
THE COEFFICIENT REGIONS OF STARLIKE FUNCTIONS

J. A. HUMMEL

1. The coefficient regions of schlicht functions have been studied
at some length by Schaeffer, Schiffer, and Spencer [2, 3]. Properties
of these coefficient regions are obtained only with difficulty, and in
particular the actual coefficient regions can be computed only with a
great deal of labor [2]. In fact, the computations necessary to deter-
mine the coefficient region of (α2, α3, α4) probably would be prohibitive.

The class of starlike functions is of course much simpler in be-
havior. Since f(z)==z-ha2z

2-J

Γa3z
i-\- is starlike if and only if zf'{z)\f(z)

has a positive real part in | ^ |<^1, one might say that everything is
known about such functions. However, in practice, our rather complete
knowledge about functions with positive real part proves difficult to
apply back to the class of starlike functions. This is easily seen to be
true by noting the number of papers on starlike functions which appear
every year.

In an earlier paper, the writer presented a new variational method
in the class of starlike functions. It is the purpose of this paper to
apply this variational method to find the coefficient regions for starlike
functions.

LetS* be the class of all normalized functions f(z)=z-\-a2z
2-ha3z

3 + ,
schlicht and starlike in the unit circle. Let F * be the (2n — 2) dimen-
sional region composed of all points (α2, α3, •••, an) belonging to the
functions of S*. Since the class of functions p(z) with p(0) = l, regular
and having a positive real part in \z\ <^1, is a compact family, so is S*.
Thus F * is a closed domain (i.e., the closure of a domain).

We will study F * by determining its cross sections with α2, α3, , an-1

held fixed. In § 2, a simple proof of the fact that each such cross
section is convex is given. It is then shown that any point on the
boundary of this cross section must lie on a particular circle, and thus
that the cross section itself is a circle. The actual equations for the
region F * can be determined for each n by means of a simple recur-
sion, but the calculation becomes tedious after the first few n.

2. For fixed az, α3, •• ,αw_ 1, let C* = C*(a.z, •• ,αw_1) be the two
dimensional cross section of F * in which an varies.

LEMMA 1. C* is a closed, convex set.

Received June 24, 1957. The work reported on here was done while the writer held
a National Science Foundation post doctoral Fellowship. The writer wishes to thank Pro-
fessor M. Schiffer for many helpful conversations during the course of this work.

1381



1382 J. A. HUMMEL

Proof. Cn is certainly closed, since it is a cross section of the closed
set F * . To show that it is convex, we introduce a new variation.

If f(z) and g(z) belong to S*, define for any e, 0<Ie <I1,

( 1 ) hs(z)=f(zy-*g(zγ .

Here, appropriate branches of the powers are chosen so that hz(z) is
regular at the origin and has a series expansion z-f there. Taking
the logrithmatic derivative of (1), we have,

lhM=(i _ efl!{
zl + £

 zg'^
Hz) f{z) g\z)

Therefore, if / and g are in S*, so is he(z)f for all e between 0 and 1.
If f(z) and g(z) are any two functions of £* belonging to C*, say,

f(z)=Λ(z) + anz
n+ , g(z)=Mz) + bnz

n± -, where fb(z)=z + a^+ 4-
an-1z

n~1

y then by direct computation from (1),

Y"Yi+ δf

Jo

=/o + [αn - ε(αw - bn)]zn 4- ,

and so, as e goes from 0 to 1, the n-th coefficient of he(z) moves along
the line between an and bn. Therefore this entire line segment is con-
tained in C'n, and the lemma is proved.

3. In an earlier paper [1], the writer showed by use of a vari-
ational method in the class of starlike functions, that any function f(z)

in S* which maximizes S i j S ^ A r must be of the form

( 2 ) /(*)=• — Z , μ*>.0, Σ/<.=2, m<n-l
TT (Λ \v< v = 1

V = 1

and that f(z) must satisfy the differential equation

( 3 )

where

( 4 )
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(Here, and throughout the paper, an asterisk attached to a value in-
dicates the complex conjugate of that value.) The function R(z) has m
zeros on \z\ = l corresponding to the m poles of ff{z)\f{z). The function
Q(z) has m zeros on |z| = l corresponding to the tips of the m slits (where
f'(z) = 0). The functions R{z) and Q(z) have 2n — m—2 additional zeros
in common.

In order to study the coefficient regions, we will determine the
nature of C* (α2, •••, an-λ). Since C* is convex, as shown above, the
boundary points of C* can be determined by finding a function which
maximizes $l{λnan} for fixed aly α3, •••, an-1 and for each λn=eω. If f(z)

maximizes ϋl{λnan}, then it also maximizes 3tj Σ ΛV<M where Λ2> Λ3, , 4-i

are a set of Lagrange multipliers which are determined by the fact
that a.zy •••, αw_! must take on the prescribed values.

The desired results are obtained by use of 2n—m — 2 zeros which
R(z) and Q(z) in (4) have in common. To this end, we obtain the GCD
of R(z) and Q(z). The Euclidean algorithm is used in a simple form.
That is, having two polynomials of the same degree.

7? 1 (2)=α 0 + α12;H Λ-anz
n ,

two new polynomials of lesser degree are obtained by the process

f Qi(z) = —[βoPi(z)-
z( 5 ) z

q,(z)=βnp1(z)-anp.z(z) .

This scheme is started by taking Q{z)—R(z) and multiplying through
by an appropriate power of z (the functions Q(z) and R(z) have no zeros
at 2=0 or 2=oo). From (4) this gives a polynomial

where

( 6 )

In a similar fashion, taking Q(z)+R(z) we obtain
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The coefficients of Qx(z) are exactly the conjugates of the coefficients of
Rι{z) in reverse order. This is easily seen from (4), except that it must

n

be noted that for the extremal f(z), the center term Σ O — l)Λvαv is a
V = 2

purely real number, (see [3])
The polynomials Rλ{z) and Qτ(z) have in common the same 2n — m — 2

zeros that R{z) and Q(z) have in common, and each has in addition m — l
other zeros. The latter zeros are distinct in Rx{z) and QL(z) since any
common zero of R{(z) and QΛ (z) must be a common zero of R(z) and
Q(z).

This process may then be continued, combining RΊ(z) and Qτ(z) as
in the scheme (5) to produce two new polynomials R.,(z) and Q2{z), each
one lower in degree. It is easily seen from (5) that the relationship
between the coefficients of Rλ(z) and Qτ(z) will be preserved in the
reduced polynomial. Thus, as this scheme is continued, pairs of poly-
nomials Rk(z) and Qk(z) of degree 2n — k — 2 will be produced. The coef-
ficients of Qk(z) will be the conjugates of the coefficients of Rk(z), in
reverse order. Rk(z) and Qk(z) will have in common the 2n — m—2 zeros
that R(z) and Q(z) have in common, and m — k others, not in common.
The process will terminate with Rm(z) and Qv{z), for these two will then
be identical up to a constant factor.

Because of the relationship between the coefficients, we need to
determine only Rk(z) for each k. The corresponding Qk(z) can be com-
puted as needed.

LEMMA 2. For I <^k <ίm, the polynomial Rk(z) is of the form

with

Here, each Ajtk and each Bhk is a polynomial in the αv and their
conjugates {independent of the λj, and the A Uk and BUJc satisfy the
recursion relations

Proof. We first remark that the coefficients of Rk(z) belonging to
powers of z between zn'k~ι and zn~ι are of no interest to us here. From
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(6) we see that the form of the coefficients is as asserted in the lemma
for k=l. Suppose now that the form is correct for k=v. Then using
the scheme (5) (removing a common factor of λn) we can compute

Thus, α / x v + 1 has the form asserted in the lemma, with the AJ>v+ι deter-
mined by the recursion formula (7). The other recursion formula and
the remainder of the lemma is proved in an exactly similar fashion.

LEMMA 3. For eachj,k, 0 <±j <Ln — k — 1, l<I&<^m, the AJtk and
BJtl& of Lemma 2 satisfy the following:

(i ) Auic is a polynomial in a2, α3, , aj+lύ and at, af, , α*_1#

(ii) Bjtk is a polynomial in a2, α3, , aj+!ύ-1 and af, αf, , α*.

(iii) Bι>k is real for any choice of α2, α3, , ah.

(iv) AJtk=(j + k

(v) For any v, 1 <J v <^ fe

Proof. From (6) we see that

( 8 )

hence properties (i), (ii), and (iii) of the lemma hold true for fc=l. Us-
ing the recursion formulas (7), properties (i) and (ii) can be verified
inductively for all k <L m. Property (iii) is obvious from (7) since Bhk

Property (iv) is clearly true for fe=l from (8). It also can be
verified simply by induction on k.

Finally, property (v) is clearly true by (7) and (iii) for v=k — l and
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any kf 1 < k <1 m. It can then be proved in general by backward in-
duction on v. Thus, from (7)

and substituting this for one of the Bxv factors in the first term of (v),
the corresponding formula for v — 1 is obtained.

4. The reduction process given above must lead to Rm+1(z) ΞΞ 0 since
Rm(z) and Qm(z) have all of their roots in common. Therefore the ex-

{ n \

Σ^vC&vf, must have |A1>m| = |Z? l im | be-
V = 2 )

cause of (7). We may now prove.
THEOREM 1. Let (α2, α3, , an^) e F*-i. // (a.i9 α3, , an^) is an

interior point of F * _ x then Ct{aZJ •••, an-τ) is a circular disc determined
by \Ahn-.ι\=Bι>n_ι; furthermore \ALJ <Bιk for k<n-l. If (α 2 , •••, an-λ)
is a boundary point of V%_1 then C*n(a2, •••, an-i) consists of a single
point.1

Proof. Note that the statement of this theorem makes the tacit
assumption that Bιjc (which is real by Lemma 3) is always non-negative.
This of course will be true by (7) if we merely prove \Alik\ <I \BLtk\ for
all k.

Given (α2, , an-λ) in F*-i, Lemma 1 shows that the cross section
Cn is convex. Hence, given any point an on the boundary of C*, there
is a line of support for CJ passing through this point, and therefore a
λn such that the function (or functions) belonging to this point satisfy
(2) and (3). The reduction process described above then leads to |^41)m|
= |Bi,J for some m, l<^m<Ln — l.

We now procede to prove the first half of the theorem by induction.
If n=2, then m must be n —1 = 1, and hence the function correspond-
ing to each boundary point of C2* must satisfy \A1Λ\=B1Λ, or, using the
values from (8), there is some θ such that a2=2ew. Therefore each
boundary point of C* is a point of this circle and hence Ct consists of
the disc |σ2] <1 2. However, α2 is an interior point of Cf if and only if
\AlΛ\<Bltl.

Now suppose (α2, ••-, αw_χ) is an interior point of F*_! . Then αv is
an interior point of CJ(σ 2 j •••, αv-i) for »=2, •••, n — 1, and hence by
the inductive hypothesis | A l ι V | < Z ? l ι V for v=l, 2, •••, n—2. Therefore
m=n — l and each boundary point of C * must, from (iv) of Lemma 3,
satisfy

1 Professor G. Pόlya has shown the writer that the fact that the cross sections are
circular discs can easily be proved with the help of the Caratheodory theory for functions
with positive real part. The exact expressions for these cross sections found from (9),
(8), and (7) do not seem to be obtainable from the Caratheodory theory in any simple way
however.
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for some θ, 0 <1 θ <12π. Then expressions Cn and Rn are rational
functions of the αv and their conjugates and are defined by (9). In
particular Rn is real and positive since Z?ifW-i=LBi,n-2|

3 — |i41>w-2|
3 > 0.

From (9), each an on the boundary of C* must lie on the circle
with center Cn and radius Rn. This means that C* is itself this circle.
Thus if an is interior point of C*, we must have lA^^I < BUn-x. By
induction, the first half of the theorem is proved.

Now suppose that (α2, •••, an^) is a boundary point of F*_τ. Then
there is a unique smallest v<Ln — 1 such that αμ is an interior point of
C*(α2, , αμ-χ) for μ = 2, ••, y —1 and αv is a boundary point of
Cy(d.i9 - , αv-i). But then I A ^ V - ^ S L V - I > 0, \Altti\<^BltlL for μ<^v — 1
(and in particular Z ? l ι μ > 0 for μ=l, 2, •••, v —1), and £ 1 ; V = 0. Choose
a sequence of interior points {(ac

2

3\ •• ,αί/2ι)} of F*_! which approach
(α,, , an-λ). For each such point, α£° is contained in a circle (9) of
center Q j ) and radius R^. Now Cw is a rational function of the coef-
ficients and their conjugates. Hence as j -> oo, Q j ) must approach
some limit, finite or infinite. However this limit cannot be infinite since
Cn is always bounded (indeed \Cn\ <^n because \an\<Ln for starlike func-
tions). Thus the limiting value Cn must exist and be finite. On the
other hand, the radius Rc

n

j) -> 0, since by (v) of Lemma 3

R(fi = {zhi^zi << ι y B^y+ι

Therefore, the cross section C£(a,, •• ,α72_1) consists of the single point
Vλ This completes the proof of the theorem.

5. With the help of the above theorem, we may now describe
something of the nature of the coefficient region F * . The region F * is
(2n — 2)-dimensional and its boundary is a (2n — 3)-dimensional manifold.
This manifold, however may be decomposed into n — \ parts. That is,
the boundary of F * is composed of U%\ Π^2), ••-, ΓL?~υ, where Π^v)

is a (2v — l)-dimensional manifold lying on the surface of F * and such



1388 J. A. HUMMEL

t h a t (α2, α3, ••-, an) is in Π£° if and only if (ai9 •••, αv) is an interior
point of F ? and (α3, •••, α v + 1) is a boundary point of F ? + ι .

For example, from (9) we can explicitly calculate the first few cross
sections C ? , C*, Cf. The boundaries of these cross sections are given
by

(10) a,=2eίθ ,

(11) α 3 = . 3 α Ϊ 4 . e * β 4 - W a

4 4

Q2) α = =

4 α 2α 3 ,

' 6

iθ(4:\atfy
"6(4-K)

Taking for example Ff, the 5-dimensional manifold Π40 is defined by
(10), (11), and (12) as a, varies in the interior of the disc (10), a3 varies
in the interior of the disc (11), and θ varies from 0 to 2π. The 3-
dimensional manifold Π£3) is determined by (10), (11), and

__ Aa.jβ3 i θ 6 α 3 - 2 α 2 * α 3

6 6

as αa varies in the interior of the disc (10) and θ varies from 0 to 2π.
Finally, the 1-dimensional manifold IJ j 0 is determined by a2=2eίθ,
a3=Se2ίθ

f α1=4e3ίa and θ varies from 0 to 2τr.

As a final remark, we may note that the coefficient regions F * be-
come quite " thin >? as n becomes large. In fact, using (v) of Lemma 3

T> __ t ^ ^ ^
w (

and hence the radius of any cross section C* is less than or equal to
2/(^ — 1). This estimate in sharp since it is attained for α,=α 3 =
==αw-Ί = 0, the functions being

Since a function f(z) is convex if and only if the function zf'(z) is
starlike, the structure of the coefficient regions for convex functions
can be determined directly from the structure of the coefficient regions
of starlike functions.



TTTE COEFFICIENT REGIONS OF STARLIKE FUNCTIONS 1389

REFERENCES

1. J. A. Hummel, A variaίίonal method for starlike functions, Proc. Amer. Math. Soc,
(to appear).
2. A. C. Schaeffer and D. C. Spencer, Coefficient regions for schlicht functions, Amer.
Math. Soc. Colloquium Publications, Vol. XXXV.
3. A. C. Schaeffer, M. Schiffer, and D. C. Spencer, The coefficient regions of schlicht
functions, Duke Math. J., 16 (1949), 493-527.

STANFORD UNIVERSITY AND

T H E UNIVERSITY OF MARYLAND






