trigonometric interpolation gives exponential accuracy, this fact is probably

1 It is easy to verify that for the eigenfunction u(z) = 1, we have the simple eigen-

value unity. By the nontrivial eigenvalues of A(z,zj), we mean all other e igenvalues .
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true for any analytic curve. However, it seemed most interesting to get quantita-

tive bounds in the special case of ellipses.

2. Circulant matrices. For the ellipse

*2 r2 .
— + — = l ,

a2 b2

it is known [ 1 ] that

abA(z,Zj) = 77-1

(a2

 + b2)-(a2-b2) cos

It follows that the associated matrix

» ab II

π'1 = | | α , k\
( 2 + 6 2 ) ( 2 4 2 ) e ( + ) | | /•

is a circulant matrix, in the usual sense that

( 3 ) αi+Λ,;-Λ = ai9j

for all integers h, where subscripts are taken mod N. We first show how to com-

pute the eigenvalues of a circulant matrix in a way which seems somewhat more

simple and perspicuous than that given in the literature [7]

Following the notation of [ 5 ] , let eu 9en denote the unit vectors in

, and let

denote the linear transformation associated with the matrix Aj^. It is convenient

to introduce the new basis

S i , ,<XΛ defined by C(| = Σ ω ek,

wh~re = eι2ΎT'' ' is a primitive rcth root of unity. The matrix

U = \\ω
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is closely related to that used in Lagrangian resolvents; it is symmetric, and

n" 2 Ω is unitary.

Relative to the basis CLχ9 9 CLnf cyclic matrices [ 2 , p . 124] are diagon-

alized, while circulant matrices (whose squares are cyclic matr ices) reduce

to monomial matrices which are reducible into 2 x 2 components. Specifically,

easy computations show that the basic transposition

Rm : βk — > e m . k (m = 0 , 1 , . . . , J I - IX

corresponding to a circulant matrix with ones on a reversed diagonal: i + /' = m

(mod n), carries OC/ into ωιm &n-i Hence, a general circulant matrix ΣcmRm
->

carries CCj into

{Σ.cmωim)an.i.

Thus, in general, a pair of eigenvalues is associated with each subspace

spanned by GCj and CX̂ -; (we have an exception when i = n, and, if n is even,

when i = n/2). On this subspace, A is similar to

I cmω-im 0 / .

Hence, the eigenvalues λj, λn-i a r e t n e distinct roots of:

(4) λ2 = ( Σ c m ω - ) ( Σ c m ω - - ) = / Σ C m c o S — V + ( Σ cCT s i n - " V .
\ n I \ n

For i = n, and i - n/2 for n even, we have, similarly, the respective eigenvalues:

n-\

λn= Zcm; λn/2 = £ ( - l Γ c , .
m=0

If the coefficients cm are real, then it follows from (4) that all the eigenvalues

are real. Furthermore, if we have an evenness-property for c m ' s , that is, c& =

cnm]t9 then

m 2πkr
λ*cr sin = 0 ,

n
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which implies

If ck = - CΛ-Λ > then

2πkr ^ 2πhr
cos λn-k = "" 2~Cr c o s

n n

2τrAr
cτ cos = 0 ,

n

which implies

Ak ~ + Z^ °τ S l n ' An-k ~ — 2^ °τ s m #

r=0 Λ A;=0 "

The eigenvalues in the real or complex case can be conveniently calculated

by the formulas

n- 1 n-1

\ ί > / ®k ~ / cj+k c]9 v i — χ ®k c o s

/=o k=o

where λ, , λ^.f are the distinct roots of

λ = V( λo = + γ v 0 λn/2 = +

This involves about fifty per cent fewer steps than that usually given,

3. Discrete approximation to eigenvalues. For the circulant matrix

associated with the ellipse

2 r 2

— + —
2 b2

a > b > 0, we have the real coefficients

ab

(a2 + b2)-(a2-b2) cos (2πj/N)

Since Cj = cyy.y, we have then as the positive eigenvalues:
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ί o _ ; fit-1, ^ cos (2πkr/N)
cos = ab

r=o N rZ ( α 2 + 6 2 ) - ( α 2 - 6 2 ) c o s (2πr/N)

Now

2π Γ+ΊT cos kθ dθ
lim — λ& ( N ) = ab I = G(k),

But G(A) is tabulated [4, Table 65, no. 3 ] :

Hence, from (6), it follows that

N la - b\k

(7) λk(N) - - ( i = 0 , 1, 2 , . . .
2 \α + 6/

which gives us an asymptotic approximation to the eigenvalues of the matrix

Ajk. The eigenvalues of A (z9 Zj ) can be shown, by means of [3] , to be:

k
(a-b\

7 U = 0 , l , 2 , . . . )
\a + b I

4. Error estimates. We define £(m,/V), the error, by

2τr cos mθ dθ
£ ( Λ O( 8 )

2π ^ cos (2πkm/N)

W ^=0 (α 2 + ό 2 ) ~ ( α 2 ~ Z > 2 ) c o s (2πk/N)

We shall assume that N > 2m, and that N is even. We have:

JO (n2

c o s m(? cίθ 1 Λ21T c o s

2+b2
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where

a2-b2

γ = < 1.
a2

 + b2

Since γ cos θ < 1 for all values of θ, we can write:

/•2 7T- cos mθdθ 1 Γ277 / ~ , , \
/ = / cos mθ\T γk cosk θ\dθ

Jo (a

2 + b2)-(a2-b2)cosθ a2 + b2 J° \ζTQ J

L. Γ27T L.

y / c o s θ c o s m θ

a2

s ince the ser ies converges uniformly and absolutely. Now

1 k

P = l

where the Fourier coefficients are given by

( 9 ) , β * = - I2" cosk θ cos pθdθ.
p π Jo

Rewriting, we have

cos mθ dθ

Jo ( α

2 + & 2 ) - ( α 2 - ό 2 )

= z ^ y \ - βn / c o s wθrfθ + 52 β
a

Z

 + \yZ ^ = () I 2 Ό ^ Jo

Using the orthogonality of the cosines in the interval [0,277], we obtain:

k Γ27T
c o s m ( 9 c o s

do)
J 2 2 2 2 c o s θ a2 + b2

ί2π ^ ϋ ^

Jo (a

2 + b2)-(a2-b2)

We shal l now obtain a similar express ion for the sum in ( 8 ) :
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277 ^ cos (2πkm/N)

N cos (2τrA://V)

277 ^ 2πkm
cos

Since γ < 1, the sum is absolutely convergent, and we have

ΐ£
cos (2πkm/N)

b2)-(a2-b2)cos(2πk/N)

2τr

;=o

^ , ι 2πkm

£ C°S Ί Γ
2 7 7 ^

Now,

^ 2ττA:m . 2τ7A;
> cos cos^

f-ί N N
k=o

J V - l 2πkmίl ,
cos

Λ' 12 ̂ ° rr
c o s

2πkp
-

/v
Since this is a finite sum, then

N'ί

(11) —
cos (2πkm/N)

rt ^ ( α

2 -f 6 2 ) - ( α 2 ~ 6 2 ) c o s (2πk/N)

T V - 1

cos
^ 277/cm 2/7A;p]

> tt' > COS COS
^-' P ^ Λ/Γ Λ/

From [8, p. 212], we have the result that

2πkj 2πlj
COS COS =

N N

N for k = 0, Λ, 2/V, , if I = 0; zero otherwise

/V
— for & = Z, W - Z, /V + Z, 2/V - Z, , if Z ?£ 0; zero

otherwise

Thus, in the case that m ^ 0, we have, for example
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2πkm 2πpk N .
cos cos — — = — { β] + β[r +

p=o
yy yy

where

Thus, we obtain, for m £ 0

(12)
2JLy cos (2τrkm/N)

j=m

From our original definition, we have

(13)

j=N-m

We establish the following:

LEMMA.

0; Z ~ ; ^ 0 (mod 2)

— (c7

2l
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Proof. From (9), we have

j 1 Γ2ττ j 1 f(z + l/z) /zi + z"J\ dz
βι. = - / cos ιθ cos jθdθ = — Φ - ( — ,

1 π Jo 77 J 2 \ 2 / zi

where the path of integration is the circumference of the unit circle. This re-

duces to

β\ = — F Cί\6—, dz +<f>- dz\.
1 2 τ 7 ί 2 l » = n P I J Z / + 1 J 2 / + l J

Applying Cauchy's residue theorem, we have the desired result.

C O R O L L A R Y .

Proof. This is an immediate consequence of the Lemma. From the Lemma,

we see that E(m,!\) is nonnegative, since the terms in the sum in (6) are

nonnegative. Furthermore, by the Corollary, it is clear that

( 1 4 ) E(m,N)< — j Σ, Ύj

a2 4- 6 2 y=/v-in

77 y ^ 7 7 2 77 /a2-b2^N m

In the particular case a = 3, 6 = 2, this reduces to

which is in good agreement with the numerical results in § 5.

5. Numerical results. For N = 16, a = 3, 6 = 2, the following numerical

results were obtained:
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1.

2.

3.

4.

5.

6.

7.

Table 1

Calculated Approximated by ( 7 ) of V 3

8.00000
1.60000

0.32000

0.06400

0.01279

0.00256

0.00051

0.00011

0.00003

R E F E R E N C E S

8.00000
1.60000

0.32000

0.06400

0.01280

0.00256

0.00051

0.00010

0.00002
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