SOME STRUCTURE THEOREMS FOR A CLASS
OF BANACH ALGEBRAS

ALFRED B. WILLCOX

0. Introduction. The purpose of this paper is the presentation of
a structure theory for a class of Banach algebras which we define be-
low and call GS-algebras. This class includes the commutative regular
B-algebras of Silov [9] and many of our results generalize theorems and
techniques of that author. In addition, several interesting types of
non-commutative B-algebras (listed in § 1) which have been studied pre-
viously only individually and from rather widely deffering points of
view are included in the class of GS-algebras. In §1 we introduce
some basic definitions and prove several fundamental theorems. §2
contains some theorems on the structure of closed two-sided ideals in
certain GS-algebras, and in § 3 we present a decomposition theory for
such_algebras.

1. Preliminary definitions and results. It is assumed that the reader
is familiar to a certain extent with the theory of rings and ideals and
the basic theory of B-algebras. The theory of regular commutative B-
algebras can be found in [5], [6], or [9]. In this paper idea! will mean
two-sided ideal. Consider a B-algebra R with structure space S(R).
S(R) is the collection of maximal regular ideals of R with the standard
Stone-Jacobson topology which is defined as follows: the closure F° of
a set FCSR) is {MeSR)\M>NM’', M’eF}. The terminology is
rendered somewhat more manageable by defining the kernel k(F) of a
set F' in S(R) to be the intersection of all maximal regular ideals in F'
and the Aull A(I) of an ideal I in R to be the set of all elements of
S(R) which contain I. Then the hulls are the closed sets in S(&). If
F=n() we say that I belongs to F. S(R) is, in general, a T';-space and
it is compact if R contains an identity. We say that R is strongly-
semi-simple (s.s.s.) if the intersection of all maximal regular ideals is
Z€ro.

If R has an identity then the theory we present below can be car-
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ried through under the single basic condition

(A) S(R) is Hausdorft.
However, in case R has no identity further conditions are necessary,
and, while individual theorems can be proved under various weaker
conditions, one needs for any substantial part of the theory properties
at least as strong as condition

(B) every point in S(R) is contained in an open set whose closure
has regular kernel. (An ideal I is regular if R/I has an identity.)

A B-algebra which satisfies Conditions (A) and (B) will be called a
GS-algebra.

The following is a device which will be useful in subsequent proofs.
Let S’(R) be the space formed by adding to S(R) a point « and defin-
ing a neighborhood of o to be o together with the complement in S(R)
of a hull whose kernel is regular.

THEOREM. S'(R) is a compact T.-space homeomorphic to the struc-
ture space of the algebra R’ formed by adjoining a unit to R. If R s
a GS-algebra then S’'(R) is Hausdorff, and conversely. In this case S'(R)
18 the ordinary one-point compactification of S(R).

Proof. The proof of the first statement is contained in [8, Th. 2.8]
and we will omit it here. It is evident that Conditions (A) and (B)
are equivalent to the Hausdorff conditions in S’(R). The last statement
follows from the fact that the intersection of two neighborhoods of oo
is a neighborhood of < which is equivalent to the assertion that if F)
and F, are hulls with regular kernels then k(F,\JF:) is regular. This,
in turn, is equivalent to the assertion that the intersection of two re-
gular ideals, I, and L, is regular, which follows from the observation
that if e, is a unit modulo I, then e¢;+e,—ee; is a unit modulo I,NLI.
Knowing this one verifies immediately that in a GS-algebra the kernel
of a compact set in S(R) is regular from which the last statement of
the theorem follows.

While we will avoid in statements of theorems the somewhat
artificial device of adjoining a unit to R, it will help us to recall the
above facts in later proofs.

For xe R and Me S(R) we denote by x(M) the image of 2 in the
difference algebra R/M and by |a(M)| the norm of this element of R/M.
We shall make extensive use of the functions z(M) for fixed xe R de-
fined on the space S(R) and having values in the algebras R/M, and of
the real valued functions |z(M)] .
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DerFINITION 1.1. The GS-algebra R satisfies condition (P) if for any
compact subset K of S(R) covered by open sets Vi, ---, V, there exist
elements %,, -+, y, of R such that (1)>y,(M)=1, Me K, and (2) y,(M)
=0 outside V.

LemmA 1.1.1. (a) Any proper regular ideal in R is contained in o
maximal regular ideal, that is, h(I)7%e.

() If I is a closed ideal in R then M—>M|I is a homeomorphism of
h(I) onto S(R(I). (See [2] or [8].)

THEOREM 1.1. If I, ---, I, are ideals in R with at least one I,
regulor and N, ([;)=¢ then I,+ - +1,=R.

Proof. h(Ii+---+I1,)=N; k(I;)=¢ and I, + --- + 1, is a regular
ideal. Lemma 1.1.1(b) completes the proof.

COROLLARY 1. 1. 1. Let I be an ideal in R, F'=h(I), and F, be a
hull with regular kernel and disjoint from F. Then there exists an
element x el such that x(M)=1 for all MeF,.

Proof. I+k(F,)=R by Theorem 1.1 so there exist z,, «, in I and
k(F,) respectively such that x,+, is a unit modulo each Me F,. The
conclusion follows immediately.

By the above remarks, if R is a GS-algebra then the set F, in
Corollary 1.1.1 can be any compact hull disjoint from F.

COROLLARY 1.1.2. If R is a GS-algebra then R satisfies condition (P).

Proof. Let K be compact and covered by V..., V,. Since
S’(R) is normal we can obtain a refinement U,, ---, U, of V,, ---, V,
covering K and such that U;CV;,. By Condition (B) we can assume
that U; is compact. Let C; be the complement of U,, then C, is a hull.
If I,=k(C,) then N, W(I,)=N, C.;=< (U, U)T «7(K). Thus h(l,+---
+I,)N\K=¢ so there exist «; € I, such that (z;,+---+2,)(M)=1 on K.
But z,(M)=0 for Me k(I,), that is, for M outside U,. But U,CV,.

DerFINITION 1.2. An ideal I is primary if it is contained in a
unique maximal regular ideal. A B-algebra is primary if S(R) consists
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of a single point. (By Lemma 1.1.1 [ is primary if and only if R/I is a
primary algebra.)

We proceed to show the existence of certain special primary ideals
in GS-algebras.

DEFINITION 1.8. Let F' be a hull in S(R). We define J(F) to be
the set of all xe R such that x(M)=0 in some open set containing F.
J() is the set of all « such that a(M)=0 outside a compact set.

SE)=J(F)N\J ().

THEOREM 1.2. Let R be a s.s.s. GS-algebra and F be a hull in
S(R). Then

(@) MJ(o))=¢,
(b) A(IF)=h(J(F)=F, and
(¢) if h()=F then IDX(F).

Thus the closure J(F) of J(F) is the smallest closed ideal belonging
to F.

Proof. (a) is a simple consequence of Corollary 1.1.1. To esta-
blish (b) it is sufficient to show that FOA(J(F')) since the opposite in-
clusion and the first equality of (b) are both obvious. If M,>J(¥) then
let G be an open set containing F, and pick zek(G). Then 2z is in
J(F) by definition so « is in M,, Thus M, is in the closure of an
arbitrary open set containing F. S(R), being a subspace of the topologi-
cally regular space S’(R), is topologically regular, so it follows that M,
is in F. Thus FOJ(F)). We verify (¢) as follows. Let A(I)=F and
let y be in J(#). Then there exist an open set U containing /' and a
compact hull K such that y(M)=0, McU\y ¥ (K). Let F\=< (U)N
K, a compact hull disjoint from F. By Corollary 1.1.1. there exists
x €I such that (M)=1 for Me F, and it follows that y(M)=x(M)y(M)
on S(R). By semi-simplicity, then, y=ay so y is in I. Thus J(F)I.

If F is the hull in S(R) consisting of the single point M we denote
J(F) by J(M). Thus in a s.s.s. GS-algebra every maximal regular
ideal M contains a minimal closed primary ideal J°(M).

We conclude this section with some examples of GS-algebras.

1. As we have observed above, any commutative regular B-algebra
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is a GS-algebra. Examples of these can be found in [5], [6], or [9]. An
important example is the group algebra (L'-algebra) of a locally compact
abelian group.

2. Any c.c.-algebra (right and left multiplications are completely
continuous operators) has discrete structure space [3]. It follows im-
mediately that the algebra is a GS-algebra. An example is the group
algebra of a compact group.

3. The group algebra of the direct product of a locally compact
abelian group and a compact group is also a GS-algebra. It is our in-
tention to include a proof of this fact in a future note.

4. Certain C*-algebras studied by Kaplansky (see [3] and [4]) are
GS-algebras. In particular, any C*-algebra with identity for which the
functions | x(M)| are continuous satisfies Condition (A) and is therefore
a GS-algebra. Also, any weakly central C*-algebra (see Definition 1.4
below) is a GS-algebra as we note in Theorem 1.3. Examples of such
algebras can be found in [3].

5. Misonou [7] shows that any W*-algebra is weakly central (hence
a GS-algebra) and Wright has proved [10] that the same is true for
any AW *-algebra.

6. The B-algebra D, of all n by n» matrices with entries which
are continuously differentiable complex functions on [0, 1] is a GS-
algebra. The norm is || = sup|a(t)|+ sup|'(¢)| where |z(t)]|=
S, ()] and [2/(8) =35, 5 |«i; ()| . A maximal regular ideal M, is the
set of all e D;, such that «; ,(t,)=0, all ¢, j and some ¢, in the inter-
val. S(D;,) is homeomorphic with the interval under the mapping t—M, .
This is an algebra in which primary ideals arise quite naturally. The
ideal J°(¢,) consists of all = such that z; ,(¢)=x; ,(¢£,)=0.

DEFINITION 1.4. The B-algebra R with center Z is weakly central
if maximal regular ideals of R intersect Z in distinct proper ideals of
Z, that is, if (1) MNZ5~Z for all Me S(R) and (2) M,><M, implies that
M N\Z#EM,NZ.

The following is a generalization to our setting of a theorem due
to Kaplansky [3, Th. 9.1]. We omit the proof since Kaplansky’s proof
suffices with comparatively few changes.
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THEOREM 1.3. Let R be a B-algebra with regular center Z. Then
the mapping M—MNZ is a continuous mapping of S(R) onto T, a
closed subset of S(Z). If R is s.s.s. then T=S8(Z). If R is also weakly
central then S(R) is homeomorphic to S(Z) and R is a GS-algebra.

2. Ideal Structure. Frequently much can be learned about the
structure of an algebra if information about the structure of its ideals
is available. The type of information which is most commonly sought
is that which says that an ideal is the intersection or direct sum of
more special ideals (for example, primary or maximal regular ideals).
Concentrating on intersection as the method of decomposition we prove in
this section some results of this nature. The following questions
naturally arise:

(a) Is every ideal (not necessarily regular) contained in a maximal
regular ideal ?

(b) When can a closed ideal be written as an intersection of maxi-
mal regular ideals or an intersection of closed primary ideals?

(¢) When is a closed primary ideal necessarily maximal regular?

Some of the theorems in this section are generalizations of theorems
due to Silov which can be found for the commutative case in [5].
Theorems 2.7 and 2.8 were suggested to the author by Kaplansky’s use
in [4] of partitions.

If R is a GS-algebra, Theorem 1.2 applied to the case where F is
the vacuous set shows that the answer to (a) is in the affirmative if
J(0)=R. In this case we shall call B Tauberian. The statements of
many subsequent theorems are somewhat simplified in a Tauberian GS-
algebra. The algebras in examples (1), (2), and (3) in § 1 are Tauberian.

DEFINITION 2.1. The B-algebra R is called an N-algebra if every
closed ideal with non-vacuous hull is an intersection of maximal regular
ideals. R is called an N*-algebra if every closed primary ideal is
maximal.

It is clear that an N-algebra is an N*-algebra. The converse is
not true in general, but it is the purpose of some of the theorems below
to exhibit circumstances under which it is. From the definition and
Theorem 1.2 we have the following criteria. For ze R define 2(x) to
be {M|xe M}.

THEOREM 2.1. The s.s.s. GS-algebra R is an N-algebra (N*-algebra)
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if and only if for every x€ R (and every M,e h(x)) there exists a se-
quence {x,} in R such that x,(M)=xz(M) on a neighborhood G, of h(x)
(of M,) and outside a compact set K,, and such that |, |—0.

Proof. Simply note that by Theorem 1.2 an ideal [ in R is the
kernel of its hull if and only if for every x € I there exists a sequence
{z,} in R such that z,(M)=a(M) on a neighborhood G, of A(I) and
outside a compact set K,, and such that |z, |—0.

DEFINITION 2.2. Let f be a function defined on S(R) such that
f(M) is an element of R/M for each Me S(R). f belongs locally to the
ideal I (which may be all of R) at the point M,e S(R) (at o) if there
exists a neighborhood U of M, (of o) and an ael such that f(M)=

(M) on U. f belongs locally to I if it belongs locally to I at every
point of S(R) and at .

THEOREM 2.2. Let R be a s.s.s. GS-algebra with xe R. If x(M)
belongs locally to the ideal I at every point in A(I) and at < then = is
wn 1.

Proof. We note first that since S(R) is topologically regular z be-
longs locally to I at any point in S(R)—A(I). Let M, be such a point.
Then there exists a neighborhood U of M, whose closure is compact and
does not intersect A(I). By Corollary 1.1.1 we can find wel such
that u(M)=1 on U. wzw is in I and x(M)=(xu)(M) on U. Thus, under
the assumptions of the theorem, z belongs locally to I.

There exists y.. €I such that y.(M)=x(M) outside a compact hull
K. By compactness and assumption, K can be covered by n open sets
V-, V,and y, +--, y,€1I can be chosen so that y,(M)=x(M) on
V,. By Corollary 1.1.2 there exist =z, ---, x, such that >a,(M)=1
on K and z;(M)=0 outside V;. Now zy,(M)=x,(M)x(M) on \J; V,.
Thus Sey,(M)=z(M) on \J, V;,. Let y=>,,. Another application of
Corollary 1.1.1 yields an element 2 of R such that A(M)=1 on F,
MM)=0 on & (\JV,;). Let z=h(y—¥y.)+¥y.. z is in I since both y and
Y. are, and it can easily be seen that z(M)=x(M) for all M e S(R).
This implies, by semi-simplicity, that z=z¢e I.

COROLLARY 2.2.1. In a s.s.s. GS-algebra any ideal with nonvacuous
hull is an intersection of primary ideals.
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This corollary follows immediately from the theorem and its proof
is left to the reader. The primary ideals are the ideals I+(M) for
Me h(I). By Theorem 1.2, I+J(M) is the smallest primary ideal con-
taining I and contained in M.

The following theorem is a small step in the direction of express-
ing a closed ideal as an intersection of closed primary ideals.

THEOREM 2.3. Let I be a closed ideal in the s.s.s. GS-algebra R.
If n(I) can be written as the union of two disjoint hulls F,, F, at least
one of which is compact then I is the intersection of closed ideals I,, I,
with h(l,)=F;.

Proof. Let I,=[(F}), I] be the closed ideals generated by the
ideals in the brackets. Clearly all that needs to be verified is that I,/
ILCI.

Let  be in ;L. Then z=lim (y*+2P) and also z=lim (¥ +27)
where %3” is in 7 and 2 is in (#;). Suppose that F, is compact.
Since S’(R) is normal there exist open sets G, and G, such that G;DF;
and GiN\Gi=¢. We may assume that G is compact. Thus by Corollary
1.1.1 there exists 2 e R such that 2A(M)=1 on G, and A(M)=0 on G..
Then z=azh+ (x—zh)=lm[yPh +2Ph+ (YL —yPh)+ (2P —2h)]. The first
and third terms are in I since the y” are in I and it can easily be seen
that the remaining terms vanish at « and in a neighborhood of F'\JF:,
=h(I). By Theorem 2.2, then, « is a limit of elements of I and hence
is in I itself.

COROLLARY 2.3.1. Let R be a s.s.s. GS-algebra and I be a closed
ideal in R. If M, is an isolated point of h(I) then x € [J(M,), I] implies
that « belongs locally to I at M,. If h(I) is compact then x also belongs
locally to I at oo.

COROLLARY 2.3.2. Under the above hypotheses, if h(I) is discrete
then xel*=N[J(M), I], Me h(l), implies that x belongs locally to I at
all points of S(R). If WI) is compact then [*=1, that is, I is an in-
tersection of closed primary ideals.

THEOREM 2.4. Let R be a s.s.s. GS-algebra and I be a closed ideal
in R. Let h*(I) be the kth derived set of h(I). Then if @y, =+, Xy
(m=k+1) are all in I*=N[JM), I], Meh(I), their product belongs
locally to I at every isolated point of the set A(I). If h®(I) is compact
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then the product also belongs locally to I at oo,

Proof. If k=0 this reduces to Corollary 2.3.1. We perform an
induction on k. Suppose the statement is true for all integers up to
and including k. Let M, be an isolated point of the set A%*“([) and lct
U(M,) be a neighborhood of M, with compact closure not intersecting
h®+ 1 (I)— M,. Suppose z,, *++, x, are all in I* with m>k+2. We can
find another neighborhood V, of M, such that V. CViCU. Let heR
be chosen so that 2(M)=1 for M e Vi and A(M)=0 outside U. By as-
sumption @, is in [J(M,), 1] so x,=lim(y,+=7,), ¥.€1, 2z,€ J(M,). Thus
z.z, - xh=lim(y, 2, - @, + 2,25+ - -x,,h). The first term is obviously in
I and it is easy to sece that the second term belongs locally to I on
S(R) and at o. Hence zx,---z,k is in I and, since A(M)=1 on a
neighborhood of M,, z.-- -2, belongs locally to I at M,. The induction
at oo is similar to the above, the important point being that if 2®(l)
is compact then oo is an isolated point of A®(I)\J{}.

COROLLARY 2.4.1. Let R be a s.s.s. GS-algebra and I be a closed
ideal i R such that h™([) is woid and A% V() s compact (that is,
AED(D)\J {0} 1s discrete). Then, vf (I¥)* is the ideal generated by pro-
ducts of k elements of I*, (I*)'CI.

Next we turn our attention to the question of when a given N*-
algebra is an N-algebra. First we indicate briefly how Ditkin’s theorem
and Condition (D) [9] for commutative B-algebras generalize to our
case.

DEFINITION 2.3. The s.s.s. GS-algebra R satisfies Condition (D) if
for any M, S(R) (M, may be «) and zeJ(M,) we have ze[l(z)_
J(My)]° where I(x) is the principal two-sided ideal generated by =.

THEOREM 2.5. Any s.s.s. N-algebra satisfies Condition (D).

Proof. 1If « is in I(M,) then by Theorem 2.1 we can find {y,}
such that y,—2 and y, is in J(A(x)). But I(x) belongs to the hull A(z)
80 J(h(x))yCI(x). Thus y,€I(x). An almost identical argument takes
care of the case M,=co.

For 2e R and I a closed ideal we denote by P(x, I) the subset of
S(R) consisting of all M at which x doesz not belong locally to I.
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THEOREM 2.6. Let R be a s.s.s. GS-algebra satisfying Condition
(D). Let « be in R and I be a closed ideal in K. Then any element M,
in P(xz, I) for which ' (M,) contains & is a point of accumulation of
P(x, I).

Proof. Suppose that x is in X°(M,) and M, is isolated in P(z, I).
Choose U and V open in S(R) such that M,e VCV‘CU, U° compact
and U‘NP(x, I)=(M,). Let y<R be such that y(M)=0 outside U and
y(M)=1 on V, and let z, be chosen in I(x)"\J(M,) according to Condi-
tion (D) so that z,—x. Let y,==z,y, then it can easily be seen that y,
belongs locally to I on S(R) and at . Hence 2y is in I so x belongs
locally to I at M,. This is a contradiction.

COROLLARY 2.6.1 (Generalized Ditkin’s Theorem). Let E be a s.
s.s. N*-algebra satisfying Condition (D), and let I be a closed ideal in
R. If the boundary of h(I) contains no perfect set them I=Fk(h(l)).

Proof. Pick ye k(h(I)), then xe J(o) since R is N*. Thus, by
Condition (D), z=lim z,, x,¢e [L(2)N\J(=)]I(M), all Meh(). Thus
P(z,, I) is perfect by Theorem 2. 6. P(x,, I)C boundary of Ai(I) by
Corollary 1.1.1 and the fact that x, belongs locally to I trivially at any
point in the interior of A(I). Thus P(x,, I)=¢ and @, belongs locally to
I on S(R) and at oo (since x,€ J()). Thus z, is in I and hence « is
in I, also.

We conclude this section with examples of the type of theorem
one can prove using partitions in cases where property (P) holds in a
strengthened sense. These theorems were suggested to the author by
Kaplansky’s use in [4] of partitions. However, to apply his results we
would have to assume continuity of the functions | a(M)|. Kaplansky
is primarily interested in studying C*-algebras relative to the structure
space of primitive ideals in which case this continuity is equivalent to
the structure space being Hausdorff. However, there is no assurance
that this is true in general, so we restrict ourselves to the hypothesis
that the above mentioned functions are continuous at zero. We will
see in § 3 that this much continuity arises in a natural way.

DEFINITION 2.4. Let R be a GS-algebra.

(1) For ze R and Me S(R) we define | x|y to be the norm of the
image of x in the B-algebra R/}(M), that is, |z|y=g.Lb.{|y| | w(M")
=x(M’), M’ in some neighborhood of M}. We define |z to be
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sup | @ |, MeS(R). Clearly [[z|<|=].
(2) If the norm || - || is equivalent to the original norm | -| then
we say that R is of type C.

DEFINITION 2.5. The B-algebra R is closed under multiplication by
C(S(R)) if for xe R and f a bounded continuous real function on S(R)
-there exists an element ye R such that y(M)=f(M)x(M) on S(R). We
denote this y by (fz).

The prototype, in a sense, of algebras of type C is the algebra D,
in Example 6 of §1. Here [o|<|z|<2||z|. Also, any weakly
central C*-algebra is of type C and closed under multiplication by
C(S(R)). Commutative regular B-algebras of type C have been studied

by Silov in [9] and later papers.

THEOREM 2.7. If R is an N*-algebra of type C which is closed
under multiplication by C(S(R)) then any ideal with compact hull is the
kernel of its hull. (In particular, of R has an identity then it is an N-
algebra.)

Proof. Let z be in R and F be a compact hull with z € k(¥). Then,
by Theorem 2.1, for any M’ e F and integer n >0 there exists x, , € R
such that ||z, » [<1/n and @, , (M)=x(M) for all M in a neighborhood
G, of M’ and all M outside a compact set K,. Since F' is compact
there exist m such open sets G,(M,;)=G;, i=1, ---, m covering F. Let
K be the compact set which accompanies G, as above. Let {V;} cover
F with V,CV:CG,;, Vi compact. If we let G,..=F[UV¢ then G,
eoe, Gpy Gyt cover S(R) and G,,.. is a neighborhood of . By a well
known lemma [1, p. 66] there exist m +1 continuous real functions f;
on S(R) such that 0<_f;<1, > f;=1 on S(R), and f;=0 outside G,. Let
X = 201 (%0, a) + (S 1@, M1)~ Clearly @, (M)=[>\", fiy(M)]x(M)=x(M) on
\UV;, a neighborhood of F, and also «,(M)=f,,..(M)x(M)=x(M) outside
K\J ¢ [\Ur.G{], a compact set. It is also clear that ||a,|=sup |, |«
= sup |z,(M)| since R is N*. Finally, |, (M) Fi(M) | @ u, |
+ fasr | @, | <1n so ||@, || <1/n and, since R is of type C, |=,[—0.
Thus the proof of Theorem 2.1 applies to any ideal with compact hull.

COROLLARY 2.7.1. If the weakly central algebra R satisfies Con-
dition (2) of Definition 2.4 and has center isomorphic to Cy(I’), the
algebra of all complex continuous functions vanishing at o on the local-
ly compact Hausdorff space I', then if R is an N*-algebra the conclusion
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of Theorem 2.7 holds.

Proof. Since Cy(I") is a commutative regular B-algebra with strue-
ture space /', Theorem 1.3 tells us that R is a GS-algebra and [I'=
S(R). Thus the hypotheses of Theorem 2.7 are satisfied.

The condition that R is an N*-algebra which appears above can be
dropped with an appropriate strengthening of the other conditions.

THEOREM 2.8. Let the GS-algebra R satisfy
@) | -| ¢s equivalent to the morm sup| -(M)|, Me S(R),
(2) the function |x(M)|| on S(R) for fixed arbitrary xe€ R is con-
tinuous at zero, that is, at any point Me h(x), and at «, and
(8) R s closed under multiplication by C(S(R)).
Then R is Tauberian and the conclusion of Theorem 2.7 holds.

This follows readily from Theorem 2.7 when we observe (following
Theorem 3.4) that the above conditions imply that R is a Tauberian
N*-algebra. Condition (1) implies type C.

3. Structure Theorems. In this section we discuss the construction
out of primary B-algebras of more general B-algebras.

DEFINITION 8.1. Let /" be a locally compact Hausdorff space and
for each e " let there correspond a primary B-algebra P, with norm
| - |. and unique maximal regular ideal M,. The complete direct sum
Swer Po is the totality of functions « defined on /" which satisfy:

(1) z(ax)e P, for all «e " and

(2) | @ ll=§gp [ () <o

A standard elementary proof shows that 3P, is a B-algebra. A
closed subalgebra (denoted by 3'P,) of P, is a sub-direct-sum of the
P.s if for each fixed a the set {x(a)xe S'P,} is all of P,.

We list in one definition some additional properties of sub-direct-
sums which will be useful below.

DEFINITION 3.2. VP, (or, for brevity, S) satisfies Condition
(a) if [@(a)(M,)|. is a continuous function of « on I for each fixed
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xed/,

(b) if z(a)e M,, all a, implies that x=0,

(e) if 3y distinguishes between points of /" in the (weak) sense
that a=4pP implies that there exists an xe 3/ such that x(a)(M,)=0 and
() (M,)70,

(d) if > is closed under multiplication by C(I"), that is, fz is in
Sv if f is a real bounded continuous function on /" and « is in 3,

(e) if | a(«)], is a continuous function of a at any point a, such
that z(a,)=0 and at o (for any ze >, we define 2(=) to be zero).

DEFINITION 3.3. The GS-algebra R is of type C, if R is of type
C and the real functions | «(M)| are continuous on S(R).

We denote a general element of S(R) by a« and the corresponding
maximal regular ideal by M*. The ideal J(M*) will be denoted by J(«).

THEOREM 3.1. Let R be a GS-algebra of type C. Then R=3 P
where I'=S(R) and P,=R|J(a) (that is, R 1is isomorphic and homeo-
morphic to a sub-direct sum of the primary B-algebras R[J(«), a € S(R))
and the sum satisfies Conditions (b), (c¢), and Condition (e) at finite
points. If R is of type C, then the sum satisfies Condition (a). If R
is Tauberian then Condition (e) is satisfied at oo.

We omit the proof of this theorem since it is entirely straightfor-
ward. It is of interest to note that Condition (e) does not depend upon
the GS-condition, but only upon the definition of {(a). Also, using the
full power of Corollary 1.1.1 we can get a stronger type of separa-
tion than that of Condition (¢). If as%S then one can show that there
is an x € R such that a(a)=0 and «(8)=1. However, we shall need
only the weaker type of separation.

We turn next to the converse question.

LEMMA 3.2.1, Let 3 denote >...rP, as above. Define M* in 3
to be {wxe >/ |w(a)e M,=S(P,)}. Then M® is in S(3).

This lemma follows immediately from Lemma 1.1.1. In the fol-
lowing we shall always assume that I” is a l.c. Hausdorff space, P, is
a primary B-algebra with maximal regular ideal M,, and 3} is a sub-
direct sum of the P,. Unfortunately, we see no way of proving that
>V is a GS-algebra. Indeed, if no other restrictions are placed on the
sum there are examples (commutative) where S(3)) is not Hausdorff.
We can ask, however, whether there is any close tie between I’ and
S(>Y) and in certain cases get a partial answer.
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THEOREM 3.2. If 3V satisfies Conditions (a) and (c) them a—M®
18 a one-to-one continuous map of I' into S(3V). If S satisfies Condi-
tion (b) also then the image of I is demse. If 3 is a GS-algebra and
satisfies Conditions (a), (b), and (c) then I" is homeomorphic to S()).

Proof. Condition (¢) obviously implies that the mapping is one-to-
one. Let I’y be the image of /" in S(3V). If F, is in I' and F,—F,
=FNI; where F is a hull in S(3)) let «, be in I'—F,. Then M* is
not in F so it is not in F. Thus there exists v € >/ such that (M%)
=0, M®e F, and x(M*)=~0. This is equivalent to saying that z(a)(M,)
=0 for a e F and a(a,)(M,)7#40. Hence, by Condition (a), «, is not in
F% and so F'; is closed. Similarly one shows that if the kernel of F'is
regular then F'. is compact, that is, F', is closed in the one-point com-
pactification /¥ of I'. We conclude that a—M¢% oo—c is a one-to-
one continuous map of /7 into S’/(3}). Condition (b) insures that /', is
dense in S(Z)) and the rest of the theorem follows from the fact that
a one-to-one continuous map of a compact space onto a Hausdorff space
is a homeomorphism.

THEOREM 3.3. Let > satisfy Conditions (b) and (d). Then 3 is
of type C. If 3/ 4s a GS-algebra and S(>))=1" then Condition (d) can
be dropped.

Proof. Let K, be the kernel of the natural homomorphism of 3/ onto
P,. The map a—M*" is continuous as we have seen. Let ze J(a) then
x(M)=0 for M in a neighborhood of M*. This implies that «(3)(M,)=
0 for # in a neighborhood N of a. Let fe C(I") be such that 0<s(B3)
<1 for all 8, fla)=1 and f(f)=0 for B outside N. Then if ye S is
such that y(B)=r(B)x(B), fe ', it is clear that y(B)(M)=0 for all 3.
Thus, by (b), y=0 so that z(a¢)=0. Hence J(a)CK, and, since K, is
closed, J(a)ZK,. Now let y—z be in J(«a). Then (y—z)(a)=0 so
| z(@) |lo=|y(@)].<|y|. Thus |z(a).=<"|2|s= (the last norm as in Defini-
tion 2.4). Taking the sup over I" we have

I [|=sup | 2(a) l<sup | [w= =]z .

But by definition ||z ||<| 2| so 3 is of type C.

In case > is a GS-algebra }°%(a) has the minimal properties of
Theorem 1.2 so, since K, is primary, we can conclude that {°(a)CK,
without assuming Condition (d).

Finally, we consider the question of whether the above mentioned
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decomposition is in any way unique.

THEOREM 3.4. Let > be a GS-algebra and satisfy Conditions (a),
d), (¢), (), and (e). Then I'=S(3)), SV is Tauberian and of type C,
and, for each a, P, is equivalent as a B-algebra to 3\ [J(a).

Proof. Conditions (d) and (e) at o clearly imply that S/ is Tau-
berian, so there remains only the last conclusion. This will follow
readily if we can prove that the kernel K, of x—x(a) equals J°(«) for
any ae/l’. In this event P, and 3)/J(«) are isomorphic and the
observation (proof of Theorem 3.3) that | z(a),<<|a |y together with
the interior mapping theorem show that the isomorphism is an
equivalence.

Let © be in K,, then z(a)=0. Hence by (e) there exists a neighbor-
hood U, of a and a compact set K, such that | x(B)[s<1/n for fe U,
« (K,)=G,. If we choose feC([) such that 0<_f(-)<<1l, f(B)=1
outside G,, and f(#)=0 on V,\U < (F,), where V,CU,, F,DOK, and F,
is compact, then it is evident that |y, —2[<2/n, and y, is in J(«). Thus
z is in §(a) and (%(«) contains K,. The opposite inclusion was esta-
blished in the proof of Theorem 3.3.

We can now complete the proof of Theorem 2.8. The hypotheses
of that theorem insure that the sub-direct sum decomposition of R into
the simple B-algebras R/M which is then possible satisfy all the condi-
tions of Theorem 3.4. The resulting uniqueness conclusion implies that
for each Me S(R), M=J°(M), that is, R is an N*-algebra.

Finally we observe that the above structure theory has been
developed under in one sense the weakest possible condition on the
norm of R. For if we attempt to weaken the type C assumption by
using even smaller ideals than the J'(M) we lose the fact that the
ideals are primary and thus the important connection with the structure
space.
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