EIGENVALUES OF CIRCULANT MATRICES

RicHARD S. VARGA

1. Introduction. The integral equations
(D) u(zj) = A éA(z,Zj)u(z)dq+®(Zj),

where C is a smooth closed curve, and
A(z,z]~) =darg(z -—z]')/dq,

has many important applications. Thus [6], iteration of (1) gives a solution

for the conformal mapping problem for the interior and exterior of C.

In numerical work, the rate of convergence of such iterations depends on the
eigenvalues of the integral operator 4 (z,z;). It is known that the absolute
values of the nontrivial * eigenvalues of the integral operator 4(z, z;) are less

than one. A recent paper [ 1] gives a sharper bound to the eigenvalues.

However, in numerical computation, equation (1) must be replaced [6] by a

discrete equation of the form

N
(2) ur+1(zj) = A Z:Ajkur(z]')+®(z]-).
k=1

This makes it important to know the relation between the eigenvalues of 4(z, z})

and those of the matrix 4; .

We determine this relation below in the special case that C is an ellipse.
In particular, we show that the eigenvalues of 4;; approach N/2 times those
of A(z,zj) with exponential convergence. Since trapezoidal integration based

on trigonometric interpolation gives exponential accuracy, this fact is probably

It is easy to verify that for the eigenfunction u(z) = 1, we have the simple eigen-
value unity. By the nontrivial eigenvalues of 4(z, z;), we mean all other eigenvalues.
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true for any analytic curve. However, it seemed most interesting to get quantita-

tive bounds in the special case of ellipses.

2. Circulant matrices. For the ellipse

X2 2
—_ +2/_-_- 1,
a? b2
it is known [ 1] that
b
A(z,zj) = 7! : .

(a?+b6%) = (a?-b?) cos (q+qj)

It follows that the associated matrix

ab

-1

A= = llaj,ll

(a?+6%) - (a® = b%) cos (q; +g;)

is a circulant matrix, in the usual sense that

(3) Gish,j-h = %,

for all integers h, where subscripts are taken mod N. We first show how to com-
pute the eigenvalues of a circulant matrix in a way which seems somewhat more

simple and perspicuous than that given in the literature [ 7].

g 4 . .
Following the notation of [5], let €;,+++, €, denote the unit vectors in

Va(C), and let
gi - Zaij _é]

denote the linear transformation associated with the matrix 4. It is convenient
to introduce the new basis
>

U1peeesUn defined by &; = Zolke,

whare ' =e!27/" is a primitive nth root of unity. The matrix

Q= |l
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is closely related to that used in Lagrangian resolvents; it is symmetric, and
-l 3 .
n%Q s unitary.

3 . - bl . . .
Relative to the basis Cy,+++, &y, cyclic matrices [2, p.124] are diagon-
alized, while circulant matrices (whose squares are cyclic matrices) reduce
to monomial matrices which are reducible into 2x 2 components. Specifically,

easy computations show that the basic transposition
- -
Ry € — €m-i; (m=0,1,se0,n-1),

corresponding to a circulant matrix with ones on a reversed diagonal: i + j = m
. > . im 2 . .
(mod n), carries ; into @'™ Gy,.;. Hence, a general circulant matrix 2 ¢, R,

3 > .
carries ; 1nto
1 >
(Zcm@™)0nai.

Thus, in general a pair of eigenvalues is associated with each subspace
spanned by C(, and C(,,.z (we have an exception when i =n, and, if n is even,

when i = n/2). On this subspace, 4 is similar to
0 Cm @™

cp™™ 0o /.

Hence, the eigenvalues A;, A,.; are the distinct roots of:

. . im \ 2 92 2
(4) M =(Zcpo'™) (Zcpe™™)= (Zcm cos 2mm) (Z Cm sin _m,m\ .

n n !

For i =n, and i = n/2 for n even, we have, similarly, the respective eigenvalues:

n-1
=2cm; Anj2 = Z (-1)" ¢y

m=0

If the coefficients c,, are real, then it follows from (4) that all the eigenvalues
are real. Furthermore, if we have an evenness-property for c,,’s, that is, cj =
Cn-k» then

2nkr

2 ¢, sin — =0,
n
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which implies

2mkr 2akr
A=+ Zc; cos i Ap-k=— 2-c, coOs
n n
If ¢, == cp-;, then
2nkr
2_c; cos =0,
n
which implies
n-1 n-1
2akr 2mkr
)\k=+Zcr sin —— )\n-k=—Zc,sin—.
r=o n k=0 n

The eigenvalues in the real or complex case can be conveniently calculated

by the formulas

n-1 n-1 27Tk]
(5) b= 2 cj+kcj; vi= D b cos s
]'=0 k=0 n

where A;, A,.; are the distinct roots of

M= v A=+ Vo3 M2 =+ Vnss .

This involves about fifty per cent fewer steps than that usually given.

3. Discrete approximation to eigenvalues. For the circulant matrix Aik,

associated with the ellipse

2 2

x
_.+y_=1’
a? b2

a > b > 0, we have the real coefficients

ab
cj =
! (a?+b2) = (a?-b?) cos (27j/N)

Since cj = cN-j, we have then as the positive eigenvalues:
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N-1 2uakr cos (27kr/N)
(6) A (N)=+ r S =
¢ ré;’c * @ Z(-} (a?+b2)~(a?=b?) cos (2ar/N)

(k=0,1,-..,[N/2]).
Now

2w +7 cos k0 dO
lim —)\k(N)=ab/ = G(k).
Noo N -7 (a2 +b2%)=(a?=b2%)cos 6

But G (%) is tabulated [4, Table 65, no. 31:

a—b\k
G(k):n( )
a+b

Hence, from (6), it follows that

ok
(7) Ak</v)~ﬁ(“ b) (h=0, 1,2, [N/2]),
2\a + b

which gives us an asymptotic approximation to the eigenvalues of the matrix

Ajk. The eigenvalues of 4(z,zj) can be shown, by means of [3], to be:

k
a-b
( ) (k=0,1,2,---).

a+b

4. Error estimates. We define £ (m, N), the error, by

0do
(8) /‘271 cos m N E(m, N)
0 (a?+b%)-(a?~b%)cos O

2

2r 1 cos (2wkm/N)
N = (a?+5b2)-(a? - b2) cos (2ak/N) )

We shall assume that N > 2m, and that N is even. We have:

/'277 cos mf df 1 /‘277 cos m0 d6
0 (a?+b%2)=(a®-b%)cos a2+ 5?2 Jo l—ycos@’
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where

a? - b2

a?+ b2

<1.

‘y:

Since y cos 6 < 1 for all values of 6, we can write:

6do 1 2 0
fﬂr coem / 77cos me(z yk cos” 0) dé
0 0

(a2 +b%)=(a?=b2) cos 6 a? + b2 k=0

1

~ k27 &
= = - z y cos” 0 cos m0 d6,
a” + b k=0 0

since the series converges uniformly and absolutely. Now
ko_ Lok e
cos” 0 = 5,80 + > ‘BP cos p@,
p=1
where the Fourier coefficients are given by

k 1 27 k
(9) R = — f cos”™ @ cos p6 df.
L

Rewriting, we have

/‘277 cos mb df
° (a?+b%)=(a?-b%)cos 6

o0 1 2 k 2
Z yk[i Béf / Wcos mOdo + Z B;f / 77cos mO cos deO].
0 0

2, 12
a®+b% k= p=1

Using the orthogonality of the cosines in the interval [0,27], we obtain:

(10)

/277 cos mf df 7
0

(a?+b%)~(a?-b2)cos 0 - a’+b?

o0
> yEBE.
k=m

We shall now obtain a similar expression for the sum in (8):
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o7 N-1 cos (27km/N)
N 1= (a?+b2%)=(a%=b?) cos (2ak/N)
N-1 00
2nk 2k
=___..2_”_Z cos 1t Syl cos/ kil
N(a?+b%) ;= N ji=o N

Since y < 1, the sum is absolutely convergent, and we have

N-1 cos (2nkm/N)
k=0 (a?+b%)-(a®*-b?%)cos (27k/N)

>|§f

00 N-1
2nrk . 2nk
zyf{z ’;V”’ cos) == ]
k=0

N(a +b ) j=o0 IV
Now,
N-1 N-
2k 2 2wk 2mk
cos 77mcos L:Z ”m[ ZBlcos Trp].
k=0 N k=0
Since this is a finite sum, then
27 N-1 cos (27km/N)
(11) —_—
N = (a?+b2)=(a?~b?%) cos (2ak/N)
oo ) . N-1 ] N-1 2 I‘L 2 k
.—2”_ Z y][l B(J) cos 2k Z Z cos il cos . p].
N(a +b ) =0 2 k=0 N p=1 k=0

From [8, p.212], we have the result that

N for k=0, N, 2N, -+, if [ = 0; zero otherwise
N-1 o2mkj  2mlj | N ,
Zcos cos —=1{—fork=lL, N-l, N+, 2N -1,++., if | £ 0; zero
j=o N N 2

otherwise.

Thus, in the case that m # 0, we have, for example
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i N4 2akm o2mpk N . .
Oﬁékgocos M cos N =E{Bfn+6{v_m+---

p:

' J
+ B{f]'-l)N“’m + ‘Ber-m } ’

where

5]

\:‘
I

Thus, we obtain, for m # 0

(12) 2_71 NZ.I cos (27km/N)
N =5 (a?+52)=(a? - b2) cos (2ak/N)

(=9}

> yj{B{;z+-o-+B{jN.m}.

a2+b2 j:m

T

From our original definition, we have

TSN g g
(13) E(m’N)_ @ +b2 Z y {BN-m+ +Ber-m}’mfl‘.0
j=N-m :
- J$RI 4+ uu. J
E(O,N)—a2+b gymw Byt

We establish the following:

LEMMA.
0; I —j #0(mod 2)

B’l'= i(cl cl ); 1—j=0 (mod?2)
Y (1-j)/2 + “(1#jy/273 ¢ — 1=V mod 2)



EIGENVALUES OF CIRCULANT MATRICES 159

Proof. From (9), we have

! 1 pfonm ! . 1 (z+1/2) (2l 427\ dz
B.=—/ cos 900510(10:—% —
I wJo 7 9! 2 zi

where the path of integration is the circumference of the unit circle. This re-
duces to

z

l i +2 -j+2

1 1 zJ]72P z172p
.~ .= 5 ¢l % dz+f dz].

BI 2ai 9ol pf;% P[ AR I+1

Applying Cauchy’s residue theorem, we have the desired result.

COROLLARY.

1 l
L 3
5,80 +j§=l ‘Bj =1.

Proof. This is an immediate consequence of the Lemma. From the Lemma,
we see that £(m,N) is nonnegative, since the terms in the sum in (6) are
nonnegative. Furthermore, by the Corollary, it is clear that

(14) E(m,N) <

(12+b2 j:N_m

In the particular case a = 3, b = 2, this reduces to
E ( N) T ( 5 >N-m
< - —
i g \13)
which is in good agreement with the numerical results in $ 5.

5. Numerical results. For N=16, a= 3, b =2, the following numerical
results were obtained:
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Table 1

Calculated Approximated by (7) of § 3

|

Ly, 8.00000 8.00000
2. Vvi  1.60000 1.60000
3. Vva  0.32000 0.32000
4. vz 0.06400 0.06400
5. Vva  0.01279 0.01280
6. Vvs  0.00256 0.00256
7. Vvse  0.00051 0.00051
8. Vv;  0.00011 0.00010
9. Vvg  0.00003 0.00002
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