
SOME PERTURBED ELECTROSTATIC FIELDS

G. P O W E R

Summary. When a dielectric body is placed in an electrostatic field, the

field becomes perturbed, and the boundary of the dielectric experiences a

mechanical force due to the refraction of the lines of force. This paper is con-

cerned with finding expressions for the resultant mechanical force at a surface

of discontinuity separating two media of different specific inductive capacities,

and also with determining the perturbed fields in both dielectrics (assumed

homogeneous and isotropic) for various boundary shapes. In the first section,

some two-dimensional fields are discussed, starting with a concentric circular

cylindrical system, and then proceeding to other cases. The second section is'

devoted to an application of Stokes' stream function to three-dimensional

axisymmetric fields.

I. TWO-DIMENSIONAL F I E L D S

1.1. Mechanical force and couple. Consider a nested system of homogeneous

isotropic dielectric cylinders, and let the perturbed electrostatic fields in the

various media be expressed in terms of complex potential functions. Taking

the origin of coordinates inside the contour of the interface separating the

medium (s) of dielectric constant ks from the medium (s + 1) of dielectric

constant ks + i, we know that the interface C will experience a force whose com-

ponents are given by [4]

(1)

where ws + x is the complex potential in the medium (5 + 1), and ws that in the

medium (s )•

The anticlockwise moment about the origin of the mechanical forces is

s + 1 [ f s + ι ks f /dws\
2

( 2 ) / ( R I
&s + 1 [ fdws + ι\

2 ks f /dws\
2

Γ = R / (——I zdz-R— I — zdz.
Sπ JC \ dz I 8τr JC\ dz I
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1.20. System of two concentric dielectric cylinders. Suppose we have an

inner cylinder of radius 6, dielectric constant kif and a concentric cylinder of

radius α(> b), dielectric constant k2. Let this system be placed with the

common center at the origin of coordinates in a medium of dielectric constant

&3, in which there is a field whose unperturbed complex potential is

P
w ~ Σ* as>nzU *

Suppose there is also a line charge of strength m per unit length embedded in

the medium k2 at z = zo The perturbed fields can be taken to be

= Ω +
n-l

where (omitting the constant term )

2m
Ω = log (z - z 0 )

k2

2m ~ zn

2m 2m

if —

I

2 0

< 1 ,

< 1.

The boundary conditions are

H(w2), kι Hwi) = k2 Hw2) on

and

H(w2) =
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Applying these boundary conditions and solving, we obtain

ίϊTί

\{k2

k2)k3a
2na3>n

nk2z
n

0

^ (k3 - Ai) ! (k 2 + k3)a2n - z J 7 » (k3 -k2)\b2n,

+ kι)a2n + (k3 +k2)(k2-kι)b2n\a2nά3>n

Arn

<

m(k2-k3) 2m
l

2m
o3, o = —r—. log a , c 3 = - - — ,

k2k3 k3

where

2n

k2)(k2 + kι)a2n + (k3 -

From these results we can easily deduce [δ] the perturbed fields when a

circular dielectric cylinder is introduced into the general field w = / (z ).

1.21. Special cases of the complex potential. If in 1.20 the cylinder of

radius b is made a conducting surface, then k\ — oo. Putting also

&3 = 1> &2 = K m = 0, a3tn = £"Λ,

we obtain
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2*2nεn

(k-l)b2n

2 £ π f λb2n λPb2nP I
11 + +• •• + +•••[»

1 + k) I a2n a2nP *

b

a2n a2nP

l)bln\a2nΈn

3,n

- f
= Ena

2n\

(k+l)a2n +(k-l)b2n

b2n b2nP
λ+(λ2-l)

a2n a2nP

where λ= (1 - k)/( 1 + k).

From these expansions we observe that if this system is placed at the origin
of coordinates in a field whose unperturbed form in air is

P

n-l

then the complex potentials in air and in the dielectric become respectively

oo

( 1 ) w —f(z) + λfΓ(a2/z)+ ^ ~~

and

Application of the theory of summation of double ser ies shows that ( 1 ) , ( 2 )

above st i l l hold if f(z) is an infinite ser ies assumed regular in a region in-

cluding I z I <̂  a.

If now we require | z \ = b to be a line of force instead of a conducting sur-

face, we se t kι = 0 instead of A; 1 =oo. Proceeding as above, we obtain the

perturbed fields for this new system in the form
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( 3 ) o f ( ) μ f ( ) Σ ( μ μ ) /
V z / p = 1 \ za

where μ = (k - 1)/(k + 1).

1.30. The elliptic dielectric cylinder. The hydrodynamical problem of an

elliptic cylinder in a general stream, and the analogous problem of the elliptic

conductor in a general field, have long been solved. The case of the elliptic

dielectric cylinder has, however, only been solved for certain specific external

fields [7] . The difficulties arising from the singularities of transformation have

been overcome here by using the results of 1.21.

Consider the transformation

c
(1) z = — ( £ + i/ζ) 9 z — c sin w , w — u + iv .

Clearly the region outside the slit AB in the z-plane transforms into the region

outside the unit circle in the £-plane. The ellipse v - const. = vι, say, of

semi-axes c cosh vi, c sinh υ\ in the z-plane, having A, B as foci, bedomes

the circle | ζ\ = e ι ~ a, say. Let this ellipse be placed in the general field

of which we consider the part

P
(2) h(ζ) = y^ Fn ζn (p = oo is included).

Spl i t h{ζ) into

G ( ζ ) = ( l / 2 ) \ h ( ζ ) + h ( ζ ) \ a n d H ( ζ ) = ( 1 / 2 ) { Λ ( ζ ) - h ( ζ ) } ,

T h e component of g(z) corresponding to G(ζ) wi l l conta in t h e r e a l a x i s a s a

l ine of force, s o that i n s i d e the e l l i p s e , AB wi l l be a l ine of force. T h u s the
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complex potentials due to G(ζ) can be found from 1.21 (3), (4), by putting

b — 1 and a = e

Now g(z) gives rise to a field inside the dielectric ellipse such that the

electrostatic potential is continuous in crossing AB. This means that in the

£-plane the values of the potential on | ζ | = 1 are the same at ± am ζ, and so

the terms derived from H(ζ) can be found from 1.21 (1), (2), again by putting

6 = 1 and a = e ι

Adding the complex potentials thus formed from G(ζ), H(ζ), we find that

the complex potentials outside and inside the ellipse are given respectively by

( 3 )

(1 + kY-

and

(4) «*,•=—L.
+ k) I p = 0

where Σ refers to even powers, Σ ' to odd powers, μ = ( k - 1 )/{k + 1 ) ,

andζ=ieVmiu.

Note that wι is of the form

(5 ) wi= £ An(ζn+l/ζn).

1.31. External line charge. Consider now a line charge m at (u0, v0 ) placed

outside the elliptic dielectric cylinder parallel to the axis of the cylinder. In

the z-plane we have

g ( z ) = - 2m log ( z - z0 ) = _ 2m log I
(ζ-ζo)(ζ-l/ζo)

ζ
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apart from an additive constant. We do not consider the terms

-2m\ogU-l/ζ0),-2mloκζ,

since these refer to line charges inside the region | ζ \ < 1 which corresponds

to a different sheet on the Riemann surface.

Thus we take

(1) k(ζ) = -2mlog{ζ-ζ0), where £0 = ie" 0 ' 4 " 0 .

From 1.30 (3) we have

u > 0 = - 2m log (£-£<,) + 2m/ilo

( 3 ) -
k)2

 p

O ' . M /-, i{u-uo)-{v+vo+2qvι).

neglecting any additive constants.

From 1.30 (4) we obtain the following result, where again we have neglected

additive constants.

(4) ^ = _ i _ ( £ μP{-2mloz(ζ/e2pVι -ζ0)-2mlog(l/ζe2pVi -ζo)\
U + k) l

2ql>ι

+ k) l p = 0

μq\~2m log (ζ/e - ζQ ) - 2m log 11/ζe
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Λ f °°

= - 5 ^ μ p ί log 2[sin (u + iυ ) - sin
(1 + A) I p = 0

( 5 ) = — — r \ 2^ W * l o £ ^ L S l n W + iv ) — &\vi \u§ + ι\ *Zpv ι + vo

P=o

[sin (M + iv) - sin (α 0 - t (2ςrt;ι + v 0 ) ) ] if

1.32. Internal line-charge. By putting a3f7l = 0 in the results of 1.20, and

proceeding exactly as in 1.21, 1.30, we obtain the external and internal fields

due to a line charge m at ζ— ζQ inside the dielectric elliptic cylinder υ\ in the

form

p = 0

log ( £ - C 0 / β 2 ^ 1 ) ( ^ - V β 2 ^ 1 Co )} + 2^ log ζ,

p=o

p = 0

2m

T 2m log C
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The fields due to line doublets both inside and outside the elliptic cylinder

can be deduced,

1.40. Force and couple on the elliptic cylinder. Let the cylinder be placed

in the general field

Enz
n.

Then

transforms g(z) into a function of ζ9 of which we consider

The field inside the cylinder, being of the form given by 1.30 (5), will

contribute nothing to either the complex force or couple of l . l

From 1.30 (3) we see that

oo oo

(2) «Ό= Σ FnC+Σ, Gn/C,

where

(3) Gn = — — , a = e

The complex force. This is given by

1 f (d™*\2 dζ 1 f { ~ „ „„ ~ „ 12 dζ1 f (dιvo\
2 dζ 1 / f~ ~ U

iX^ — J i - ^ — = / IT nFnζ
n- Σ nGn/ζn\

BπJc\dζl dz/dζ 4πc JC I t ; t ;
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There are poles at ζ= 0, ζ= 1, £= - 1, and so

oo oo

(4) F + i i = - £ £ r s F r ( F s - G 5 ) , r > s , r ~ s odd.
C r=2 s = l

ΓAe couple. This is given by

8π JC\ dζ I dz/dζ

Again there are poles at ζ = 0, ζ = 1, ζ = — 1, and so

(5) Γ=fiU Σ n2Fn{Fn-Gn)+iΣ Σ rsFr(Fs-Gs)\,
* 71 = 1 Γ = 3 S = l "*

r > s , r — s even

1.41. Force and couple due to external line charge. The perturbed potentials

are given in 1.31, and we note that the internal field will contribute nothing to

either the force or the couple. Thus the complex force is

ί«2-C0O

μP

 + y μ g 1112

y + y
ίr0 ζ(l-a2Pζoζ) \ t ί ζ(\-a2Hoζ)

ζ

To evaluate this integral we draw a circle S of large radius to enclose both

the cylinder C and the point ζ = ζQ Thus we have

8n



SOME PERTURBED ELECTROSTATIC FIELDS 89

where γ is a small contour drawn around ζ- ζQ

To determine the integral around S, we expand in powers of 1/ζ, and the

integral around γ is obtained in the usual manner. Carrying out these integra-

tions we obtain

*S> f

( l + Z : ) 2

 L p = 0

In a similar manner, the couple is given by

(α2-(/0)
( 2 , Γ - H ^ ! - ^ ;

These results could equally well have been obtained by the use of Lagally's

Theorem [ 2 ] .

By a similar method the resultant force and couple on the elliptic cylinder

can be evaluated for an internal line charge.

1.50. Elliptic conducting cylinder with confocal dielectric sheath. Let

v = v2 be a conducting elliptic cylinder, surrounded by a confocal elliptic

sheath v — vι of dielectric constant k. If this system is placed in a general

field g(z) in air, then we consider, as usual, the unperturbed portion h(ζ),

and 1.21 (1), (2), give the complex potentials outside and inside the dielectric

in the form

-le\ -

(1) ^ A ( O + u ( _ ) + £ ( λ P + ι ^ ^

(2)

\
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If h (ζ ) is of the form

h(ζ)= £ Fn

n-i

then

Σ ^ Σ
71 = 1 71 = 1 ^

where

Fna
2n\b2n{k+l) + a 2 n ( k - \ ) \

( 4 ) G

and α = e ' , ό = e 2

Also we have

{ a 2 n ( k + 1 ) + b 2 n ( k - l ) \

n=ί

where

2a2nFn 2a2nb2nFn

*(6) 74=
(A + 1 ) + ό 2 n ( ^ - 1)! U 2 n ( A ; + 1 ) + 6 2"(A;- D !

Force on the conductor. The only contribution comes from wι, which as in

1.40 gives

00 00

( 7 ) y + i X = L Σ Σ r s / / r ( / / s - K 5 ) , r>s, r - s o d d .
C r=2 s = l

Couple on the conductor. Similarly we have

7 Σ n2nn{Iln-Kn) Uik W £ rsHr(Hs-Ks)\\
2 I- τι = i J •• r=3 s = l JJ

r > s, r — s even .
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Force on the dielectric boundary. Both wQ, W{ contribute, giving

(9) Y + iX = - Σ Σ ™FAF8-GS)-—Σ, Σ rsHr(H8-Ks),
C CC τ-2 5

r > s , r - s odd .

Couple on the dielectric boundary. In a similar manner, we see that

(10) Γ = K U [ £ n2Fn(Fn-Gn)] + » [ £ £ rs Fr(Fs - Gs ) | |

- Σ / » 2 « n ( / / Λ - i K Λ ) + i A Σ Σ r s H r ( H 8 - K s ) \ \ ,

2 U = l J •• Γ = 3 S = l ^

r > s , r - s even .

1.51. Elliptic dielectric cylinder with confocal dielectric sheath. Let now

v = v2 be an elliptic cylinder of dielectric constant kχ9 while between v - v2 and

v — vi is dielectric material of constant k29 and suppose that this system is

placed in a medium of dielectric constant k$9 in which there is a field whose

unperturbed form is g(z ), of which we consider the portion

n-l

Equation 1.30 (5) gives the form of the field inside v2, and so we see that

the perturbed potentials will be given by

7 1 = 1

n=l n=l n-l
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The boundary conditions of l 20 yield

[b4n a2- β2Jalιn = U3k2a
2n b2n\b2n anFn~ βnFn\,

ίb4nθ.2 - β2]a2>n = 2k3a
2n\[b4n(k2 + kJOLn - (k2 - kt)βa]Fn

~ίb2n(k2 + h)βn- b2n(k2- kι)an]Fn\,

[b4na2

n-β2

n]b2>n = 2k3a
2nb2n\ [b4nU2 - *,)«„ ~(k2 + kJβnΊ

- [b2n {k2 - kt)βn - b2n (k2 + M α J Fn!,

[b4na2

n - β2

n] b3>n = ί b4na2nίa2n(k2 + k^ih - k2) + b2n(k2 - kO

- a2nίa2n(k3 - k2)(k2 - kj + b2n(k3 + k2)(k2 +kι)]βn\Fn

- a2nb2n[a2nU3 - k2)(k2 - kt) + b2n(k3 +k2)(k2+k1)]an\Fn,

where

Cίn = a2n(k3 + k2)(k2 + kt) + b2n(k3 ~k2)(k2-kt),

βn = a2n(k3 + k2)(k2 - k{) + b2n (k3 - k2)(k2 + kt) , a = eVι , b = e " 2 .

To evaluate the force and couple on each dielectric boundary, we proceed

exactly as in 1.50.

1.6. Parabolic dielectric cylinder. We can use results already obtained to

get the internal and external perturbed fields due to the presence of a parabolic

dielectric cylinder of constant k .

The transformations

(1) z = t2, ζ=e U,

where



SOME PERTURBED ELECTROSTATIC FIELDS 9 3

are such that β - const. = βί9 say, gives a parabola in the z-plane which be-

comes a circle of radius e ι in the £-plane. The limits of Cί, /3 are given re-

spectively by

- oo < Oί < cc and 0 < β < oc.

The limiting case β = 0 becomes the positive %-axis in the 2-plane, and the

unit circle in the £-plane.

As an example, let us find the fields due to an external line charge m placed

parallel to the generators of the cylinder at (Cί0, β0). We have

h(t) = - 2m log (ί - ίo)> ô = &o + ι'/3o>

and so we obtain

( 2 ) w0 = -2m log(ί - t0) H-2mμίog (t ~ ί0 ~2ίβχ )

Σ, μp^g(t + t0+ 2iPβι)+ £ μl log (ί - ί0 + 2*9/3!) j ,

and

(3) M;. = - m W ^ μ P log ( ί - . ί o -2ipβι)(t + t0 +2ipβi

+ 22 μ9 log

1.7. Dielectric annulus and dielectric slab. If, in the results of 1.20, we set

kί = k3 = 1 , k2 = k, a3fn = En 9 m = 0 ,

we get the elementary case of an annulus of dielectric constant k. If this an-

nulus is placed in the general field g ( z ) , then the perturbed fields are seen

to be
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2 [ f

If now we put z = e~ιt, where ί = α + iβ, we can transform the dielectric

annulus into a dielectric s lab . Setting 6 = 1, a-e , (/3 t pos i t ive) , in ( 1 ) ,

( 2 ) , ( 3 ) above we get

(4)

( 5 )
 " ' ^ Γ Γ Π - J Σ λ2pf(t-2ipβι)-Σ

p=0 p=0

(6) 1*3 = / ( * ) + Σ
p=0

as the perturbed fields in the parts of the ί-plane given respectively by

0 > β9 βι > β > 0, β > iSi ,

when the unperturbed f ie ld/( ί ) is caused by singularities placed in the region

β>.βl

It can easily be verified that (4) , (5) , (6) above satisfy the required bound-

ary conditions in the ί-plane, which are

i ) ( 2 , ι 2 when β = 0,

and

K(IΛ)2) - R{w3) , k &(w2 ) = &(w3 ) when β ~ βt .

Moreover, since no new singularities are introduced into the regions concerned,

these formulae can conveniently be used to obtain image systems.
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II. T H R E E - Ό I M E N S I O N A L F I E L D S

2.1. Mechanical force and couple. The components of resultant force and

couple corresponding to the Blasius type formulae of 1.1 have been given pre-

viously [ 4 ] , and will not be discussed further in this paper.

2.20. The sphere theorem. It has been shown [3] that if a dielectric sphere

of radius α, dielectric constant k(, is placed with its center at the origin of

coordinates, in a medium of constant k0 in which there is a general field whose

undisturbed potential is φix^y, z), having no singularities inside or on r — a9

then the perturbed potentials inside and outside the sphere are respectively

(1) φ = _J

and

( 2 ) Φ0=φ(χ,y, Γ i 7 \

(k + 1)

(k ~ 1 )

φ(x,y,z) + α " " 1 )

? Γ t-k/(k+i)φ(xt,ytizt)dt,
α + 1 ) 2 Jo

(k+l)2

where

a 2 x a 2 y a 2 z 2 2 2 2 1 7 7 / 7

xx ^ yί ~ $ zί - ^ r• = x + y + z , and k = ki/k0 .

Similarly, we can show that if there is a field whose undisturbed potential

φ(x9 y, z ) is caused only by singularities placed inside the sphere r - ay whose

dielectric constant is k(9 and if this sphere is surrounded by dielectric material

of constant k0, the perturbed potentials are

( 3 ) φn-

U'-
+ -

+ 1 ) 2

and
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U ' - l ) a

(A'-l) α Λ 4 / / ( , / +

(A'+-l)2 r

where £ ' = A;0/A:J .

2.21. Application of Stokes' stream function for axisymmetric fields. We

now consider axisymmetric fields given in terms of the spherical polar co-

ordinates r, θ Stokes' stream function [6] φ{r9θ) satisfies the equation

and is related to the potential φ by

dφ 2 dφ dφ dφ

oμ or or dμ

where μ - cos θ Thus to the solutions

rnPn and

of Laplace's equation correspond respectively

r —••••• a n

d
d —r and r

(n + 1) dμ n dμ

The perturbed stream functions inside and outside the dielectric sphere of

2.20 are thus given by

(2n + l)Enr
n+ι dPn

(i) n ^ Σ1 X U + l ) U ( A + l ) + l l dμ

and

2 ~ (l-k)a2n+ιEn dPn
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where the unperturbed external electrostatic potential is taken to be

Φ •= Σ
n=0

with the corresponding stream function

°° Enr
n+ι dPn

By manipulating the coefficients as in the proof of the Sphere Theorem [3] ,

we can put these stream functions in terms of the unperturbed stream function

in the form

( 3 )

( 4 )

ψ.^-L- φ(Γ,θ)+ ϋ l - H flf(2k+ι)/{k+ι)ψ(rt,θ)dt,

φ - 0 ( r . θ ) - J-j—T"! " φ(—,θ)0 (1 + k) a \ r I

( 1 + fc)2 a Jo

where, as before, k = k(/ko

In a similar manner, the perturbed stream- functions for an axisymmetric

field caused by singularities inside the dielectric sphere can be established in

the form

(6)

r / ι . (
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where &'= ko/ki.

For the hydrodynamical case of an external axisymmetric field in the pres-

ence of a sphere we set k - 0 in (4) , thus obtaining the perturbed stream func-

tion in the simple form

- I φl—9 θ).
a \ r I

(7)

The result (7) also holds for fluid motion occupying the region r < α, when

r = a is made a rigid boundary. Examples have been given elsewhere [ l ]

The chief advantage of these formulae is that the "flow-sheets" are given

directly. However, the results are not so general as those of 2.20, and the

functional form is no simpler, except in the hydrodynamical case (7) where no

integral term is involved.
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