THE REPRESENTATION OF AN ANALYTIC FUNCTION
BY GENERAL LAGUERRE SERIES

OTTO SZASZ AND NELSON YEARDLEY

1. Introduction. Hille [4] has solved the problem of finding neces-
sary and sufficient conditions that a function be represented by Her-
mitian series in a strip. Pollard [7] has solved the analogous problem
in a strip for Laguerre series of order zero. We propose to solve the
problem for Laguerre series of order a(a >— 1) getting as a region of
convergence a parabola instead of a strip. From this theorem the gen-
eralization of Pollard’s result follows immediately.

We say that a function of a complex variable f(z) where z = & + iy =

re' possesses a Laguerre series of order a(a > — 1) or a general Laguerre
series if

1.1) ) ~ S aLE(2) (n=0,1,2--)
where
(1.2) @ = {(" POVt 1)}“18:e-wxwL<;>(x)f(x)dx (@>—1)

L{®(x) is the Laguerre polynomial of order @ > — 1 and degree n given
by [8 p. 97 formula 5.1.6] and the above series converges. The series
is said to be the Laguerre expansion of f(z).

We define

1.3) d, = — lim sup (2n?)~' log |a?|

and by the notation

(1.4) zepb) b>0; z € p(b)

we mean respectively that z lies in the open (closed) parabolic region
o) : ¥ < 4b%(x + %) ; o) : ¥ < 4b(x + ) .

If we select that branch of z# for which (— 2)¥ is real and positive

when z < 0 then R(— 2)F = {(r — @))% = b gives the equation y* =

4 b (x + b*) of the parabola which is the boundary of the above regions.
The main result of this paper is the following.

THEOREM A. In order that the function f (2) possess a Laguerre series
of order a (e >—1) (or a general Laguerre series) which converges to it
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for z € p(d,) where d, > 0 (i.e. for every point z lying in the parabola
Y = 4di(x + d)) it is mecessary and sufficient that f(z) be analytic for
z € p(d.) and that to every b, such that 0 < b, < d, there is a positive
number B(a,b) such that

(1.5) If@)| < Bla, b) exp {3z — ||2[bs — 3(r —2)]%} (z € p(bs)) -

2. The necessity of Theorem A. By hypothesis we have d, > 0
where d, is given by (1.3) and

2.1) £@) = 3 a9 L(z) (e p(d); a>—1).
n=0
From Definition (1.8) it follows that
lal| < m(a, €) exp {2n3(— d, + &)} (e>0).
We use the estimates
2.2) (n_;a>~n‘”/11(a+1) (n—> 00} @ #—1, —2, «-+)
and log n < (4! n)2. By defining
Cop = %(bm + dav) > b:é
and using the above estimate of |a?| we can show that the series
(2.3) #(e,b) = 310 exp (domnd) (" T )
n=0

converges (¢« > — 1) by comparing it with the series 3, 1/
By direct calculation we can verify that series (2.1) can be put in
the form

_%.

= 1
(2.4) f() = 3, ai” exp {zcm%}{<" T “)}2L$f>(z) exp {— 2c.mt} {(";’;a)}
From the integral
% = . < —St4-3/2,—
exp (— s2) = (1/2n2)S e—sit-312g-1/s gt
0
we obtain
exp (— dean?) = (4%/2”%)5*6_%_3,2 exp (— 4c3/q)dyg .
0

For polynomials p,(2) with real coefficients we have |p,(2)|* =

Pa(2)Dal2).
By applying Cauchy’s inequality the above two equations and [8 p.
98 formula 5.1.15] equation (2.4) becomes
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@5) 1fF =[Sl exp (eab)(™ T )] |
<[ S1Ee@r exp (— deah{("F )]
= (e, )3 |L<w>(z)|2{(“ + “)} (4cw/2ﬂ§)§ et exp (—Actft)dt
— A¥a, b)(4cw/27r7)g [z | L(2) |{(" + “)} e'”‘]t‘m exp (—4c2/t)dt
= (e, Ydenf2:h)| e exp (—acf] SLe@Le@|(“HO) e Jar

_ = exp (— 2x/(¢' — 1))J.(i|2| esch t)e**
= B, e+ 1| SR exp (/)1 — e elie

for z e p(ba), @ >— 1.

From [8 p. 197 formula (8.23.3)] we conclude that the following limit
relation holds uniformly in any finite closed region S in the complex z—
plane excluding the non-negative real axis

(2.6) n % log | L®(2)| — 2{3(r — )} 2 = 2r% sin 10 (n — o).
We also have the estimate :
(2.7) | LP(@) | = {I'(n + a + 1/« + 1)I'(n + 1)} exp (32) (= = 0)

LP@)=0n") a=max(ja —ha) 020 = o

and « is aribitrary and real. The later formula is found in [8 p. 173
formula (7.6.11)]. Moreover from [7 p. 85 formula 2] it follows that

(2.8) I'n+ a+ 1D/ I’'(n+1)~n" (n—> o).

By use of (2.6), (2.2) (2.7) (2.8) and the Weierstrass M-test to show
uniform convergence of the above series and the comparison test to
show convergence of the series in the second line of (2.5) we can then
apply the theorem of [9 p. 44] to justify the term by term integration
of the series in (2.5).

From [8 p. 15 formula (1.71.6)] and p. 14 formulas (1.7.4) and
(1.7.5)] we obtain

| (i) < Gy) e (@ + 1) (a> —4,2>0)
from which we get by setting 1 = |z| csch £t
|J(22] csch Zt)i~*| < (|z]| csch 3t)* exp (|z] esch £¢)27% (a > —4%) .

Using the above inequality to obtain an estimate of the last integral
of (2.5) we obtain :

= exp (— 2x/(¢" — 1) + 2]2]/(e?* — e 3Y)) dt .

£ exp (4c3/t)(L — )"

@9) @I £ Bl v2|



624 0. SZASZ AND N. YEARDLEY

Since
0<edt —edt>¢ (t = 0)
we have
— 2z/(e" — 1) + 2]z]/(e* — e BY) — 4ck/t
= 2u(e3t — 1)(edt + 1)(ed* — 1) + (2]2] — 2w)/(e3* — e~3*) — 4cift
< 2x/(e?* + 1) — 4{ct — ¥(r — x)}/t.
If g=¢c. — 3(r — x) then by applying the last inequality to (2.9)
we obtain
L2 = S:exp (2w/(e2* + 1) — 4q[t)t~"(1 — ™)V dE (a >— })
= Bla, )| exp (= all — 2/(e + 1)} exp (— daft)t=(L — e) e
Since e3* + 1 > 2 + 4t (¢t = 0) we get from the last integral

(2.9.1)
If(2)|*? £ B(«, b)e’“go exp {— xt/(t 4+ 4)} exp (— 4q/t)t~¥*(1 — e~ *)~*"'dt

lﬁquwl% oo
= e”UO + qu%/m%] exp(— xt/(t + 4)) exp (— 47/)t3(1 — e~*)~*"'d¢t

=e(l,+1) (zepbs); a>—13)

where I, and I, represent the first and second integrals respectively in
the above line. If a2 > 16¢% > 16¢ > 0 then

(2.10) — dgEaE|(1 + dgPa-t) < —2¢3at < — 2kt

where ¢ = b2 — (r — ). Since exp (— «t/(t + 4)) is a decreasing func-
tion of #(t = 0) we have

I, < exp {— 2[16¢"*|x|~3/(16¢% |z |2 + 4)]}

x (73 yexp (— daiyt=(t — ey eids

16g /lzl2

Since
(2.11) l—e9)t<2t @O=<t<l)
and by applying inequality (2.10) to the above estimate of I, we have
(211.1) L < exp (— 2o¥gd) {I(a + 3/2)/4(ck — B2)***
+ AT ()[4 — B2)*(1 — e)**1} = B(a, b) exp (— 2a%qd)
(zepbs); &> 16cs, a > — ).
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Consider the function p(t) = at/(t 4+ 4) + 4qg/t. If we define
Go= ¢ — 3k — b2 = 3(ch + b2 > B
qg=cy— 3r—w
and if ¢, represents the value of ¢ for which x(¢) is a minimum then
ty = dgto (1 —qle2)  (z>¢cl)

because dp/dt = 0; d*u/dt* > 0 for t = ¢, Moreover

(2.12) p(t) = 2akqt —q
is the minimum value of pu(t). Also
(2.13) 4qte b1 —@Gad) < 16¢/xt (x> 2(3)2cl/3) .
If & = 4(c — b2) then
16(1%/1% — .
I = 5 exp (— at/(t + 4)) exp (—4q/t) exp (—4e, /)41 — e )~ *'dt .
0

By the estimate (2.11) this becomes

11
162/
0

I < 2S T exp (— wt/(t + 4) — 4qJE) exp (—deft)t- @Iy

for @ > (16¢,)*. By (2.12) and (2.13) the above becomes

I < exp (— 2atq? +E)S exp (— 4de,[t)t=>=""dt

0
< 2% exp (— 2wdqd + )M (a + 3/2)(2(ch — b))~
< B(a, b) exp (— 2z%¢})
(z e p(b) ; @ > max {2(3)2¢./3; ¢ (16c)’} ,
By (2.9.1), (2.11.1) and the last inequality we have
If@F = B, b) exp (v — 20tq?)
*(z € p(ba) ; @ > max {15¢2;2(3)3eu/3; & = @)
for a > — 1.
But since I, and I, are bounded functions of z for — b2 < o < x, we

can choose B(«, b) in the last inequality large enough that the inequality
holds for all points 2 in and on the parabola y* = 4bi(x + b2). Hence

|7®)] < B(a, b) exp (3o — |z|3¢?) (a>—13)

and for every point z in and on the parabola y* = 4bi(x + b2).
Moreover by (1.8) (2.6) and (2.7) it can be shown that the Laguerre
series (1.1) converges absolutely and uniformly in any closed region for

* (zep(ba);@> max {16c%; 2(3)%cy/3; ca=wy })
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which R(— 2)% < du(a >— 1) that is, inside the parabola of convergence
y* = 4d%( 2 + d?), and hence represents an analytic function there by [5
p. 74 Theorem 3]. For a proof of this see the dissertation of Evelyn
Boyd [1].

This completes the proof of the necessity of Theorem A.

3. The sufficiency of Theorem A. Let w =u + 4. Then by the
notation w e s(b) ; w € s(b) where b >0 we mean respectively that the

point w lies in the open (closed) strip s(b): v* < b. s(b): v* < b.
If z = w* then

(3.1) z € p(b) Z w € s(b)
by virtue of (1.4) and the fact that
(3.2) (r—o)=7".

For the function Z(w* the following two order conditions are equi-
valent

(3.3) || < Bib) exp (v* — v))[qg — k|u* — v*|[3(F* — v*)3)
|7(w?) | < Byb) exp (w*lq — klu|®* — v*)?)
(w e s(b); q, k, Bi(b), Bib) > 0) .
LeEMMA 3.1. We define
B.4)  guw) = wS:twf(th)a —tebdt we=utiv; —l<a<i).

We assume the hypothesis of the sufficiency Theorem A, then for every
bsy 0 < by < do there exists a positive number B(a, b) such that
(8.5) lguw)| < B(a, b) exp (3u* — |u|(®: — v)2) (wesby); —1<a<P)
and g. (w) is analytic for w e s(d.).

Proof. We make the transformation z = w* on the order condition

of Theorem A. Then by equivalence relation (3.1) w € s(b,) so that in
conjunction with (3.2) and (3.5) we conclude

If(w?)| < B(a, b) exp (3(u* — v?) — |u* — v*|5(b — v?)%)

for w e s(b,) and —1 < a. Then by the equivalence relation (3.3) set-
ting ¢ =2 and k =1 we get from the above inequality

If(w?)| < B(a, b) exp (3u* — lult: — o))  (wesb); —1<a).

The change of variable ¢ = A* in the integral of equation (3.4), ex-
presses |ga(w)| by
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lga(’MJ)l = [2WS:h2“+lf(kw2)(1 _ hz)—a_%dh'
é 2['“’“52}?’3 If{(h?,{))z} ”- {S:(hz/(l — h2))m+:21dh .

The above integral converges for each value of « such that « < % and
from Pollard’s work (see [7 p. 362-363] in particular inequality (3.3))
we conclude that the function outside the integral satisfies the inequality
(3.5).

From formula (3.4) by expanding a factor of the integrand into a
power series we get

g(w) = wS:t‘”f (th){go(" T _%>t"}dt t>1)
= ws, (" T ‘%)S}Mf(tw‘z)dt .

Using estimate (2.2) and the maximum modulus theorem on f(tw?)
for the region

5(day D) : we 5(ba); u? < b, + D (D > 0)

we get that the above series is in absolute value less then

Kw|f(z)] Em ne=

n=0

where 2, is a point on the boundary of the region :
p(ad, D) 1 y* < 4%z + b2) r<D.

The above series converges for « < 4. This not only justifies the above
term by term integration (see [9 p. 45]) but shows that the series rep-
resenting g.(w) is absolutely and uniformly convergent in the closed

region s(d., D) and hence by [5 p. 73-74] the function g.(w) is analytic
if w lies in the simply connected region s(d.).

LEMMA. 8.2. Between Laguerre polynomaals of different order there
s the following relationship

S“e-u(u — ) L@@ = e LE V@) (L — 1) (@>—1;¢<1; = 0),
Proof. From [8 p. 97 formula (5.1.9)] we have
(86) X LPs® = (1 — sy exp (— us/(1 — 9)) (sl <1).

From which it follows that



628 0. SZASZ AND N. YEARDLEY

3.7 re‘“(u — x)“[i;oLﬁ,”‘)(u)s”:ldu
- re‘“(u — )1 — 8)=* exp (— us/(1 — s))du

— (1 — )¢ exp (— as/(1 — s))ijv-ﬂ exp (— v/l — ))dv
= (1 — s)= " exp (— as/(1 — s))e—wS:e—TT<-t+1>‘ldT
= o® i;oL;‘““l)(w)s”F(l —¥).

The last line is obtained by substituting (3.6) in the previous line.

In equation (3.7) we get the third line from the second by change
of variable # — # = v and the fourth from the third by T = v/(1 — s).

That the integrand in the first line of (3.7) is absolutely and uni-
formly convergent (fixed @« >—1; fixed ¢, |s]|<1; 0 Zax< D, Zu< D)
we can show by comparing it with the series C.M>,>,n%s™ which can
be done by using estimates (2.7) and (2.8). Thus the integrand of (3.15)
can be integrated term by term over the interval 0 < D, < u < D,. We
obtain

o< S“e-u(u — &) Y| L) | s*du

n=0 z

< o320 (1 — t)i ns"® t<l,ls|<l,a>—-1,2=0)
n=0

by using estimates (2.7) and (2.8) on the first series in the above and
then making the change of variable #(u — «) =p. Thus the above
series converges and since the series of (3.7) is uniformly convergent
by [9] p. 45 can integrate the first series of (3.7) term by term:

s sng”e-u(u — o) L u)du
n=0 x

= [T — ] S Lo |du = e S L@ T — 1)

x

Equating the coefficients of the two power series in s, we get Lemma
3.2, If in Lemma 3.2 we set « = % and if in the resulting equation
we set « =t — + < % (since £ < 1) we obtain

(3.8) Swe-u(u — x)—w-%Ln(%)(u)du = [‘(__ a+ e L (:v)
(-l <a<t;2=0).
LemmA 3.3 (Hille’s lemma). By Lemma 3.1 if f(z) satisfies the order

condition (1.5) of Theorem A and is analytic then g.(w) is analytic and sat-
isfies Hille’s condition for an analytic function to possess a convergent
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Hermitian series, i.e. condition (3.5) (see [4 p. 81 Theorem 1]). Hence
we may write

gu(w) = 35, (2" L k) Af,H, ()
where
39 @@+ 1) bl = |7 exp (- ) Hua@ou@)da

Pick any b < d, where 2d is the width of the strip of convergence

of the above series. Select b such that 6 < b < d. Then by [4 p. 90]
we have that there exists a positive number B(b) such that

(3.10) | fins1| < B(D) exp (— b(dn + 8)2) .

LEMMA 3.4. Let d >0 and suppose f(2) is analytic for z e p(d).
Moreover suppose for every b such that 0 < b < d there exists a positive
number B(a, b) such that

(3.11) IF@)| < B(a, b) exp (b — |z |20 — r — 2])?) (z € p(D)) ,
then
(8.12) laz| < B(b) exp (—2nb) (-l<a<i).

Proof. By estimate (2.7) and inequality (3.11) the following in-
tegral converges

313 aw={("} “)r(a + 1)}_1S:t“e“f(t)L;“>(t)dt

Il

{
{

x re—sLn(%)(s)(s — #)edds (by (3.8))

(n + “)r(a + DI (—a+ 1) }S:t“f(t)dt

{(n OV DI(— @+ %)}“S:e‘sLn(%)(s)ds
x \t2f(t) (s — t)=*-dde
[rrere -

The reversal of integration will be justified later. Making two
successive changes of variable £ = ps; s = ¢* we obtain

ar = {(" A “)r(a F O~ a + %)}_1

< | 2exp (= )LD (@)eda] st — pybap

1
0
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- 2{(” + “)r(a + D)= a + 3)(—1yemey 1}“1

x | exp (= ) Hn()g.(0)a

From [8 p. 102 formula (5.6.1)] we have the formula relating Laguerre
and Hermite polynomials
L, 3)(¢?) = {(—1)"2"+'n 1} -"H,,.,(q) (q real) .

By this relationship and (3.4) the above expression for a{ becomes

4@ = {(n —J; a)r(a + D)= a + H(=1)p2nn I}
x | exp (= OV H@)gala)a

since the integrand is an even function. By (3.9)
ar = {27(2n + 1) | b} f{(“ PO @+ )= a+ =12 v}
< {27*(2n + 1) 123} 3B()
AT O r@ 4 )= a+ D=1z ) exo (— B + )b,

This follows from (3.10). Using Stirling’s theorem (see [9 formula (4)
p. 58])

n! ~ (2r)d nr+den (n —> o)

and the relation I'(n) = (n — 1)I"(n — 1) as well as the estimate (2.2)
we get from the above inequality
a2 < Km~**¥2I'(— a + 1) exp (— b(4n + 3)%)

< B() exp {(— a + }) log n + 2n¥(b — b)} exp (— 2bn?)

< B(®) exp (— 2bn?) (-l<a<?)
since b > b. We can justify the above interchange of order of integra-
tion by proving that the integral is absolutely convergent. (To use [9
p. 55] consider a function which is zero over part of the rectangular
region).

Since Ln%‘(s) is a polynomial of degree n we have for a fixed n

le=3 L, (3)(s)| < ¢ (0<s< o).

From the above estimate and (3.11) the integral in the second line
of (3.13) is in absolute value less than
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B, b)S:t"‘ exp (3 — t%b)dtgje—%S(s _tyedds (—l<a<id).

By change of variable s — ¢ =2p on the inside integral and then
g = t3b on the outside integral this becomes

Bla, b)2-**:'(— a + %)b—“—zrqw—le—adq = Bla, )2 + 2)
0
(—l<a<id).

Conclusion. Since by hypothesis f(z) is analytic for z e p(d,) the
funection f(x) is continuous for # = 0 and hence integrable for 0 <z <
D (D > 0). Moreover since by hypothesis inequality (1.5) holds we have
|f(@)| < Ae*”* for x = 0. Then by a theorem of Caton and Hille [2 p. 227]
series (1.1) is Abel summable to f(x) for almost all z, including the
points of continuity and hence in this case for all points « for which
x = 0.

By virtue of (3.12) and (2.6) it follows that the limit (1.3) exists
that is d, > 0 and series (1.1) converges for z € p(d.) and for —1 < a < £.
We now want to generalize this result to the condition —1 < a.

From (1.2) and [8 p. 98 formula (5.1.14)] and [9 p. 55 formula (2)]
we have al®*D = g — a®,. Let

n

se = >, L{P(») (n=20,1,2,--)

k=0

then

n n=1 n—
S aPLOE) = 5 (@60 — aR)st + aPst = S ar O LE @) + L)
k=0 k=0 k=0

By (1.3) (2.6) and (2.7) we have for a fixed 2z, |a®L{&*V(z)| — 0 for
n— o for z, € p(d,) and for —1 < a < 3. Hence

S aPLEE) = S aFILEnE) (e pd); —1<a <),
n=0 n=0

Hence, by mathematieal induction, the range of « for which the series
(1.1) converges has been extended to —1 < «.

Since the Abel sum of series (1.1) is f(x) for 2 = 0 and also the
same as the Cauchy sum, the Cauchy sum of series (1.1) is f(x) for x = 0
and —1 < a.

We remarked at the end of §2 that series (1.1) is an analytic funec-
tion inside its parabola of convergence. Hence by the identity theorem
for analytic functions (see [5 p. 87]) since both f(z) and series (1.1) are
analytic for z € p(d,) and identical along the real axis they must be
identical for z € p(d.) that is inside their common region of analyticity
which is the parabola of convergence of the series: ¥ = 4b%.(z + b2)
0=b. <da).
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This completes the proof of Theorem A.

4. The equivalence of Theorems A and B. We now note that Theo-
rem A is equivalent to a generalization of Pollard’s Theorem A [7].
We state the generalization as follows.

THEOREM B. In order that g(w) possess a Laguerre series of order
alpha (¢ > —1) such that

F@) =7 = @) = SaPLOw) (e s(d); du>0)

where o is given by (1.2) it s necessary and sufficent that g(w) be
analytic and even for w € s(d.) and that to every b, with 0 < b, < d., there
correspond o positive number B(a, b) such that

4.1) lg(w)| < B(et, b) exp (3u* — |v| (B* — v)2)  (w € s(do), @ > —1).

THEOREM C. Theorems A and B are equivalent.

Proof. For
4.2) 2=’
the equation of Theorem B becomes

oo

(4.3) f@) = X afPLiP() (z € p(d.))

and conversely by (3.1).
Since f(z) = f(w*) = g(w) the function g(w) will be analytic if f(2)
is. Moreover since f(z) = g(z%) we get the converse by the same rea-

soning except at z =0, since 2% is analytic except at the origin. In a
neighborhood of w = 0 we have since g(w) is even and analytic

f@) = f(w) = g(w) = z AW = zaz

so that f(z) is analytic at z = 0 also.

Applying the transformations (4.2) and (38.2) and the equivalence
relations (3.3) to the inequalities (4.1) and (1.5) we get their equivalence
because of (3.1).
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