UNBOUNDED SPECTRAL OPERATORS

Wirriam G. Bape

1. Introduction. Our purpose in the present paper is to study the structure
and operational calculus of unbounded spectral operators. Bounded spectral
operators have been introduced and studied by N. Dunford in [2] and [3], and
the present paper is an investigation in the unbounded case of certain of the
results of [3]. Interest in the abstract theory of unbounded spectral operators
arises from important results of J. Schwartz [7], who has shown that the
members of a large class of differential operators on a finite interval determine

unbounded spectral operators in Hilbert space.

Let B denote the Borel subsets of the complex plane, and let X be a com-
plex Banach space. We shall call a mapping £ from B to projection operators in

X aresolution of the identity if it is a homomorphism. That is,
E(e)E(f)=FE(ef), E(e)uE(f)=E(euf), e, f€B
E(e’)=1-E(e), E(¢$)=0, E(p)=1, e € B;

E (e) is bounded,

|[E(e)| < M, ecB;

and? the vector-valued set function E (e)x is countably additive. Here ¢ is the

void set, p the plane, and e’ the complement of e in p.

A closed operator T will be called a spectral operator if there is a resolution

of the identity £ such that:

(1) The domain D(T) of T contains the dense subspace Xo={x |x=£ (0)x,
o € B, o bounded}.

(2) If 0 €B, E()D(T)CD(T) and E(0)Tx=TE(o)x, x € D(T).

IThe last condition is somewhat more restrictive than in [3].
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(3) o(T,E(0)X) Co where o(T,E(0)X) is the spectrum of T in the sub-
space E (o) X,

If o is a bounded set, then T is a bounded spectral operator in the subspace
E (o)X, and in this subspace its structure and operational calculus are known
from [3]. The idea of the present paper is to determine the properties of 7 in
X from those of the sequence of approximating bounded spectral operators

TE (0y,), where { 0, } is an increasing sequence of bounded sets for whick

E( U gn) -1
n=1
We outline briefly the main results:

The simplest type of spectral operator S is that of scalar type:

Sx = lim / AE (dM)x,
€n

n—soo
where this limit exists and

en=tAl[A] < ni.

With each spectral operator T we can construct an associated scalar type oper-
ator S from its resolution of the identity. (ne of the principal results of the
bounded case is the characterization theorem |3, Theorem 8] that T is a bound-
ed spectral operator if and only if 7 =S + N, where S is a bounded scalar type
operator and N is a generalized nilpotent operator commuting with S. In the
unbounded case the relation of 7 to S is not so simple, as we shall show by
examples. The operator N = T — S (with suitably defined domain) may be bound-
ed but not a generalized nilpotent or even unbounded with spectrum covering
the plane. We give a sufficient condition (Theorem 4.1) that 7 =S + N shall

be a spectral operator.

If S is a spectral operator of scalar type, it has an operational calculus
exactly analogous to that of an unbounded normal operator in ililbert space
(which is an example of a spectral operator). To each Borel measurable function
f on o(S) we can assign a densely defined closed operator f (S) which is also
a spectral operator of scalar type, the operators corresponding to f and |f |
having the same domain. In case 7 =S5+ N is a general spectral operator we

can, by the formula
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0o Vn
f(Dx=tin 3 = [ (D0)E@,
n. ep

P n=0

assign a densely defined operator f (T) to each function analytic and single-
valued in the complement of a set 6 for which £ (0)=0. (Here {e,} is an in-
creasing sequence of compact sets on each of which f is analytic and with
E(Uy=, e,) = L) However, as we shall show Ly an example, this operator need
not be a spectral operator without other restrictions. If { is a rational function,
f(T) is always a spectral operator. Conditions are given to ensure that f (7)
is bounded. A result of the calculus is the theorem that a closed operator T
with nonempty resolvent set is a spectral operator if and only if (A - T)! is
a bounded spectral operator for some A € 6(T). In case T is of the form T=S+N,
where N is a generalized nilpotent, we obtain quite an extensive operational
calculus of spectral operators. In order that f (T) shall be a spectral operator
it is sufficient that the singularities of f (1) in the finite plane (with the pos-

sible exception of a finite set of poles on o (7)) shall not get arbitrarily close

to o(T).

2. Closed extensions. In this first section we establish the existence of
a closed extension of certain densely defined operators. This result will be
the main tool of the paper and it will be convenient to formulate it under rather
general conditions. We shall suppose throughout this section the existence of

a resolution of the identity E.

DEFINITION 2.1. Let Q) be an operator defined on a dense subspace Dy (Q)
of X. Let there be associated with Q a class U of Borel sets satisfying:

(a) ¥ is closed under finite unions and contains any Borel subset of one

of its members;
(b) Ife €, then £(e)¥ C Do(Q) and Q is bounded in £ (e)¥;
(c) E(e)QE(e)=QE(e), e €U;
(d) ¥ contains an increasing sequence e, } such that £ (U= e,) =1

Under these conditions we say ( satisfies condition () and write

Xa={xlx=E(e)x for some e € U §.

An important case occurs when ¥ consists of all bounded Borel sets. We
shall be interested in finding a particular closed extension of (). The con-

struction will be based on two lemmas.
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LEmMMA 2.1. Let {d,} and {e,} be two increasing sequences of sets from

A(Q) for which
L( U dn) - E( U en)=1.

n=1 n=1
If x € X, and limp, _, o DL (dy ) x exists, then

lim 0F (ep)x= lim OF (dy)x.

n—oo n-— oo

Proof. Given € > 0, let my be chosen so that if m > m, then

| QE (dpy = dpy Vx| < — .

1

Now, as E(Uo,;=0 en) =1 and ¢ is bounded in £ (dmo)x, we can find an ny such
that, if n > ng,

€
IQE(dmO“en)xl < 5'

For any such fixed n > ny we can, for the same reasons, find an m; > mg so
that

|QF (en — dp, x| <§.

Now, since
E(en) —E(dy ) =E(en~dn )+ E(en)E(dy, ~dny) ~E(dp, ~en),
it follows that

|QE (en)x — QL (dpy )x| < €.

DEFINITION 2.2. Let {e,} be any increasing sequence of sets from A (Q)
for which £ (U, =, e,) = I. We define

D(Q)={x| lim QFE(e,)x exists},

n— oo

and set Qx = lim, _, o QF (e,)x for x €D (Q).
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LEwMA 2.2. The operator ) with domain D (Q) is closed and is the minimal
closed extension of Q on Xyr. Further, if x€D((), and e€ R, then E (e)x €L (0)
and £ (e)Qx=QFE (e)x. Also, Q, with domain E(e)D (@), is the minimal closed
extension in E (e)X of Q) on ;‘:\31’ Ay ={eo | o€ UL

Proof. Clearly, first, if e €A (Q) and x € D (@), then QF (e)x = £(e)Qx
since we can suppose e a member of the sequence {e,}. Now let x, € D(Q)

(n=1,2,+++) and

%o = lim xp, y,= lim Qxg,.

n — oo n-—oo
For any m,

E (em)yo = lim £ (epn)Qx,,

n— oo
and

Oi(ep)xo = lim QF (ep)x,

n— oo
as Q is bounded in £ (e, ) X. But since
Ok (ep)xn = (en)Qxy,
we have

lim ’?IJ(em)xo = lim E(em )yO =y0.

n— oo n — oo

Thus %o €D(Q) and {xo = y,. Clearly the extension is minimal. Finally let
x €D(0), e € B. Then

E(e)x = lim E(eep)x

n— o0
and

QE (eep) = E(e)QE (ep)x
converges to E (e )(Qx. The last statement follows easily.

We will also need:

LEMMA 2.3. Let {en} be an increasing sequence of sets from U for which
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oo

E( U en) 1.
n=1

If, for each n, A€ p(Q,E(e,)X) and

lim (M =0)'E(e,)x

n—soo
exists for each x € X, then A € p ().
Proof. Clearly Al -~ Q is a closed one-to-one mapping of
D(AM-Q)=D(Q)
into X. We must show it is onto. Let x € X and
Yp = (M=QY'E(ey)x.
Then lim, _, « ¥, = y exists by hypothesis, and

lim (A -Q)y, = lim E(ey)x=x.

n—oo n-—oo

Hence y € D(Q) and (A - Q)y ==x.

We note that if T is a spectral operator and T, is the closed operator ob-

tained by taking for ¥ the class of bounded Borel sets and defining Qx = Tx,

x € Xgp, then T = To. Thus a spectral operator has no proper closed extension

which is a spectral operator.

3. Scalar type spectral operators. We begin by studying the simplest type

of spectral operators, those which can be constructed from a resolution of the

identity £ by integrating scalar functions. The integral we use for bounded

functions over bounded sets is that introduced by Dunford [3, Lemma 6]. We

particularly recall the relations

(3.1)
v(E) AEe

and

inf [f O] < | [ FOE@)] <0(8) swp )]
€ A€e

32 [rosmE@ - [foE@ [ewEw,
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where e is a bounded Borel set, v(£)=4M, and [ and g are bounded Borel
measurable functions.! We denote by [l the set of lorel measurable functions

[ each of which is finite-valued in the complement of a set ¢f for which

b(d)f)=0°

If fel, we let ¥ be the class of bounded i3orel sets on which |f ()] is
bounded and take

en:{)\l|)\lini‘[(’\)\ﬁn§ (n=l,2,~--).

We define

f{S)Yx = lim / FAONE(dA)x
n—oo Y€n
on the set U(f(S)) of x for which this limit exists. Lemma 2.2 shows that

f(S) is a closed operator, and I.emma 2.1 that we would have obtained the same

result by using any other increasing sequence { 0y, from ¥ for which

e shall denote by S the operator obtained by taking f(A) = A and call it the
scalar operator associated with E (or if I is the resolution of the identity of
a spectral operator T, we call S the scalar operator associated with T). Now
S is a generalization of an unbounded normal operator in Hilbert space.® The
method we have used to construct the operators f(S) is an extension of the

method of forming direct sums of iiilbert spaces (see [ 6, p. 43 1).

TueoreM 3.1. Concerning the operator f (S) we have:
(1) iffem,thenl)([(S)):[)(lf[(S));
(2) iff,geMand | f(X)| < K|g(N)|, then U(g(S)) CL(f(S));

(3) g(S) is bounded if and only if g is essentially bounded with respect
otk (e)};

(4) if feand g(S) is bounded, then g(SYD(f(S))CD(f(S)).
Proof. We note that (3) follows from formula (3.1). To prove (1), let

YThe first half of (3.1) does not appear explicitly in [3] but follows from the
second half and (3.2).

2 ¢“\taximal normal operator’® in the terminology of Stone [ 8].
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€ > 0 be given, and let

p=f{A1f(N)] < €}

We define s(A) to be |f(A) | [f(A)]! for A¢ p, and zero for A € p. Then if
x €D (f(S)), for any n we have

L rrmie@oz=ss) [ rE@ss [ 17 0)1E@x.
€n €n-H €n M

n

But |s(S)| < v(£), and the last term is in norm not greater than € v(£). It

[/ |f(A)lE(dA)x]

follows that the sequence

is a Cauchy sequence if

{/enf(A)E(dA)x]

also is one. Thus D (f(S)) CD(|f|(S)). The converse inclusion and (2) are
proved similarly. Finally (4) follows from (3.2), since

_/e.f()x)E(d)\)g(S)x=f f(/\)g()\)E(d)\)x=g(S)/ fOVE(dN)x.

THEOREM 3.2. Let f and g €.

(1) If x €D(f(S))nD(g(S)), then x€D((f+g)(S)) and [f(S)+
g(S)x=(f+g)(S)x.

(2) If x€D(g(S)) and g(S)x €D(f(S)), then x€D((fg)(S)) and
f(S)g(S)x=(fg)(S)x.

Proof. (1) is clear. For (2), let ¥ consist of the bounded Borel sets on
which both f(A) and g(A) are bounded, and let

en ={A1f(N)], |g(A)] and |A] < ni.

Then, for any n,



UNBOUNDED SPECTRAL OPERATORS 381

/f()\)E(d)\)g(S)x: lim /f()\)E(d)\)/ g(WE (dp)

- [ remE@s,

since fe,, f(ME(d)) is a bounded operator. Thus f(S)g(S)x =(fg)(S)x.

For the next theorem we will need a lemma which it will be convenient later

to have formulated for a general spectral operator.

LemMma 3.1. If T is a spectral operator E(o(T)) =1, and if { e,} is an in-

creasing sequence of bounded Borel sets for which

E( U en)= I,
n=1

then

o(T)Y= U o(T,E(e,)X).

n=1

Proof. The argument follows that of [ 3, Theorem 1]. Let

p= U U(T,E(en)X).

n=1

Clearly uCo(T). If o is a closed subset of 11’ then, for each n, 6 (T, E (0e,) X)
is a subset of both o and ¢ (7T, E (e,) X). Thus

E(oe,)=0, E(o)=0, and E(p")=0.
Hence £(p)=1 and p=0o(T).

THEOREM 3.3. If f€M, then {(S) is a spectral operator whose resolution
of the identity is given by

Ef(e):E(f'l(e)),

and spectrum by
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o(f(S)= N fle).
E(e)=1

Proof. let o be a fixed Borel set. If A, # o then

g(A) = (Ao —f(A))! L’//-l(g)

is bounded, and the equations

(YAl = f(SNx=% x€k(a)U(f(S)),

Mol =f(SNg(S)x=x, =x<ck(o)X,

show Ayl —f(S) is a closed one-to-one map of £ (a)D(f(S)) onto £ (a) L.
Thus o (f(S), Ef(0) X) Co.

Now let

en=tA Al <y [f(N)] <Rl

By |3, Theorem 16|,

a(f(S), E(ey) X) = n fle)=mp,.

E(e)=E(e,)

Now, by I.emma 3.1,

et

Clearly p, Cp for each n. If

o

AE U g,

n=1

we can pick a 8 > 0 and for each n a [jorel set 0, C e, such that

£ o,)=E(e,) and dist. (X, f(o,)) > 5.
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Now if

)
0o = U Ons
n=1

then E(gg) = [ and A ¢ f(0y), and thus A £ ;. Hence

p= U p,=o(f(S)).

n=1

4. The relation of T to its scalar operator. One of Dunford’s principal re-
sults for bounded spectral operators is the characterization theorem [ 3, Theorem

8] that T is a bounded spectral operator if and only if T =S + N, where
S :/)\E (dA)

is the associated scalar type operator and N is a generalized nilpotent operator
commuting with 7. The absence of such a theorem in the unbounded case greatly
complicates the theory. While in each subspace E (o)X, o bounded, N=T -5
will be a generalized nilpotent, the natural closed extension provided by Lemma
2.2 of N on Xy, (¥ the class of bounded Borel sets) may be bounded but not a
generalized nilpotent, or even unbounded. We now construct two examples which

exhibit these possibilities.

ExampLE 1. For each n, let $, be n-dimensional unitary space and let

9 be the space of sequences { x,, }, where
Xp = (é:ln’ §2n"“’ 'fnn) S g?:n N

o 1

||(z: lfmlz)%, m:(z mv)/’.

n=1

Then § is a Hilbert space. We denote by £ (n) the orthogonal projection mapping
 onto © . The Boolean algebra £ of projections

E(s)= 3 E(n),

n€o

where ¢ is any subset of the positive integers, is a resolution of the identity
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of the self-adjoint operator S which we define in & by
Sxp = (n\fln seeesy nfnn)

and extend by L.emma 2.2 to

D(S) = [x| 2 IS%,]? < oo].

n=1

The operator N we define in §, by
an = (O, nfln’ né:Zn’ crey n‘fn-l n)'

The extension to § yields an operator of norm one which is nilpotent of order

n on . We shall show that the operator
T=S+N, (D(T)=D(S))

is a spectral operator. Let o be any subset of the positive integers and & £ o.

If n € 0, the operator

n-1 NiE
Ra(T’ﬁn)= Z _'i’i

1=0 (O( - n)i+l

is the resolvent operator of T in the subspace § . Because of the quadratic
nature of the norm in Hilbert space, ¢ will be in the resolvent set of T in
E(0)$ if and only if |R (7, 8§, )] is uniformly bounded for all n in o. But this

is satisfied; in fact,

lim |R_(T,$ )] =0,

n—oo

where n is not restricted to o. For, given 1 > € > 0, we can pick an ny so
large that
o -n|"t<

€
- forn > ng.
2

Then, if n > ng,
n-1 1

|RAT, )1 < 22

i=o |& *nliﬂ
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Thus o(T,E(0)8) Co, and T is a spectral operator. To show that N is not a
generalized nilpotent, let x = { x;}, where

x;=(22,0,0,.++,0).

Then | x| =1, but

N

The transformation N is of a type studied by H. Hamburger [4].

ExAMPLE 2. In this case let § be two-dimensional unitary space for
each n, and form § as the Hilbert space of sequences { x,} with x, = (fl 2 .f,m )e
©, as before. In § we define

an = (nfln ’ n§2n)’
Nocp = (Oa nfln)’

and T =S + N. Then
D(T):[xl Z | Txp | % < oo],
n=1

with similar expressions for D(S) and D(N). As D(S) C D(N), we have
D(T)=D(S). Now N has the entire plane as its spectrum since, clearly,
0 €0(N), and, if B # 0, the formula

Ra(N,§ ) (fln néin ‘fzn)
B\Ny R, )Xp = Bzr ‘82 +7

shows that IRB(N, ,)| is unbounded with n. However, T is a spectral operator.
If o is a set of integers and o ¢ o then, for n €0,

Ra(T, $, ) %n =(a

Thus |R,(T, $,)| is bounded, n € o.
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The last example shows the degree of pathology that may arise. It is in-
teresting that we do have the following result which covers the case of Example
1.

THEOREM 4.1. Let S be an unbounded scalar type operator, and let N be a
bounded operator which commutes with the resolution of the identity for S and
is a generalized nilpotent on each of the subspaces E (o)X, o bounded. Then

T =S + N is a spectral operator with the same resolution of the identity.

Proof. The relation o(T,E (0)X) C o is clearly satisfied for all bounded

Borel sets. Let ¢ be an unbounded Borel set and let
en={N||X] <ni.

By [3, Lemma 3], the resolvent of T in E (oe, ) X is given by

= E(dp)
AM-T)!'= N*
z

— oe, ()\_#)i”.
We conclude the proof by showing that

lim (M=TY'E(oe,)x

n—oo

exists for each x € £ (0) X and applying Lemma 2.3 in that subspace. We show
in fact that the series

E(dp)

£ b
i=o o (A=p)*
converges. For given 0 < € < 1, we may pick ny so large that
2|N| < edist (A, e5,), 20(E) < dist (A, e5,),
and pick an n; > n¢ such that for any m and n withm > n > ny,

E(dp)

m
v [
; a-eno (A—#)L+l

Then, using (3.1), we get

€
< =
2
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moo E(dp) € m , E (dp)
s [ 2 S s | [,
i=n o (}\_ﬂ)l ! 2 i=n Ueno ()\—#)L !
€ E mogl
<—+—v(—)—— > = <e.
© 2 dist (A, eq,) o2

5. Operational calculus for a general spectral operator. When 7T is a bounded
operator and f is a function analytic on ¢(T), it is well known [1;9] that a

comprehensive operational calculus is obtained by defining
1 -
(5.1) f(T)= — /f()\) (M =T)'dA,
2wi vC

where C is a bounded positively oriented contour containing o (T) and excluding

the singularities of f. Also,
(5.2) a(f(T))=f(a(T)).

Moreover, in the case that T(=S + N) is a bounded spectral operator, Dunford
has shown [ 3, Theorem 9] that the operator f (7) may be expressed in terms of

the values of f and its derivatives on o (T) by the formula

ooNn,
5.3 T)=S — (Y (\VE (d
(5.3) f()n%n!/ﬂﬂf (ME (dA),

the series converging absolutely in the uniform operator topology. We shall

make formula (5.3) the basis of an operational calculus in the unbounded case.

Given an unbounded spectral operator T, we denote by R the class of func-
tions [ each analytic and single-valued in the complement of a closed set (9f for

which £ (0],) = 0. If for f € R we take

1
en=[}\| l)\l Sn, dist ()\, ef) 2_ "‘J’

n
then { e, } is an increasing sequence of closed sets for which

E(U en)=1,

n=1
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and on each of which f is analytic. Moreover, T =S + N is a bounded spectral
operator in E (e, ) X. Defining

N

f(Dx= lim 3 — / [ARAONVACINE
1! Ye,

n—oo ;=g

on the set D(f(T)) of x for which this limit exists, we obtain via [ emma 2.2
a closed densely defined operator. The class R is closed under sums and prod-

ucts, and by an argument exactly analogous to that of Theorem 3.2 we obtain:
THEOREM 5.1. Let f and g € R.

(1) If x€D(f(I))nD(g(T)), then xe€D((f+g)(T)) and (f(T)+
g(T)x=(f+g)(T)x.

(2) If x€D(g(T)) and g(T)x €D(f(T)), then x €D ((fg)(T)) and
f(T)g(T)x=(fg)(T)x.

As we show now by an example, the operator f (T) need not be a spectral
operator. Let T be the operator of Example 2 whose spectrum is the set of

positive integers. Taking
1
f(A)=+/2 cosec 77()\+ Z)’

we see that the spectrum of f(T) in E(0)9 for o any finite subset of o (T)
is the range of f (A) on o, that is, lies in the pair of points +1. By Lemma 3.1,
this must be true also of the closed operator f (T) on D(f(T)) if it is a spec-
tral operator. However, 0 € o(f (T)) since, for x, € H,,

(-1)"

-l L
[F(T)T 5

(gln’ n”é:[n + ‘fe_,n)’

showing that the norm of [ (T)]™! in &, is unbounded with n. In fact, o (f (T))

is the whole plane.

In connection with Example 1, it is worth noting that there are bounded
operators which are spectral operators on each of an increasing sequence

E (e,) X of subspaces for which
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without being spectral operators on X. Such an operator in the case of Example

1 is given by S™' + N, where
en=4p|1<p<ni.
We now give conditions under which f (7) is a spectral operator.

TEEOREM 5.2. Let T be a spectral operator, and let f be analytic on o (T)
with the exception of a finite set 0= (p , Pystes pk) of poles for which
E(0)=0, and let f be either analytic at infinity or have a pole there. Then
f(T) is a spectral operator with resolution of the identity

(5.3) Ef(e)=E(f'(e))

and spectrum

(5.4) a(f(T)) =f(a(T)).
For the proof we shall need the following lemma:

LemMMA 5.1, Let f and T satisfy the conditions of Theorem 5.2. Then
a(f(T))Cf(a(T)).

Proof. Clearly we can suppose that f (¢(7)) is not the entire plane. Let
Xo £ f(o(T)), and define the function g(X) to be [Ag — f (A)]"! where [ is
analytic and zero at the poles of f. Then g is analytic on ¢(7) and at infinity.
To show that g(T) is a bounded operator, we can suppose that o(7) is not
the whole plane, since otherwise g is constant. Now A.E. Taylor [10] has
shown that if T is a closed operator whose spectrum does not cover the plane,
and g is a function analytic on ¢(7) and at infinity, then there is an unbounded
Cauchy domain D such that o (T)C D, D is contained in the domain of g, and

an operational calculus is established by defining
glT]=g()+ _4g(x)(xl- TY'dx,

where K is the positively oriented bounded contour forming the boundary of D.
The operator g[ 7] is bounded, and, in the case T is bounded, g[7]1=g(T),
the operator of (5.1). Now, recalling the equivalence of (5.1) and (5.3) when
T is a bounded spectral operator, we let

1
€en =0(T)n[)\\ [A] < n, dist (A,0) > -—},

n
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and note that
glTl= 3 — / gD (N)E (dN)
i=o ' “én

in £ (e,) X. Thus, in X,

= N .
glT1= lim 3 T/g(’)()\)E(d)»)=g(T).

n—-o ;=g 13

Moreover, g (T)=[Aq/—f (T)1! in E (e,) X. Thus, by Lemma 2.3, Ay £ o (f(T)).

Proof of Theorem 5.2. Let o be a fixed Borel set. Then

o(T,E(f ' (e))X)Cf (o).

We now apply either (5.2) or the preceding lemma in the subspace £ (f~! (o)) %,
depending on whether or not f~! (o) is a bounded set, to conclude that

a(f(T),E(f (eNE)Cf(fT(0))CT.
That o (f (T)) = f (o(T)) follows from (5.2) and Lemma 3.1.

COROLLARY. Any polynomial in a spectral operator is a spectral operator.
A closed operator T is a spectral operator if and only if, for some Ay £o(T),
(Aol = T)! is a bounded spectral operator.

Proof. The first statement is clear, as is the necessity of the second. For

the sufficiency we note that
1
T=f((AI=T)1), wheref(/\)=)\0—-;.

If we restrict N to be a generalized nilpotent we obtain a broad operational
calculus of spectral operators. All we need require of an analytic function f is
that its singularities in the finite plane (with the exception of a finite set of

poles as before ) shall not be arbitrarily close to o(T).

THEOREM 5.3. Let T be a spectral operator and T =S + N, where N is a
generalized nilpotent. Let f be a function for which there exists a constant

r > 0 such that f is analytic (with the possible exception of a finite set
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0=C(p,,+++,p;,) of poles for which E(0) = 0) in the open set
,uf={}\ | dist (A, a(T)) < ri.

Then f(T) is a spectral operator whose resolution of the identity and spectrum
are given by (5.3) and (5.4). The class of such functions is closed under sums
and products. If { if bounded on s then f(T) is bounded.

The proof proceeds exactly as before once we have:
LEMMA 5.2. If f satisfies the conditions of Theorem 5.3, then
a(f(T))Cf(a(T)).

Proof. Let { and r be given and Ay € f (6(T)). Again we define g(A) to be
(Xo—=f(X))! where f is analytic and zero at the poles of f. Then as Ay £ f(a(T))
there is a constant s > 0 such that g is analytic and bounded in

yg:{)\ldist (A, 0(T)) < 2s .

The formula

! ()
M)yl | 8 H
g™ (M) 2mi '/f; (p—=A)*t s reolm,

where C is a circle of radius s, shows that if | g(A)| < K on Mg then

(n) A
i f N < ke, AEa(T).
n!
Since
lim lN"]l/n 0
n—so0
the series

%) Nn
g(T) =3 —,f g E (V)
neo 11 Jo(T)
converges in the uniform operator topology. Moreover, if

1
e,,:o(T)n[M |A] < n, dist (A,0) > -],

n
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g(T) is the resolvent of { (T) on E (e,)X. Application of Lemma 2.3 shows
that Ao & o(f(T)).
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