SOME PERTURBED ELECTROSTATIC FIELDS

G. POwER

Summary. When a dielectric body is placed in an electrostatic field, the
field becomes perturbed, and the boundary of the dielectric experiences a
mechanical force due to the refraction of the lines of force. This paper is con-
cerned with finding expressions for the resultant mechanical force at a surface
of discontinuity separating two media of different specific inductive capacities,
and also with determining the perturbed fields in both dielectrics (assumed
homogeneous and isotropic) for various boundary shapes. In the first section,
some two-dimensional fields are discussed, starting with a concentric circular
cylindrical system, and then proceeding to other cases. The second section is
devoted to an application of Stokes’ stream function to three-dimensional

axisymmetric fields.

I. Two-DIMENSIONAL FIELDS

1.1. Mechanical force and couple. Consider a nested system of homogeneous
isotropic dielectric cylinders, and let the perturbed electrostatic fields in the
various media be expressed in terms of complex potential functions. Taking
the origin of coordinates inside the contour of the interface separating the
medium (s) of dielectric constant ks from the medium (s + 1) of dielectric
constant kg 4+, we know that the interface C will experience a force whose com-

ponents are given by [4]
ks +1 dws +1 2 ks dws 2
(1) Y+iX= f( ) dz — — ( ) dz,
87 Jc\ dz 87 “c\ dz

where wg +, is the complex potential in the medium (s + 1), and wy that in the

medium (s ).

The anticlockwise moment about the origin of the mechanical forces is

ks+1 dws +1 2 ks dws 2
(2) r=~R ( ) zdz - R ( ) zdz.
87 “C dz 87 Jc\ dz
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1.20. System of two concentric dielectric cylinders. Suppose we have an
inner cylinder of radius b, dielectric constant k;, and a concentric cylinder of
radius a(> b), dielectric constant k,. Let this system be placed with the
common center at the origin of coordinates in a medium of dielectric constant

k3, in which there is a field whose unperturbed complex potential is

p

n

w= Z as,nz .
n=1

Suppose there is also a line charge of strength m per unit length embedded in
the medium %, at z = zg. The perturbed fields can be taken to be

00
n
wy = Z Q1,n2
n=1
o0 00
n -n
W2=Q+ 2 az,nz + z bg,nz 9
n=1 n=1

p -]
n -n
wy= D aznz"+ 3 banz"+c3logz,
n=1 n=o0

where (omitting the constant term)

3"1 Z i_, if Z <1,
k2 ;21 nz Zo

2m

Q=—— log (z ~2¢) =1

ky
o9m . zy 2 2z
__Z 0 ———’Zlogz, if |—] <1.
ky o= nz® k2 z

The boundary conditions are

R(wl)‘:R(WQ), kl &(wl)=k2&(w2) on lz|=b,
and

R(w,) = R(ws), ky Mwy)=ks dws) on |z]|=a.
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Applying these boundary conditions and solving, we obtain

O(,,al’n = 4[1:2/03 a2"a3,n + = {(kz + k3)azn + (kz - k3)zg?g} s
nz
0

Gnaz,n=2(ky +ky) ks a“as,n

2m

+ (kg = k) ey + k)22 20 + (ky = k) 677 3,

nkyz

C‘~nb2,n =2(ky —ky )5 aanzn‘&3’n

2m
+

(kg = ko) §Cky + k3)a®" = 22 2] (ks — k)3 627,

nkyz

Onba,n="1(ks = ko) (kg +k)a® + (k3 + ky) (ky — k) 62" }a?" a3, n

4
+ = {(ky — k)b + (ky + k)20 27} 027,
nzy
0
m (kg — k) 2m
bs, 0 = ————— log a?, c3 =—— ,

kaks

where

Up = (k3 +k2)(l£2 + kl)azn + (k3 - kz)(lﬂz - Iﬂl)bzn-

From these results we can easily deduce [5] the perturbed fields when a
circular dielectric cylinder is introduced into the general field w = f (z).

1.21. Special cases of the complex potential. If in 1.20 the cylinder of

radius b is made a conducting surface, then &y = . Putting also

k3=1,k2=k, m=0y as,n=En’

we obtain
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2" E, 2Ey, [ Ab 2" APb21P ]
a = = + Foeoet +eeef,
T ke Da?+ (h-1b2  (L+k) |77 gon 2P

-2a*" b E, 2k, b2" Ab2P APH2nP
ba,n= =— 1+ foeet +] ,

(k+1)a?™+ (k-1)b2" (1+£) a?" PRl
{(k-1)a% + (k+1)b%"} a®"E,

3,n =~

(k+1)a?" + (k-1)3%"

_ b2n b2np
=Ena2"[)x+()\2—l) 2 Fooe ()\.P+l—)\,p-l) +-0-],

22" a2mP
where A= (1-%)/(1 + k).

From these expansions we observe that if this system is placed at the origin

of coordinates in a field whose unperturbed form in air is
p
f(z ) = Z En Zn,
n=1
then the complex potentials in air and in the dielectric become respectively
(1) wo =f(2) + X (a¥/z) + 3 (AP*L—AP"1) [ (b2P/2a%P"2),
p=1

and

9 00 zb2p _ b2p+2
2 i= AP - .
(2) Ty E; {f(azp) f(z(ﬁp )]

Application of the theory of summation of double series shows that (1), (2)

above still hold if f(z) is an infinite series assumed regular in a region in-
cluding |z| < a.

If now we require |z | = b to be a line of force instead of a conducting sur-
face, we set k, =0 instead of k; = w. Proceeding as above, we obtain the

perturbed fields for this new system in the form
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_{a? hnd -/ b?P
(3) wO=f(Z)—[.l.f(?)—z (P-p+l—,up-l)f( )’
p=t

za 2p=-2

[\V]

(4) w; =

where p=(k-1)/(k+1).

1.30. The elliptic dielectric cylinder. The hydrodynamical problem of an
elliptic cylinder in a general stream, and the analogous problem of the elliptic
conductor in a general field, have long been solved. The case of the elliptic
dielectric cylinder has, however, only been solved for certain specific external
fields [ 7). The difficulties arising from the singularities of transformation have

been overcome here by using the results of 1.21.

Consider the transformation
c
(1) z=§(§+1/§),z=csinw, w=u+iv.

Clearly the region outside the slit AB in the z-plane transforms into the region
outside the unmit circle in the {-plane. The ellipse v = const. = vy, say, of
semi-axes ¢ cosh v, ¢ sinh v, in the z-plane, having 4, B as foci, becomes

the circle | (] =e"! = a, say. Let this ellipse be placed in the general field
y p
c
s =[S 10},

of which we consider the part
p
(2) () =3 F,¢" (p=w is included).
n=t
Split A({) into
G(L)= (/2 h(Z)+R()} and H(L) = (/2R (L) =R ()},
sothat ()= G({)+ H({).

The component of g(z) corresponding to G(¢) will contain the real axis as a
line of force, so that inside the ellipse, 4B will be a line of force. Thus the
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complex potentials due to G({) can be found from 1.21 (3), (4), by putting
b=1 and a=e"'.

Now g(z) gives rise to a field inside the dielectric ellipse such that the
electrostatic potential is continuous in crossing AB. This means that in the
{-plane the values of the potential on | {| =1 are the same at * am {, and so
the terms derived from #({) can be found from 1.21 (1), (2), again by putting
b=landa=e"l.

Adding the complex potentials thus formed from G(¢), H((), we find that

the complex potentials outside and inside the ellipse are given respectively by

20,

(3) wo=h(§)—p}7(eé )

N __f‘i_{z WPh(1/Ce V) + 3 IR (1/2e2 7 )],
(1+k)2 P=0 q=1
and
(4) = —2 [z ,Lp{h(g/ezp”‘)+h(1/ge2””‘.)]
(1+£) p=0
2 oo’ - 2quy 5 2qvy ]
e qz;l pq[lz(C/e Y+ R (/22O

where 2 refers to even powers, 2~ to odd powers, p=(k-1)/(k+1),

and ¢ =ieV ¥,
Note that w; is of the form
P
(5) wi= 3 A, (CP+1/2M).
n=1

1.31. External line charge. Consider now a line charge m at (ug, vy ) placed
outside the elliptic dielectric cylinder parallel to the axis of the cylinder. In

the z-plane we have

(£- Co)(é—l/éo)]

g(z)=~2mlog (z — zo) =—2mlog[ z
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apart from an additive constant. We do not consider the terms
~2m log (£~ l/éo), ~2mlog {,

since these refer to line charges inside the region |{| < 1 which corresponds

to a different sheet on the Riemann surface.

Thus we take

(1) h({)=—2mlog({—{o), where §0=ievo-iu°.
From 1.30 (3) we have
821)1
wo =— 2m log ({-{) + 2mylog( % - éo)
4k > 1
(2) + [ #p(—2m log( - ))
(1+£k)? pz=% 2Pt °
= (- 2m o (i - 7
+ — —
S T Og(gewl °»J
v-vg-i(u-ug) 20y -v-vg +i (u-ug)
=-2mlog {1-e b+ 2mplog (1—e )
(3) i [ S WPilog (14 el F0)-EHat2pen)y)
(1+1€)2 p=0

+ Z’p_q{ log (1 _ ei(u-uo)-(v+v0+2qv1 )) }] ,
g=1

neglecting any additive constants.

From 1.30 (4) we obtain the following result, where again we have neglected

additive constants.

(4) w,.=_+_[z uPi=2m log (£ /e*P™t = ¢) = 2m log (1/¢e™P"1 = £ )}
p=0
+ Z’

n9i=2m log (£/e*7"1 =) = 2m log (1/¢e™ ™™ ‘Zo”J
g=1
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4m > . .
(5) O [ E) pPilog 2[sin (u + iv) — sin (ug + i (2pv; + v )) 1}
+ Z’yq{logZ[sin(u+iv)—sin (uo — i (2qv, +v0))]i}.
g=1

1.32. Internal line-charge. By putting a3, , =0 in the results of 1.20, and
proceeding exactly as in 1.21, 1.30, we obtain the external and internal fields

due to a line charge m at { = { inside the dielectric elliptic cylinder v, in the
form

Am - 2pv 2pv
Wy = — P o — pv1 _1 e PY1
0 (1+“[p2=0,# log ({= ¢ /e (-1 o)

+ 2 ’ p9 log (C—Zo/emv‘ ) (- l/equlZO)] + 2m log ¢,

q=1

2m [ & v
ulz__i[Z I’l‘p 10g(€—1/€2p léo)

k p=0

© 3 WP leg (£= T, /e P (g PP 7y (p 2PN g
p=o0

o

plog (£—=1/e1 L)
1

B
n

Mz

W log (£= £,/ T (o T gy (g T é’o’]

<
1
-

2
_Tm 10g(€~¢0)+ Zmlogé.
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The fields due to line doublets both inside and outside the elliptic cylinder
can be deduced.

1.40. Force and couple on the elliptic cylinder. Let the cylinder be placed
in the general field

glz) = 2 Epz".
n=t
Then

(¢ +1/4)

Z =

oo

transforms g(z) into a function of £, of which we consider

(1) h() =3 Flm.

n=1

The field inside the cylinder, being of the form given by 1.30 (5), will

contribute nothing to either the complex force or couple of 1.1.

From 1.30 (3) we see that
(2) Wo = ZFnCn“'Z Gn/én’
n=1 n=1
where

a4nFn(1_#2)+a2n#F'n(1__a4n)
(3) Gn-"—'—' sy @a=2¢€ .

The complex force. This is given by

Y +iX= lfc(dw")z ©_ 1 /[i nFy (" - inc,,/d"]z il

87 4 | dz/dl T dme ‘e (e2-1)

n=1 n=1
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There are poles at {=0, {=1, {=-1, and so

+iX =2 rs b (Fs~Gg), r>s, r—s odd.
(4) Y +iX

r=2 s=1

The couple. This is given by

r-rt (dw°)2 zd¢

87 °C d_§ dz/d{

1 0 “ 2(L%2+1)de
_RE [ nF, ¢ — nc,,/gnj L vl

8ﬂfc ,,;1 ,,% (£2-1)¢

Again there are poles at {=0, {=1, {=~1, and so

(5) I—'=R[§ Z nan(Fn-—Gn)+iZ 2 rsF,(Fs—-Gs)],

n=1 r=3 s=1
r>s, r—s even,

1.41. Force and couple due to external line charge. The perturbed potentials
are given in 1.31, and we note that the internal field will contribute nothing to

either the force or the couple. Thus the complex force is

1 2¢? 1 pa?
peied [ 2 [l
+1 o Jo 2m =¢

R [5__&__

To evaluate this integral we draw a circle S of large radius to enclose both
the cylinder C and the point { = { . Thus we have

%L[]d§=%_/s.[]dé—§l;fy[]d§,
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where y is a small contour drawn around {= (.

To determine the integral around S, we expand in powers of 1/{, and the
integral around y is obtained in the usual manner. Carrying out these integra-

tions we obtain

(1) Y+iX=

am*i ¢, [ pa? 1
._.\ — +
(-1 (a2 ¢) (&E-1)

o |2 amm ol

p=o (l—azpég) g=1 (1—a2qéoéo

In a similar manner, the couple is given by

2im2 (&2 + 1) 2
(2) ropom (Gt [- pe 1
(£2-1) (a?-¢¢))  (&2-1)
4k g p ® ., q
+——'—2' [ Z —#2-}7—5—+ Z ———Lzl;__]]-
(1+k) p=0 (l—a 40) q=1 (1—a 4040)

These results could equally well have been obtained by the use of Lagally’s
Theorem [2].

By a similar method the resultant force and couple on the elliptic cylinder

can be evaluated for an internal line charge.

1.50. Elliptic conducting cylinder with confocal dielectric sheath. Let
v=v, be a conducting elliptic cylinder, surrounded by a confocal elliptic
sheath v = v, of dielectric constant k. If this system is placed in a general
field g(z) in air, then we consider, as usual, the unperturbed portion % (¢),
and 1.21 (1), (2), give the complex potentials outside and inside the dielectric

in the form

e nd T il
= pt1 _ y\p-1 P
(1) w ”‘4)””( z )+ pzl (AR (ce“"’””*)’

o0 2pv, 2(p*1)vy
L ) ()
(1+k) p=o o 2PVt PV

(2) w; =
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If () is of the form

h(E) = 20 Fal™,

n=1

then

o0 00 G
(3) Wo = Z: Phén + 2: —%’

n=1 n=1 g
where

Fra®™{ 62" (k+ 1)+ a®™(k - 1)}
(4) Go = -
{a?™(k+ 1)+ 62" (k-1)}

and a=evl, b=e'?.

Also we have

(5) wi=_ H, ™ + Z K,/¢",
n=1 n=t
where
2(12nFn ZGZHbZnFn
(6) H,= , K, =— )
fa? (k+1)+ 62" (k-1) $a?" (B + 1)+ b2 (k-1)}

Force on the conductor. The only contribution comes from w;, which as in
1.40 gives
(7) Y+iXe — X 2 rsH(Hg —Kg), r>s, r—s odd.

r=2 s=i1

Couple on the conductor. Similarly we have

(8) TI'= F{{fﬂ > n2H,(H, ~K,,)]+ ik[Z > rs Hp(H —KS)”,
n=1 r=3 s=1

r>s,r— s even.
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Force on the dielectric boundary. Both wg, w; contribute, giving

(9) Y+zX-—ZerF(F G)—L—kz erH,-(H Ks),
rzs"l r=2 s=1

r>s,r—s odd.

Couple on the dielectric boundary. In a similar manner, we see that

(10) T=R é[z n? Fy (F, - (,n)] +i| 2 erF,(FS—Gs)”

r=3 s=1

o0

5SS rey(H, — K, )”

r=3 s=i

Lk

!
%?5

Z n?H,(H, ~I\n)]+ik

n=1

r>s, r—s even.

1.51. Elliptic dielectric cylinder with confocal dielectric sheath. Let now

v = v, be an elliptic cylinder of dielectric constant k;, while between v = v, and
v=uv; is dielectric material of constant k,, and suppose that this system is
placed in a medium of dielectric constant k3, in which there is a field whose

unperturbed form is g (z), of which we consider the portion
R(C)= 3 Flm.
n=1

Equation 1.30 (5) gives the form of the field inside v,, and so we see that

the perturbed potentials will be given by

wy = Z a1,n(€n+1/<"):

n=1

&
N
]

o0 (5,4 (=1 o0
Z az,névn + 2 bz,n(:-n y W3 = anén + Z ba,néhn-
n=1 n=1 n=1 n=1
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The boundary conditions of 1.20 yield
(6% 62 ~ B2)ay, p = 4ksks a?" b2 07" Uy Fy ~ B Fy )
[6%7 02 — B2Tay = 2k3 0™ {[6*" (kg + k)op = (ko ~ k) Brl Fy
—~ (62" (ky + k) B = b2 (ky — ky)op 1 Fr },
(64702 — B21by,n = 2k3a®™ b2 {15 (kg — ky)0hp — (ke + k1) Br1Fy
—[62"(ky — k) Bp = b2 (ky + ky)0p 1 Fy 3,
(64702 — B21 by n =1 0%"a?" [a®" (ky + k1) (k3 ~ k) + 62" (ky = ky) (k3 +k2) 0ty
a?[a?™(ky = ky) (kg = ky) + 627 (kg + ky) (ky + k1)1 Bn} Fy
—{a® b [a?™ (ky — k) (hy F k) + 62" (kg + ky) (ky — k)] B0
a?" b2 [a®™ (kg = k) (kg = ky) + b2 (kg + kg) (kg + k) ]0tn} By,

where

On = a2 (kg + k) (kg + ky) + b2 (ks — k) (ky — k1),
)

Bn=a?™ ks + ky) (kg ~ k) + 62" (kg —hy)(ky + k), a=e' ', b=e

To evaluate the force and couple on each dielectric boundary, we proceed

exactly as in 1.50.

1.6. Parabolic dielectric cylinder. We can use results already obtained to
get the internal and external perturbed fields due to the presence of a parabolic

dielectric cylinder of constant £.

The transformations
- 't
(1) z=t%, (=e7",

where
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z=x+1iy, t=u+if3, {=¢+in,

are such that 8 = const. = 3, say, gives a parabola in the z-plane which be-

1

comes a circle of radius e”' in the {-plane. The limits of ¢!, 3 are given re-

spectively by
—c <0< and 0< B <c.

The limiting case 8 =0 becomes the positive x-axis in the z-plane, and the

unit circle in the {-plane.

As an example, let us find the fields due to an external line charge m placed
varallel to the generators of the cylinder at (¢ly, Bo). We have

h(t)=-2mlog (£t —tg), to=0Ug+if0,
and so we obtain

(2)  wo=~2mlog (¢t —to) +2mp log (t—t—(—,—2i,81)

Bmk [ = o, ~
—L—[z P log (¢ +ty +2ipBy) + D yqlog(t~t0+2iq61)],
(1+k)2 = q=|_

and

00

4 "
(3) Wi=—(1+mk) ’ Z I,Lp 10{{ (t—'lo —Zipﬁl)(t+to +2Lp,81)

+ 2 w?log (t+1to —2igB1 ) (¢~ to + 2igPy )].
g=1

1.7. Dielectric annulus and dielectric slab. If, in the results of 1.20, we set
ky=ks=1, k2=ksa3,n=En’ m=0,

we get the elementary case of an annulus of dielectric constant £. If this an-

nulus is placed in the general field g(z), then the perturbed fields are seen

to be
2p
= o),

(1+lf) p=o0 2p

(1)
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(2) wy = [Z A2P ( ) 2 /\2p+1_(b2(P+l))]
(1+ oz IV
3 2 2(p+1)
(3) wy =g(z)+ D /\2p+l[§‘( il )—-E(b ’ )].
p=o a2(p-l)z a2pz

If now we put z=e"", where ¢t =0 +i8, we can transform the dielectric
annulus into a dielectric slab. Setting 6 =1, a=eBl, (B, positive), in (1),

(2), (3) above we get

B = > i),
(].+k) p=o0
(5) wye [Z NP (=200 - NPT 280

(6)  wy=f(e)+ 3 APY{F(s 42 (p-1)B,) ~f(2+2ipB)1,
p=o0

as the perturbed fields in the parts of the t-plane given respectively by
02_18’ 61 _>.B 2.09 B Z.Bl’

when the unperturbed field f(¢) is caused by singularities placed in the region

B> B

It can easily be verified that (4), (5), (6) above satisfy the required bound-

ary conditions in the ¢-plane, which are
R(wy) = R(wy), Mwy)=kd(w,) when B=0,
and
R(wy) = R(ws), k3wy)=3ws) when B=p, .

Moreover, since no new singularities are introduced into the regions concerned,

these formulae can conveniently be used to obtain image systems.
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II. THREE-DIMENSIONAL FIELDS

2.1. Mechanical force and couple. The components of resultant force and
couple corresponding to the Blasius type formulae of 1.1 have Leen given pre-

viously [4], and will not be discussed further in this paper.

2.20. The sphere theorem. It has been shown [3] that if a dielectric sphere
of radius a, dielectric constant f;, is placed with its center at the origin of
coordinates, in a medium of constant %, in which there is a general field whose
undisturbed potential is ¢ (x,y, z), having no singularities inside or on r = a,

then the perturbed potentials inside and outside the sphere are respectively

2 (E-1) 1 _
(1) <75i= (1+k) ¢(x,y,z) + m /; tk/(kﬂ)d)(xt,yt,zt)dt,
and
(k=1) a
(2) ¢o=¢(x97’2)—(k+1) ;‘¢(xuh’21)+
(k=1) a

1
+(lﬁ 1)2 _r-v/o' t-k/(kﬂ)qs(xlts}'ltszlt)dt,
+

where
2 : 2 2
a‘x a a’z
2 2 2 2 — L.
x1='_2—,}’1=7, zl:T’r=x +y +z°, and k="F;/ko.
r r r

Similarly, we can show that if there is a field whose undisturbed potential
¢ (x,y,z) is caused only by singularities placed inside the sphere r = a, whose
dielectric constant is k;, and if this sphere is surrounded by dielectric material

of constant %, the perturbed potentials are

(3) @, é(x,y,2) +

Tk D)

‘-1 , ’
. (k ))2 /'1 ik /(K +1)¢(xt’yt,zt)dt,
(k7+1)? <

and
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(k’-1)
(E°+1)

(4) ¢, = d(x,y,2) - gd)(x,,yl,zx)
r
(k’=1) a

1 siirs
+ (-k’ 1")2' " /t'k /(k +1)¢(xlts715,21t)dt,
+ oo

where £°= ko/k;.
2.21. Application of Stokes’ stream function for axisymmetric fields. We

now consider axisymmetric fields given in terms of the spherical polar co-

ordinates r, 0. Stokes’ stream function [6] ¢/ (r, @) satisfies the equation

[2a2 _63(1 a)](e)o
r® — +'s —_ — =
12t aglams 56) ¥ ’

and is related to the potential ¢ by

d ad d
—(/) =—r2 a-_q.S’ .—lﬁ.= (1—#2) _i,
du dr  dr du
where p = cos 6. Thus to the solutions
r® P, and r'("“)P,,
of Laplace’s equation correspond respectively
2
(————-1_#2) it 4 and — a-p) r ffi
(n+1) du n dp

The perturbed stream functions inside and outside the dielectric sphere of

2.20 are thus given by

1) 27 (2n + 1)E,r™*? dby
( Vi==®) 2 e T T

n<=o0
and
o (1-k)a?"*'E, dP,

(2) —0(r,0) = (1= p?) :
Vo =¥r # Zo (n(kel)s 1} dn
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where the unperturbed external electrostatic potential is taken to be
(=2}
‘75 = Z En" "P ns
n=0
with the corresponding stream function

( Byt 4P,
= (1- .
v # )Z (n+1) dp

Dy manipulating the coefficients as in the proof of the Sphere Theorem [ 3],
we can put these stream functions in terms of the unperturbed stream function
in the form

2 (k-1) 1
3 . -(2k+1)/(k+1) 0)de,
(3) ¥, TS Y(r,0)+ TIEIE ¢ Y (rt, 0)de
(4) (. 0) (1-Fk) r 1/:(a2 0))
Vo=V (n0)- 5755 5 YT

2
k(l k) r/‘l ~(2k+1)/(k+1) l/,(i—t,c’i)dt,
(1+k)2 a v ’

where, as before, k= k;/kq .

In a similar manner, the perturbed stream. functions for an axisymmetric
field caused by singularities inside the dielectric sphere can be established in
the form

2 (-1 fv _(,0. ,
(5) Yo = T :/;( 0)+(k Y /; JERO R o

(6) Y = (r 6) (1-Ek%) r (a2 6)
o B

Bl -k - , , 2t
k( ) r/l ;- @R+ 0/ +1) ¢(g_ O)dt
A+ k2 adw r’ ’
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where k= ko/k;.

For the hydrodynamical case of an external axisymmetric field in the pres-
ence of a sphere we set k=0 in (4), thus obtaining the perturbed stream func-

tion in the simple form
r [a?

(7) ¥=40,0)- 2 (S, 0).
a r

The result (7) also holds for fluid motion occupying the region r < a, when

r = a is made a rigid boundary. Examples have been given elsewhere [1].

The chief advantage of these formulae is that the ‘‘flow-sheets’ are given
directly. However, the results are not so general as those of 2.20, and the
functional form is no simpler, except in the hydrodynamical case (7) where no

integral term is involved.
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