ON MAPPINGS FROM THE FAMILY OF WELL
ORDERED SUBSETS OF A SET

SEYMOUR GINSBURG

A simply ordered set E is called a k-set if there exists a simply
ordered extension of the family of nonempty well ordered subsets of E,
ordered by initial segments, into E. If E is not a k-set then it is called
a k'-set. Kurepa [1;2] first discussed these sets. He showed that if E
is a subset of the reals and if the smallest ordinal number « such that
E does not contain a subset of order type « is w,, then E is a k'-set.
In particular the rationals and the reals, denoted by R and R* respec-
tively, are both %k’-sets. In this paper the existence of k-sets and k'-sets
is discussed further. Theorem 7 states that each simply ordered set E
is a terminal segment of some k-set F(E). It is not true, however, that
each simply ordered set E is similar to an initial section of some k-set
F(E) (Theorem 2). Finally, in Theorem 10 it is shown that each infinite
simply ordered group is a k’-set.

Following the symbolism in [1 ;2] let E be a simply ordered set
and oF the family of all nonempty well ordered subsets of E, partially
ordered as follows: For A and B in ok, A< B if and only if 4 is a
proper initial segment of B.!

Definition. A function f from oFE to E is called a k-function on
E, if A<_B implies that f(4)<f(B).

If there exists a k-function on FE, that is, from oFE to E, then E
is called a k-set. If not, then E is called a k’-set.

THEOREM 1. If f is a k-function on E, then for each nonempty
well ordered subset W of E, there exists an element 2 in W such that
SW)<a.

Proof. Suppose that the theorem is false, that is, suppose that
there exists an element W, in oFE with the property that « < f(W,) for
each x in W,. Let W,=W,\U f(W,). It is easily seen that W, is well
ordered, W, <, W.,, < f(W,) for each element « in W,, and the order
type of W, is —>2. Suppose that for each 0< &< a, W, is an element
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1 A is a (proper) initial segment of B if A is a (proper) subset of B and if, for each
element z in A, {x]x=z, x€ B} is a subset of 4. A is a terminal segment of B if Aisa
subset of B and if, for each element z in 4, {x|z<<x, € B} is a subset of A.
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of wE such that

(1) «<f(W;) for each = in W,
2 W, W, for e<<v<a,
and (3) the order type of W, is >¢.
Two possibilities arise.
@) If a=f+1 let W,=W,\ f(Ws). By (1) and the fact that
W, is well ordered, it follows that W, is well ordered. Clearly W, <,

W,. Thus f(Wg) < f(W,). It is now easy to verify that (1), (2), and
(3) are satisfied for ¢ < a.

(b) Suppose that « is a limit number. Let W,=\U W.. Since
<o

W, W, for £<v, W, is well ordered. It is obvious that (2) and (3)
are satisfied for ¢ <a. Let x be any element of W,. Then x is in
W, for some &< «, thus a<f(W;)<f(W,). Hence (1) is also satisfied.

In this way W, becomes defined for each ordinal number &. Thus
W, is defined, where ¢ is the smallest ordinal number such that E con-
tains no subset of order type 6. This is a contradiction since W; is of
order type =>¢.

We conclude that no such set W, exists, that is, the theorem is true.

Suppose that E is a k’-set and that the ordered sum> E+F is a k-
set for some simply ordered set F. Let f be a k-function on E+F.
Since E is a k'-set, for some well ordered subset W of E, f(W) is not
in E, thus is in F. Then f(W)<a for some z in W is false. By
Theorem 1, therefore, f is not a k-function on E+F. Hence we have

THEOREM 2. If E is a k'-set them so is E+F for every simply
ordered set F.

The simplest example of a k'-set E is any infinite well ordered set.
This is an immediate consequence of the following observation, whose
proof is by a straightforward application of transfinite induction.

‘The initial segments of an infinite well ordered set of order type
« form a set of order type a-+1’.

Another consequence of this observation is the following: For any
infinite k-set E, the smallest ordinal number ¢ having the property that
E contains no subset of order type ¢, is a limit number.

Suppose that E is a k-set and has an initial segment of n-elements,
say @, <@, < +++ <@,-;. Letting A,={x;|i<j), by a simple application
of Theorem 1, it is easily seen that f(4,)==x,., for each k-function f
on E. In other words, there is no element # of A, such that f(4,)<=.
—mdered sum X F,, or --- 4By +---4-Ey,+---, of a family of pairwise disjoint
simply ordered sets is thg set K =\JFE, ordered as follows: If x and ¥ are in the same F,,,

v
then <y or y <z according as x<y or y<z in K,. If = is in E, and y is in Ey and
v<v in V, then z <y.
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This result cannot occur if E has no first element. To be precise we
have:

THEOREM 3. If E is a k-set without o first element, then there exists
a k-function g such that g(W)<x for each element W in oE and for
some element x in W.

Proof. Let f be a k-function on E. Well order the elements of
oE into the sequence {W.}, §<d. Suppose that g is already defined
for each W;, §< 0 (possibly other W; also) such that

1) (W) f(W,) for each W, for which ¢ is defined;

(2) ¢ is not defined for Wy;

(3) if g is defined for W,, then ¢ is also defined for each initial
segment of W,;

(4) if W,<,W,and g is defined for W, and W, then g(W,)< g(W,);

(5) if g is defined for W, then g(W;) < x; for some element x in W,.

Let W= {w,,lv <<a(0)} and W, .= {w,,lv<&} for 0<&<«(f). Let W,,
be the first W, for which ¢ is not defined: If y=1, that is, W, ,= {@s}
let g(W,,) be some element of E which is < min [x,,, f(,)]. Such an
element exists since E has no first element. Suppose that y=p+1,
where #>0. By induction, g(W,z) <lass for some element w,5 in Wy g.
Let g(Wyg.)=min [wyp, f(Weps)]. Since Wy < Wygey, pp is not the
last element in Wy, Thus g(Wy 1) <@g for some element 4., in
Wogewi. Suppose that W, <[, Wyg.i. If g(Wopi)=as then g(W,)<
I(We,e) < @oe=0(Wsp). If 9(Wop.i)=f(Woe.1), then

IW,) < g(Wop) < f(Wep) < f(Wop:)=9(Wyp.1) -

Suppose that y is a limit number. Then W,, has no last element. It
follows from Theorem 1 that there exists an element #,, in W,, so that
S(Wo,) <wpy Let g(W,,)=f(W,,). If W,<, W,,, then

9(Wo) < f(W,) < f(Woy)=9(Ws,) -

By transfinite induction g becomes defined for each W,,, thus for W, so
as to satisfy (1), (3), (4), and (5). Thus g becomes defined for every
We From the manner of construction, that is (4), g is a k-function.
By (5) ¢ has the property that for each element W in oFE, g(W)<x
for some element « in W.

THEOREM 4. If A=RB" and A is a k-set, then sois B. Equivalently.
if A=B and A is o k'-set, then so is B.

3 F being a simply ordered set, E denotes the order type of E. A=B if there exists
a similarity transformation of A into B and a similarity transformation of B into A4.
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Proof. Let g be a similarity transformation of A into B and % a
similarity transformation of B into A. Suppose that f is a k-function
of wA into A. For each well ordered subset E of B, A(E) is a well
ordered subset of A which is similar to E. Let f* be the function of
oB into B which is defined by f*(E)=gfME). Clearly gfh(C)<gfMD)
if C<kD. Thus f* is a k-function, so that B is a k-set.

Turning to the construction of k-sets we have

THEOREM 5. If {E,|lve V} is a family of pairwise disjoint k-sets, and
V is the dual* of a well ordered set, then the ordered sum SE, is a k-set.

Proof. Let f, be a k-function from wFE, to E,. Now let A be a
nonempty well ordered subset of SE,. Denote by w the largest element
v in V such that A N E, is nonempty. Since V is the dual of a well
ordered set, w exists. Let % be the function which is defined by A(A4)
=f, (AN E,). There is no trouble verifying that %z is a k-function from
wIE, to SE,.

COROLLARY. The dual of a well ordered set is a k-set. One parti-
cular k-function is the mapping which takes a well ordered subset into
ats largest element.

Another method of obtaining k-sets is to use the next result.

THEOREM 6. Let {4,lve V} be a family of pairwise disjoint simply
ordered sets where V is the dual of a well ordered set of order type a, «
being a limit number. Furthermore suppose that for each element w in
V, there exists a simply ordered extension [, of A*=ow >\ A, into A,°.
Then A=Y A, is a k-set. .

veV

Proof. Let X be any nonempty well ordered subset of A. Let =,
be the first element in X. «, is in one of the sets A,, say A4,. Since
« is a limit number, » has an immediate predecessor in V, say »~. By

hypothesis there exists a simply ordered extension f,. of wA" =w > A4,
v>r—

into A4,.. Let f(X)=f,-(X). Thus f is a well defined function from
wA into A.

Suppose that Y < Z in »A. The first element in Y, say v, is also
the first element in Z. If y, is in A4,, then f(Y)=r1,_(Y)<f:-(Z2)=f(Z).
Thus f is a k-function and A is a k-set.

Now let E, be any simply ordered set. It is known that each

t (p, <’) is the dual of (p, <) if <’y if and only if >y, for every x and ¥ in p.
5 f is a simply ordered extension of the partially ordered set B into the simply ordered
set A if f maps B into A in such a manner that whenever x<{y in B, f(x)<f(y) in A.
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partially ordered set has a simply ordered extension [3]. Let f, be a
simply ordered extension of wFE, into some set, say F,. Let E, be a

simply ordered set such that E,=F,+E, Continuing by induction we
obtain for each ordinal number v, a simply ordered extension f, of oG,,

where G,=:+++E¢+ -+ +E,+E, (§<v), into a simply ordered set F,.

Let E, be a simply ordered set such that E,=F,+G,. In particular, by
Theorem 6, G, is a k-set. Thus we have

THEOREM 7. FEach simply ordered set E is a terminal segment' of
some k-set F(K).

REMARK. Theorem 2 shows that there exist simply ordered sets E
such that for no k-set F(E) is E similar to an initial segment of F(E).

We now consider products of simply ordered sets, ordered by last
differences.

THEOREM 8. If E and F are k-sets, then so is Ex F'.

Proof. Let f and g be k-functions for E and F' respectively, and
z a definite element of E. Let A be any well ordered subset of Ex F.
Define A, to be the set {v|for some u, (&, v) is in A}. Obviously A, is
a well ordered subset of F. If A, has a last element, say w, let 4,=
{ul(u, w) is in A} and let A(A)=(f(4,), 9(4,)). If A, has no last element,
let 2(A4)=(z, g(4,)). To see that % is a k-function let A< B in oEXxF.
Since A is a proper initial segment of B, either A, is a proper initial
segment of B,, or else A,=B,. If the former holds, then since g(4,)
<9(B,), MA)<_MB). Suppose that the latter holds. Since A<, B,
there exists an element (, ) in B which is not in A. Thus 4 < {(u, v)|
(u,v) <(zx, ), (u, v) in B}. Since A,=B,, it follows that y must be the
last element of B,, thus also of A,. Therefore A, and B, exist. Since
A is a proper initial segment of B, A4, <,B,. As [ is a k-function,
S(4,) < f(B,). Hence

MA)=[1(42), 9(A)]<[f(B.), 9(A)]=NB).

REMARKS. (1) Theorem 8 is no longer true if one of the sets,
either A or B is a k'-set. This is seen by two examples.

(a) Let E be a set of one element and F a set order type «. Then
Ex F is of order type o, thus a k'-set.

(b) Interchange E and F in (a).

(2) The conclusion of Theorem 8 may be true if one of the sets is
a k-set and the other is not. For example

(a) Let E=0* and F=w. Then ExF=F, and as easily seen, E
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is a k-set. It is also easy to show that for each ordinal number « and
each limit number &, A,xB; is a k-set, where A,=« and B,=d*. If
a=>w, then Bs;x A, is a k'-set.

(b) Let A;=R, f, be a simply ordered extension of wA, into B,
and A_,=(4,xB,). In general, let f, be a simply ordered extension of
w(%A-;) into B,, and A_,=(4,xB,). Let an%A'”' By Theorem 6,

F is a k-set. Then A xF=(4,xA_)=SA_,=F. Thus A, xF is a
k-set. It is known [1;2] that 4, is a k'-set.

(8) Theorem 8 is no longer true if we have a product of an infinite
number of k-sets. For example, for each negative integer v let E,= {0,
1}. Then IIE, is the set of all zero-one sequences of order type o™,
ordered by last differences. But /7,E,= 1, where i=R*. R* isa k'-set
[2]. By Theorem 4, [IE, is a k'-set.

Question. Do there exist two k'-sets E and F such that Ex F is a
k-set?

THEOREM 9. If E is a k'-set and F' is a simply ordered set with a
first element, then Ex F is a k'-set.

Proof. Let x, be the first element of F' and G=F—{x,}. Then
ExF=Ex[{x}+G|=Ex {x} +ExG. Since Ex {x,} is a k'-set, by
Theorem 2 so is Ex {x,} + ExG. Hence the result.

Since A=1+21 and y=1+7, where »=R, it follows from Theorem
4 and Theorem 9 that for any k’-set A, AxR and Ax R* are k'-sets. In
particular, Euclidean n-space, ordered by last differences of the coordi-
nates of the points, is a k'-set.

THEOREM 10. Each infinite simply ordered group is a %'-set. If K
is an ordered field, then there is no k-function from the bounded elements
of wE to E.

Proof. First suppose that E is an ordered field. Let 1 be the
multiplicative identity. For 1<z let A(r)=2—1/x where 2=1+1. For
0<x<1 let Mx)=z. For x< 0 let h(x)=—A(—=x). Then A is a simi-
larity transformation of E onto (—2, 2).

Suppose that f is a k-function from the bounded elements of oK
toE Let x,=2,=0, 2,=1, x,=A(1), and A4,= {x;|i <j} for j=1, 2. Let

=f(4) and y,=f(4,). Clearly y,<{y,. Let z=z+(y.—y). Thus z,
—zl=yz—y1. Let @,=A(z). In general suppose that for 1<&<Ta, 2,
e=h(z), Ae={w,Jv <&}, and y,=[f(4,) are defined. Furthermore, sup-
pose that {z;} and {y:} are strictly increasing and that z;—z =y;—y, for
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1 <&, Since E is a group, z; and x; are elements of E. Observe that
—2 <w; <2, that is {«;} is a bounded sequence.

(1) Suppose that a=p+1. Let A,={x:é<a}, ya=S(4u), 2a=2s
+(Ya—Yp), and x,=h(z,). Since Ag < Aur Yp Yo Thus 23z, and x,
<z, Since z,—2s=Y,—Yp and gg—2,=Ys—y;, We get z,—2=Y.— V1.

(2) Suppose that « is a limit number. Let A,={x:|é<a} and y,
=f(4,). Since A< Ag, for €<a, Yy, Let z,=2+(y,—y) and
x,=h(z,). Since A< A, for §<a, y:<y, and thus 2z, and 2<a,.
Note that z,—z,=y,—v,.

In this way, for each ¢ we get an a;. Let 6 be the smallest ordinal
number such that E contains no subset of order type 6. The elements
of the set {w:é< 0} form a strictly increasing sequence of order type
0. From this contradiction we see that no such function f exists.

Now suppose that E is an infinite simply ordered group. Let z,=0
and 2,>0. Let A,={z|i<j} for j=1,2. Let y,=f(A) and y.=F(A,).
Repeat the procedure given above, defining % and z: for each &, with
A,= {z:|6 < v}. We obtain a strictly increasing sequence of elements
{#:}, £€<(6, where ¢ has the same significance as above. Again we
arrive at a contradiction.

REMARK. The second statement in Theorem 10 cannot be extended
to hold for a group. For example, let E be the group consisting of all
the integers, positive, negative, and zero. The bounded, well ordered
subsets of E consist of the finite subsets of E. For this family there
does exist a k-function, namely the function which maps each set into
its maximal element.
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