TWO THEOREMS OF GAUSS

DANIEL SHANKS

The purpose of this note is to show that two famous theorems of
Gauss can be derived from a common source. The theorems alluded to
are the following :

THEOREM 1. (The triangular-exponent identity)

(1) ﬁ 1—a* — i ms(s—l)/z
) s=1 1-—-(1723‘1 s=1 '

THEOREM 2. (The evaluation of Gauss sums)
met V'm for m=1 (mod 4)
( 2 ) eznis |m { -
$=0 iVm  for m=3 (mod 4).

Both these results will be obtained as consequences of the following
identity previously stated by the author [2] without proof.

A finite identity.

THEOREM. If P,=1 and

n 1—g*
=005
sI-IJ 1—(1723_1

for n=1,2, .., then

nl p 2n
(3) A, =3 Engsensd = N gese-D2 = G
§=0 s s=1
and
7 , . P ma1) an +1 b .
(3) An‘:z_ixs(”+ — Z 25G=D =Sn-

§=1 s s=1

Proof. We readily verify that
(l_wzn)xs(wwl) — (l_wm—l)ws(zn-l) ‘I“ (1 _x2s+1)x(s+1)(2n—l)
— (l_xzs)xs(zn~l) ,

T P,
d by multipl by — %n1 we find
an y multiplying 0y Ps(l wm-l) e fin
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P, )
(4) vﬁxs(2n+1) = "—‘—1”5 LgsCln-1l+1) | Kgn — ﬂsm
s s
where
Ay = ﬁm_ﬂ_hx(sﬂ) @n-1)
’ 1 —gn-t Ps
and
ﬂs” = ifmxs(m_l) .
1—a™ P,
Now
ﬂs"'l'” = Usn (for 8§ = 0; 1, cty n"z)

and since, further,
Bow =0 and a,_,, = "¢V,
by summing (4) from s =0 to s = n—1 we obtain:
An = A, + g@=DCr-1)  gnCn=l)

But this may be written 4, — 4,., = S, — S,-;, and by induction

An—Sn=A1—Sl=i—xz—(1+x)=0.

This proves (3) and by adding z*@**D to both sides we verify (3').
Gauss’ triangular exponent Theorem (1), now follows at once from (3).

Proof of Theorem 1. The leading term in A, (that is s = 0 in the
left side of eq. 3) is P,. Since the remaining terms (s=1,2,---,
n =1) are of order z™*' and higher, the power series of the function
P,(x) must agree with that of S,(x) at least to terms of order z™. By
induction the function P, must have the power series S. and this
proves (1).

Proof of Theorem 2. The magnitude of

G = mz_l‘l ezwtﬁ/m
- s=0
for any odd integer m is given by |G| =V'm. This is easily shown,
[1, p. 168], by multiplying G by its complex conjugate. The real dif-
ficulty in Theorem (2) is to show that G is positive real or positive
imaginary according as m =1 or m =3 (mod 4). But the identity (3)
enables us to do this without undue computation.
First we write x = v* where v = ¢. Then
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and if

-1, =1 778{92§Q7),
Q Q sEIl(sin (2s—1)0

we may write

m n-1 0
(5) S, = D SE-D = 7 gnrstnel) Xn
s=1 s=1 s
241 ” Q
(%) S, = 3, v’C-D = 3 grstntd Xn
§=1 §=0

Now for any odd integer, m =2N + 1, if ¢ = 2zr/m we have

= p-1

and thus

m~—1 5 +N 2 2 +N
G=3v"= 3 v =¥ 3 pre-D
§=0 S==-N s==-N

N N+1
— vm[z ,vs(s—l) + Z vs(s—-l)] .
$=1 s=1
Therefore if m = 4n + 1 and N = 2n,

(6) G — ”Z'] 1}(”’-,.3)(4"“)7%@' + Zn: 7l,(n+s)(4n+l)¥g27n )

$=0 s §=0 s

But v""*' =1 and @, = positive real for s = 0,1, --- , n so that
G=+Vm m=1 (mod 4) .
And, if m =4n + 3 and N = 2n + 1, then

G = vl\ﬁ[% ,vn+s(4n+1)¥Qﬂn,_ + i ,Un+1+s(4n+5)&zil]
d

§=0 s §=0 Q)

& Q Q
— Z ,v(m+3) (n+5) [v‘—’”"‘l'zﬁ,ﬂ, + ,U‘zn+2+2s_ nllj, .
s=0 Qs Qs

But now +"** =1 and

_ sin[2n+2)0] 5 _ _
Ques = sin [(2r+1)0] @ @

and thus
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(7) G=2i 5_‘5 sin[(@n +1 — 23)0]_%1

8

which is positive imaginary. Therefore

G=+iVm m =3 (mod 4) .
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