CONTINUOUS PRODUCTS AND NONLINEAR
INTEGRAL EQUATIONS

J. W. NEUBERGER

1. Introduction. J. S. MacNerney [2] has expressed the solution
M of the Stieltjes integral equation

M, 1) =1+ S‘dF(u)-M(u, £)
as a continuous product

Mz, t) = 11" [1 + dF']

in case F'is a function from the real numbers into the space B of con-
tinuous linear transformations from a normed, linear and complete space
S into S, which is continuous and of bounded variation on each interval.
This is a generalization of the familiar relationship

e =14 Ste““du, e = limn_m[l + é:,,w,,,_r .

The object of this paper is to extend these considerations to a larger
class of integral equations including nonlinear equations. The space
S is required to be an additive abelian group with zero element N,
having a norm ||-|| such that, if « and y are in S then ||z|| > 0 un-
less « = N, and || —al|| = [lz||, lle + yll = llz]l + [lyll. The space S is
complete with respect to the metric induced by this norm. The func-
tion F' from a number interval into the set B of all continuous trans-
formations from S into S is required to satisfy certain inequalities
(Theorem A’, §3).

In §2 we develop a continuous product in a still more general set-
ting, requiring only that S should be a complete metric space, and then
specialize in § 3. Having in mind the problem of numerical solution of
differential and integral equations, we give particular attention to ob-
taining upper bounds to the errors in various approximations to the
continuous product (§ §3 and 4).

In §5, integral equations of the form

Y(t) = A+ g‘dF- Y

are solved by means of the continuous product. Section 6 contains

7 Presented to the Society, August 30, 1957; received by the editors December 23, 1957.
This paper is based for the most part on the author’s thesis prepared under the supervision
of Professor H. S. Wall at the University of Texas.
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examples illustrating the application of the theory to certain special cases.

2. Continuous products in a complete metric space. Suppose S is
a complete metric space with distance function D and B the set of all
continuous transformations from S into S. If F' is in B then F« denotes
the image of the point z of S under F'; if G is in B then FG is the
element H of B defined by Hx = F(Gz). If nis a positive integer and
each of F,---, F, is an element of B then

iHOIFi:Iand il'[leizF,[:HjFi], i=1, e, m,
where I is the identity transformation.

If v and v are numbers then J is a chain from » to v if J is an
increasing or decreasing finite number sequence whose first term is u
and whose last term is v»; the chain from wu to u is the two-term
sequence u, w. 1f J is the chain {x,}7*} from u to v then the mesh of
J is the least number = such that |x;,, — 2| <7, i=1, -+, n The
statement that J' is a r¢finement of J means that J' is a chain from »
to v having J as subsequence. The statement that J” is the section of
J from the number »’' of J to the number v’ of J means that J” is the
subsequence of J which is a chain from %’ to v and a proper subse-
quence of no subsequence of J which is a chain from «’ to v'.

Suppose [a, b] is a number interval, 7' a transformation from the
square disc [a, b] x [a, b], A a point of S and J the number sequence
{t;}2*! contained in [a,b]. Then T'(¢.,, ¢) is denoted by T, ,. If, in
addition, 7 is a transformation to B then [[[%.T},,]A is denoted by
[IAT, A). The statement that « is the continuous product

Jd1° (T, A)

means each of ¢ and ¢ is a number in [a,d], « is a point of S and, if
¢ is a positive number then there is a chain J from ¢ to ¢ such that
D{11, (T, A), x} < ¢ for every refinement J' of J.

The statement that V is a variation function for [a,b] means that
V is a continuous function from [a,b] x [@,b] into the non-negative
numbers such that, if each of z,y, and z is in [a, b] and # £ y < #, then
V,y) + Vw,2) < V(x,2) = V(z,2). Notethat 0 < V(za)+ V(x,2) <
V(x, x), so that V(x, ) = 0. The statement that W is a closing function
for [a, b] means that W is a variation function for [a, b] such that, if
¢ is a positive number then there is a chain J = {¢}# from a to b
such that S, W,, <e. If each of U and V is a variation function
for [a, b], then U-V is a closing function for [a,b]. If W is a closing
function for [a, b] and [¢, d] is a subinterval of [a, b], the contraction
of W to [¢,d] x [e,d] is a closing function for [c, d].
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THEOREM A. Suppose [a, b] is a number interval, T a function from
the square disc [a, b] % [a, b] tnto B, A a point of S, r & positive number,
c in [a, b], each of U and V a variation function for [a,b], W a closing
Sunction for [a, b]. Suppose further that for p and q in [a, b], J a chain
from p to g, ® and y in S, D{x, A} < r and D{y, A} < r, we have

(1)  D{T(p, 9=, T(p, )} < [1 + Ulp, ¢)] D(z, v),

(2) D{T(p, q)», »} = V(p, q)
and () <f D{I1.(T, x), A} < r for each chain J' from p to a number t
wm [a, b] such that |p —t|+|t—ql=|p—ql|, then D{IIAT, ),
T(q, p)x} = W(p, q).

Then there is a subinterval Q of [a,b] containing c such that, if t
s wn Q and J is a chain from ¢ to t then D{IIAT, A), A} < r; and if
Q is such an interval and t is in Q then the continuous product J1° (T, A)
is & point of S.

Proof. We first establish statements (i) and (ii) below, and then
the theorem.

Denote by @ a subinterval @’ of [a, b] containing ¢ such that if ¢
is in @” then V(e t) < r.

(i) If J is the chain {s;}7*! from ¢ to the number ¢ in @  then

(2.1) DAII, (T, 4), A} < V{(e, 1) .
For, [TI}-1 T JA = A so that
D{[IIi-: T, /14, A} =0 =< V(e, 5) .

Suppose there is a positive integer % not greater than » such that
D{[1Ii.. T, JA, A} > Ve, sx+;) and denote by j the least such integer #.
If m is a positive integer not greater than j then

2.2) D {EﬁTJ] 4,4} Ve s) Ve .

Then,

pl[iir.]a o} s o [im.]a iz ]a)

w=1 i=1

u—1 u—1
= iD { Tu,J[H Ti,Jj|Ar [H T’L,J]A }
u=1 i=1 i=1

which, by (2.2) and (2) of the hypothesis, does not exceed >, V,,<
Ve, s;+1), a contradiction; and (i) is established. Thus @ is a sub-
interval of [a,b] containing ¢ such that if ¢ is in @ and J is a chain
from ¢ to ¢ then D{I[,(T, 4), A} < r.

Suppose that @ is a subinterval of [a, b] which contains ¢ such that,
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if ¢tis in @ and J is a chain from ¢ to ¢ then D{[[,(T, A), A} < r.
(i) If ¢ is in @, J is the chain {s;};., from ¢ to ¢ and J' a refine-
ment of J then

@8  D{IT A, (T, A} = Wy + S WL+ Uil

To prove this, suppose J’ is the refinement {¢;}7% of J and, if u,
is the integer k such that s,., = ¢;,,,7 =0, ---, n, then

J u
L, = [H TM}A and M, = [ﬁ T””']A’j =1,--,m.
p=1 p=1
If {v}¥] is the section K of J' from s, to s,., then

DM, L} = D[ [1 Tox | Moy Tl
L3
= DY (17 x | My, Tudos} + DIT, M, T L)

Since D{[1, AT, M,-,), A} < r for each chain J” from s, to a number
t’ such that |s, — ¢'| + ¢/ — s,.:]| = |s; — 8,41] then we have from (1) and
(3) of the hypothesis,

D{ij LJ} é Wj,J + [1 + UJ,J]D{MJ—M LJ—I} *

Thus, D{M,, Ll} = W., D{M, L} < W+ W, .1+ U,,] and, by mathe-
matical induction, (2.3) is established.
Since

exp{U(crt)]gﬁ[l_‘{_UuJ]’ 7::1)""%’
it follows from (2.3) that
D{IL (T, 4), 1] (A)} £ {exp [Ule, OB Y W

If ¢ is a positive number and the chain J from C to t in @ (=[«a,f]) is
such that S0, W,,, < ¢/{exp[U(a,B)]}, then D{IIAT,4), I1.(T,A)} < ¢
for every refinement J' of J. Since the space S is complete, it follows that,
for each t in Q, there is a point in S which is the continuous product
A1 (T, A).

Denote by Y the function from @ into S such that Y(¢) = .[1° (T, A)
for each ¢ in Q.

COROLLARY 1. Suppose that t is in Q, s between ¢ and t and J the
chain {s;}72! from s to t. Then D{I1,(T, Y(s)), A} < r for each chain J’
from s to @ number u such that |s — u| + |u — t| = |s — t|, and D{IIAT,
Y(s), Y()} < Vs, 0.
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Proof. We have D{Y(s), A} < r since D{[[,. (T, 4), A} < r for each
J”’ from ¢ to s. If J is a chain from s to a number u such that
s —ul|+ |lu —t| = |s — t| then D{[[, (T, Y(s)), A} < r since D{I[.(T,
11T, A)), A} < r for each chain J” from ¢ to s and the function 4
defined by Z(x) = 1, (T, ) for all x in S, is continuous.

Thus

D”:]OI T,.,,]Y(s), Y(s)} —0< V(s s).

The fact that D{[, (T, Y(s)), Y(s)} < V(s, 1) follows by an argument by
mathematical induction similar to the one used in (i) in the proof of
Theorem A.

COROLLARY 2. If t 4s in Q, s between ¢ and t, J, a chain from c
to t and J the chain {s,};., from s to t, then

D{IL(T, [T (T, 4), TLT, Y} < D{II (T, 4), ¥} exp [UGs, )]} -

Proof. Denote [I, (T, A) by « and Y(x) by y. By Corollary 1 we
have

P 7]y 4f = =0

Since D{[1l}-, T; =, A}y <7, =0, ---, n, we have

i—(

D{IL (T, @), 11 (T, )} = D T 1L 7o [, 7o

<o Joffiir [ Jvjs o<,
=< D{w, y}{exp [U(s, )]} ,

as was to be proved.

LA

[1 + U, /1 D{z, y}

i

—s 0

-
ll

COROLLARY 3. If t is in Q and s between ¢ and t, then

Y(t) = 11T, Y(s)) .

Proof. Suppose ¢ is a positive number. There is a chain .J, from
¢ to s such that

D{ T1(T, 4), Y(s)} < ¢/2{exp [U(e, 1)1}

if J; is a refinement of J,. There is a chain J, from ¢ to ¢ having J,
as subsequence such that, if J; is a refinement of J,,

D{ T1 (T, 4), Y(t)} <2,
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Since s is in @ we have D{[[, (T, A), A} <r and therefore D{Y(s),
A} < r. Suppose J; is a refinement of J,, J; the section of J; from ¢
to s and J; the section of J;, from s to ¢. Then, by Corollary 2,

DI, 11 (T, 4), 1] (T, Y&} = D{IL (T, 4), Y(&)Hexp [U (s, 0} < ¢f2
that is,
D{II (T, ), TL (T, Y} <ef2.

Consequently, D{Y (¢), Il (T, Y(s))} < ¢ for every refinement J; of the
section of J, from s to ¢, that is Y (¢) = ,J1° (T, Y(s)), as was to be
proved.

COROLLARY 4. Y 4s continuous.

Proof. If t is in @ and s between ¢ and ¢, then, by Corollaries 1
and 3 we have

D{II' (T, Y(s)), Y(s)} = Vs, 0) .

This is true also if s = ¢ or s =¢. Thus, using Corollary 3 we obtain
D{Y(t), Y(s)} < V(s, t); and the continuity of Y follows from the con-
tinuity of V.

COROLLARY 5. Suppose J is the chain {s;}?} from ¢ to the number
tin Q, J the refinement {t}7 of J, u, the integer K such that s;u; = tysy,
{c,}2-0 @ sequence each term of which is a non-negative number with
e, =0, {A}r., a sequence each term of which is a point in S with A, = A
and D{I1.(T, 4,), A} < r for each chain J’ from s;., to a number u such that

I$ier — | + | — t| = |830: — t], Ly = A, L
— l:]_—l[ Tp,,/:| Al—l and D{Ai, LL} é Ci,i: 1, TR

p=ldug

Then,
(2.4) D{Y(t), A,,} < gci{exp [U(¢, si)]} + gwi,,,{exp (U, te)]} -

Proof. We shall prove the following statement which implies (2.4) :
If J” is a refinement of J’, then

@5 D {g} (T, 4), A} < ; ei{exp [U(, s}

+ ﬁ} Wi Aexp [U(t, tis)]} .
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Suppose J” = {r;}i*}, w, is the integer %k such that s, = r,., and
M;=[11}4T, »]4,i=0, ---, n. Note that D{M;, A} <r and D{L;, A} <r,
1 =20,---,n. By an argument similar to that used in proving (2.3) we
obtain

U,

i
D{M;, Li} = D{M;—,, A, 11 (1 + U, 0 +

p=l+u; 1
where
fzzW(tHui, t“i) if w, =1+ wu, y
and
% %y
Ji=2 Wq,JZ [1+Up,J] if w,>1+4u,..
a=1+u;_q p=q+1
Thus
D{M,, L} < D{M,_,, A,_.}{exp [U, ]} + /3,
and
D{M,, A} < D{M,, L;} + D{L, A;}

= D{Mt—u Ai—l} {exp [U:IZJ]} +fi+ec, =1, m.
From this inequality and the fact that M, = [[,. (T, A) we obtain (2.5).

COROLLARY 6. Suppose C is a point of S and D{C, A} is a number
. If v > 1, then there is a subinterval @Q; of [a,b] containing c such
that 4f t 4s in Q) and J is a chain from c to t then

D{HJ(T! C)’ A} é r (M’bd D{HJ(Ta A)! A} é 7';

and if Q, is such an interval and t s in Q, then there is a point of S
which 4s the continuous product J14T, C). Moreover, if t is in @, and
J is a chain from ¢ to t then

D{IL(T, ©), YO} < niexp [UG, 81} + D{I1 (T, 4), YO} -
Note that if @ denotes a subinterval Q" of [a, b] containing ¢ such that

if tis in Q, V(e,t) £ r — 1y, then if ¢ is in Q] and J is a chain from
¢ to t we have

D{H(T, o), A} <7 and D{H(T, A), A} <r.
J J
The remainder of the argument is omitted.

3. Specialization. Throughout the rest of this paper, the complete
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metric space S is required to be an additive abelian group with zero
element N having a norm |[|-|| such that, if « and y are in S then
[[z|] > Ounlesse = N and [|N|| =0, || —«|| = ||z]}, |z + yl| = llz|+lly]l,
D{z,y} = |l — yll. If F isin B, the set of all continuous transforma-
tions from S into S, then —F is the element G of B defined by Gx =
—(Fx) and, if H is in B, then F 4+ H is the element G of B defined
by Gx = Fa + Hz.

THEOREM A’. Suppose F is a function from the number interval
[a, b] into B, A a point of S, r @ positive number, ¢ in [a, b], each of U
and V a variation function for [a, b]l. Suppose further that for p and q
in [a,b], x and y in S, |lx —All < r and |ly — A|| £ r, we have

(I) WF(@) — F@lx — [Fp) — Folll = lle — yllU®, 9)
and

I I[F® - F@lkll= V(p, 9 .
If T s the function from the square disc [a,b] x [a,b] inte B defined
by T(p, q)=I1+[F(p)—F(q)] then there is a subinterval Q of [a, b] contain-
wng ¢ such that i+f t is in Q and J s a chain from c to t, then

TIAT, A) — All < r; and, ©f Q is such an interval and t is in Q, then
the continuous product J1¢ (T, A) is a point of S.

Proof. We shall prove that T satisfies the hypothesis of Theorem
A, with W the closing function U-V.

If  and y are in S, p and ¢ are in [a,b], ||z — A|]| < r and
lly — All < r, then

D{T(p, q)z, T(p, @)y} = llx + [F(p) — F(¢)le — y — [F(p) — F(9)lll
= o —yll + IIF () — F(Q)le — [F(p) — F(9lll
< D{z,y}[1 + U(p, )1,

which is (1) of the hypothesis of Theorem A. Also,
D{T(p, ¢z, =} = |[|[F(p) — F(@lkll < V(p, q),

which is (2) of the hypothesis of Theorem A.

Suppose z is in S, p and ¢ in [a,bd] and ||I], (T, 2) — A|| < r for
each chain J’ from ¢ to a number ¢ in [a, b] such that |p — ¢| + |t — ¢|=
|p — q|. Denote by {¢}74! a chain J from p to ¢ and set

F(tiw) — Ft) = 4, = K, and K,_, + 4K, K,, 1=1,-4,m.
Then [T, ,Jx is « if 1 =0, « + 42 if 7 =1 and

J J i-1 7 -1
x + ‘_Zl. 4K, =a+ dx+ g‘; 4z + %AMKM-J =z + ;Ai[ﬂ Tu,J]w

u=1
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if 1 <j<mn. Since
T(p, ) = @ + [F(p) = Flg)le = © + 3 dar
we have

”Lﬁl T“]x — T(p, q)x“
l + 4 +§‘,A|:x _;Ji 4,K,_, } - {a: + dx + é; Aix}H
U..

Il
—_——

é é Ai l:w + Z 4 Ku 1] - Ai ‘ é g:: ‘Li:lllAuKu—l
< S U S IAK S S UL SV
=3 ULV@ DS UG, QVe, 0 = Wr, a0,

which is (3) of the hypothesis of Theorem A. This establishes Theorem
A’ As before, we denote .[* (T, A) by Y(¢).

COROLLARY. If t is in Q, n an integer greater than 1, J the chain

{t;}72! from ¢ to t of mesh & and R(0) is the least number k such that,
if each of p and q s in Q and |p —q| <08, V(p, q¢) =k, then

|7 - [[17..]4]|= RO exo 0 01 - 13 .

Proof. By (2.3), with W=U.V,
|[v@ -[[17., || UnVas + £ 0o Virs [ 1L+ T,
< RO U+ 3 U L1 + Uy}

< RO exp| 50, | - 1}= RO (exp U, ) - 13,

as was to be proved.?

2 Note that if for V' = MU some number M then
” i—1 n i-1 n
2 Ui 3 Uy = MY Uy 33 U < (M]2) ;1Uz.J]Zg (M2)[U(p, )12 .
- = < w =

In this case W(p, q) may be defined to be (M/2)[U (p, q)]2. Note also that if ,I1%(7, X) ex-
ists, then ||,11«T, X) — T(p, )z|| < (M/2][Up, ¢)]2 or U(p, Q)Vip, q) depending on whether
or not M is a number such that V = MU.

8 If V=MU and W = (1/2)MU? then ||Y () — [[‘[LlTi,J]AHg;(l/Z)R(a) exp [Ule,t)—1].
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It follows from this corollary that for a positive number ¢ there
is a positive number 6 such that, if ¢ is in @ and J a chain from ¢ to
¢ of mesh less that 6 then ||Y(t) — T1,(T, )| < e.

4. Other approximations to Y(¢). If x is a positive number and »
a positive integer then [1 + (z/n) + (1/2)(z/n)*]" is a closer approximation
to ¢ than is [1 + (x/n)]". The theorems in this section may be regarded
as generalizations of this fact.

With each chain J whose terms are in [a,b] we associate certain
elements of B which we denote by the letter J with a subscript and a
superscript. Suppose p and ¢ are in [a, 5], J the chain {¢,}7! from p
to ¢ and 6, = F'(¢;s,) — F'(¢), =1, ---,n. Then

JP=JP =1, 1=0,.-+,m £k=1,2,3, ---
and

JE = JE 4 670, i=12,m k=1,28,+--
Thus,

J© =T+ 38JE0, =1 m k=128, - .
w=1

Denote by @, a subinterval of [a, b] containing ¢ such that Ve, ) < r for
tin Q,.

THEOREM B. If x is in S, k a positive integer, p and q in @, and
lle — All + V(p,q) = r, then there is a point w in S such that, for a
positive number € there is a chain J from p to q such that, if K is a re-
Sinement of J and K = {s;}1-' then |lw — KPz|| < e.

Proof. To establish the theorem, it suffices to show that, if J is
the chain {¢}7*' from p to ¢ of mesh 6 and K the refinement {s}{}' of
J, then,

Ko — JP2l| < R(d){exp [U(p, ¢)] — 1} .

For each positive integer 7 not greater than =, denote by u, the
integer u such that ¢,., =s,.;,. Suppose j is a positive integer not
greater than » and denote by {¢,}?*! the section of J from ¢, to ¢,.,.
If F(que)) — F(q,) = 0,, u =1, ---, h, then

Jgrc) — J?f)z + (ﬁ:‘ 65>J‘(’k_—11)

and
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°
k — k k- j—
K;:l,-l?uj_l - ngj)_l + ZaLKE-i-ul)_l U = 1, ) h .
i=1 J

Note that Ki?, =K. Also, ||K{’x — Al < V(c, 8is,) = 7 and

1%z — All < Ve, tu) S 7,
t=1,ccomu=1-+--,n,v=123,---.
Then,
10— Kol = 1580 + 30,7800} — (K& @ + 31 0KE0,_a} |
< 15 — K® ol + 15 0,765 — 0K, _a} |
= 152 — K ol + 35 (10,7557 — 0K ¢Vl
+ 16K e — 0,KE N, _zll} = 1T — K& a0l
+ 3 U@, @) 15300 — Ko
+ 3% UG, ) NEE 0 — K2, o
< 10 — K& ol + 17857 — KE2w Uy + W,

where W = U-V. An induction argument similar to one used in prov-
ing (2.3) now yields

IE®w — Pl < Was + S Wl L+ U, o] < RO)exp (U@, 01-1}

as was to be proved.
We denote by 7T'®(q, p)x the point w of Theorem B. Note that for
each refinement K of the chain J of mesh 6 from p to ¢ we have

(4.1) T ®(q, pyr — K|l < E(©){exp [U(p, 9)]—1} ,

where m + 1 is the number of terms in K.

COROLLARY. If p is between ¢ and q, x and y in S, ||z—A ||+ V(p, )<
rlly— Al + V(p,q) £r and J is the chain {t;}13 from p to q, then

e — Pyl = oz — yll {exp [U(p, 91}
and, consequently,

|T®(q, pyx — T ®(q, p)yll =< lle — yll {exp [U(p, D1} .

Proof. This may be proved by an induction argument similar to
one used in proving (2.3), starting with
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10w — TPyl < |12 — 2wl + Vasll I35 — JE50y ]| .

THEOREM C. Under the hypothesis of Theorem B, if J is the chain
{t,} 24} from p to q, then

([ - s

i=1

1
éﬁl Vip, LU (p, 9))° -
Proof. As in part of the proof of Theorem A’ we have

” I:if[ Ti,J]_ J,(/c)x ,é V(p; tu+])U(p, tu+])y U = 1’ s, M.

Suppose there is a positive integer j° such that, for some positive in-
teger u not greater than n one has

|70 =722 > V@, U, ey
and denote by j the least such positive integer j'. Then,

H [II T“:Iac —J0g

el

= (‘i)j V(p, . )LU (v, tus)P u=1 -+, n.

Since Jg)m =X + Zu‘a AiJa(/.j:ll)x: U = 19 e,
=1
1=1
|| T T”]x— 4085
i=

i§=l. Ut sV (p, ty)

sS4l T, x—zAJO g

t=1 ve=1

A

Gy U

Vi, u+1)§..Uu(7 1)|[U(p’ )

LU (p, MYALU (p, )]

fiA

1A

Vot

= 31" V(p’ ta“-l)[U(p; tu-«-l)]j, U = 1, cey n .

which is a contradiction ; and Theorem C is established.!

THEOREM D. If J is the chain {t;}I} from ¢ to the number t in Q

¢ If V = MU then the inequality in the theorem may be replaced by Il[l]:‘=l T, 514]|

< [Mf(k+1)'[U (p, @)]5+' as the right hand side of the first inequality in the proof may
then be (M/2)[U (p, tu+1)]?, the left hand side of the second inequality may be [M/(j+ 1)!]
[U (p, tu+1))7*! and so forth with the argument proceeding as before.
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and k a positive integer, then
|Y® - [ 17 ]| s ey & vitv. e (0¢ bl

Proof. Denote by H a refinement of J of mesh 6 and let H;, =
{¢P}t% be the section of H from ¢, to ¢,.,. If K, = [H,] 52, i=1,--+,m,

then, by Theorem C,
&
”K[ IK¢:| - I=I1 wi [ IK‘:IAH< [TV, ,[U 15 d=1,+,n.

From Corollary 5 to Theorem A and the corollary to Theorem A’ it fol-
lows that

Yo -| f1K ]4|| < BOexp (U 01 - 1)
+ [ T3 Vil UssT{exp LU bl -

By (4.1) and the corollary to Theorem B we have

[ fa-{fre Jaf = o] s Ja -7 fi e 4|
[T fa-rl G af | o[ fLja - o {7 Ja]

[ Ja-[TmesJa

j:]-’"'yn;

< R(0){exp [U,,1—1} + {exp[U,,l}

’

and, by mathematical induction,

|1k Ja—| 11 72 4] = BO) 5 fexp (Ui~ 1}{exp LU, ten)])

i=1

= R(0){exp [U(, ¢)]—-1} .
Thus,

| v -] fire] 4 = 2RO exp (U, 01-1)
+ [/ 113, Viol UssTlexp [U(E, te)])

for every refinement H of J, that is for every positive number 6. This
establishes the theorem.

Note that, in the case » =1 and J is the two-term sequence ¢, ¢,
the sequence {T'®(¢, c)A}:, converges to Y ().

5 If V= MU then the inequality in the theorem may be

1Y@ -[ 11 78 |l = 11+ 01 5 [UsHexp (U (G, i) -
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5. The integral equation Y (f) = A + {{dF - Y. In this section we
ghall prove that, under the hypothesis of Theorem A’, the only solution
Y (t) on @ of this integral equation, which is continuous and satisfies
Y@ — All <, is JI°(T, A). We first make precise the meaning of
the integral.

The statement that {a }?*' is a subdivision from the number u to
the number v means that {a;}7*' is a non-increasing or non-decreasing
sequence having an odd number of terms such that {a,_,}{»i* is a
chain from % to v; the mesh of the subdivision is the mesh of this
chain ; and a refinement {b;}7%' of {a;}r%' is a subdivision from = to v
such that {b,-,}{7+*” is a refinement of the chain {a,_,}{"t*”* from u to
v. 1f F'is a function from the number interval [a, b] into B, X a func-
tion from [a, b] into S, » and v in [a, b] and R the subdivision {z;}7}*
from u to v then the sum X7, [F(ty..) — F(t,;-1)]1X(t,) is denoted by
S dF-X. The statement that X s F-integrable from u to v means
there is a point w in S such that for a positive number & there is a
subdivision R from » to v such that, if R’ is a refinement of R, then

| Sr dF-X — wi| <e. If X is R-integrable from u to v, this point w
is denoted by {.dF-X.

THEOREM E. If F'is a function from the number interval [a, b] into
B, X a continuous function from [a,b] into S, u and v in [a,b] and V
a variation function for [a,b] such that, for each p, q in [a,b] x [a, b]
and each of x and y in the image of [a, b] under X we have

[F(p) — F(@)le — [F(p) — Flowll < lle — yllV(p,9) ,

then X is F-integrable from u to v.

A proof, following closely an existence proof for ordinary integrals,
is omitted. (Cf. [2]).

THEOREM F. Under the hypothesis of Theorem A’, the function Y
Jrom Q into S defined by Y(t) = JJ1'(T, A) is the only continuous function
G from Q into S such that, G(t) = A + (WdF-G and ||G(t) — Al| < r for
tin Q.

Proof. The function Y is continuous (Corollary 4 to Theorem A)
and Flintegrable from ¢ to each ¢ in @ (Theorem E). Suppose ¢ is a
positive number and denote by & a positive number such that, if J is
a chain from ¢ to the number ¢ in @ of mesh not greater than ¢, then

WY ) — 11T, Hll <¢f3[U(«, B) + 11,

where @ = [«, ] (Corollary to Theorem A’). Suppose R is a subdivision
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from ¢ to ¢ such that, if R’ is a refinement of R then

S AF-Y — SLdF. Y“ <¢3
R’ ¢

and suppose {s,}?"f' is a refinement R’ of R of mesh not greater than
0 such that s,y =8y, 1 =1, -+, mn. If 4, = F(sy+1) — F(8-,), which is
Typ—1,i=1,+--,m, then

| o -[a+]ar-7]|

<fro-fa s s [ )
Y Ai[;ﬁiTy,R,:lA — 34V (50
o[ o] S0

J=1

+¢8<e.

Therefore, ||Y (¢t) — [A + ({dF-Y]|| =0 so that Y(¢) = 4 + ({dF-Y.

Suppose that G is a continuous function from @ into S such that
|G@#) — All £ r and G(t) = A + {'dF-G for each t in Q. From the
definitions of the integrals involved, we have that if % is the continu-
ous function such that ||Y(¢) — G(¢)|| = k(¢) for each ¢ in Q and g(t) =
U(e, t) for each t in @, then

+ + [

[::1:[1 sz,Rlil A. - Y(Szi-l)

$ares ar

o~ far-o] < s

for each ¢t in Q.
Since

WY () — G)l| = MdF Y — S:dF-Gﬂ

it follows that 0 < k() < (idg-k for each ¢ in . But this implies that
k() = 0 and hence, F'(t) = G(¢) for each ¢t in Q. This completes the
proof of Theorem F.

6. Examples. In this section some of the results of the preceding
sections are applied.

ExAMPLE 1. Suppose F'is a function from [a, b] into B such that
F@t)z + yl= F@t)x + F(t)y for all ¢ in [a,b] and all = and y in S.
Suppose furthermore that Aisin S, ¢ is in [a, b], T'(p,q) = I + F(p) —
F(q) and there is a variation function U for [a, b] such that

(6.1) I[F(@) — Fo)l=ll = Up, plixll
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for every x in S and each (p, ¢) in [a, b] x [a, b].

That Theorem A’ implies that ,[]* (T, A) exists for each t in [a, b]
can be seen from the following. Suppose ¢ is in [a, b]. Denote
Al {exp [U(c, )]} U(p, q) by V(p,q) for each (p,q) in [a,b] x [a, b].
Denote by r a positive number not less than [|A4|| {exp [U(e, t')]—1}.
The reader may verify that (I) and (II) of the hypothesis of Theorem
A’ are satisfied for ||l — A|| < r and |ly — Al| < ». Suppose J is the
chain {t,}7%' from ¢ to a number ¢’ such that [¢' — ¢’|+ |[t" —¢c| =
|t’ — ¢|. Since

iz Jol<lalf o + s
[iimJo- - S1rc - e .4

= S vu||| iz 4| s S v Il + viaial

= 4l {exp| £ U1} = 14l ex0 (UG 11 =7

Thus, according to Theorem A’ J1* (T, A) is a point of S.
If J has mesh &, then by the corollary to Theorem A’ (see footnote
3) we have
IV (T, A) — 11 (T, Al = (1/2)R(0) exp [U(c, t')—1],

J

where R(0) is as defined in that corollary. But since
V = ||4ll {exp [U(c, t')]} U, we have

E(0) = || Al {exp [U(c, ¢} R'(9)

where R'(9) is the least number k such that if p and ¢ are in [a, b] and
|p — ¢l = 0 then U(p, q) =< k.
Thus,

11" (T, 4= I1(T, Hll = %HAH {exp [U(c, )1} E'(9) {exp [U(c, t) —1} .

A smaller upper bound to the error in approximating .JI* (T, 4) by
11 (T, A) can be found by the use of Corollary 6 to Theorem A. This
is done by redefining V. Suppose t' =+ c.

Denote [[]i-, T; ;14 by ¢, and |l¢,— 1%+ (T, A)|l by 7y, j = 0,1 -+ -, m.
Note that

lle;Il = Il All exp [Ufe, ¢5+1)] and || I1%+ (T, A)ll = || All exp [U(e, ¢5:)],
i=0,1,++-,m.

Denote by R, the interval with end points ¢; and ¢;., and by V a varia-
tion function for [a, b] such that

V(p, q) = exp [U(c, t;.:)1U(p, q)
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for (p,q) in R, x R, =1, ---,n. Taking into account the last com-
ment in footnote 2 and Corollaries 8 and 6 to Theorem A we have

L 170r |4 = 5 @, )| = T = L 2, 116 D)
= vy 0xp Uyl + {exp (UG, L)} LU, 112}
= lles-s = o1 (T, Dl {exp Uy} + {exp [Ule, )]} (LU T2),
j = 1, cee, .

By mathematical induction,
[ 1170 Ja = 017 (2, )| = 141 texp LU 0O 33410712

This may be compared with the upper bound to the error found by
MacNerney [2] which is, in the notation of this paper,

1Al {exp [U(e, )]} | exp [Us] —11Uss .

Some additional implications of this specialization of F' will be stated
without proof. Suppose that (p, ¢) is in [a, ] x [a, b],  in S, » a posi-
tive integer greater than 3, K the chain {8} from p to ¢, r a positive
number and U(p,q)[||x||+r]<r. Then,by Theorem B, T®(p,q)x is a point
of S for each positive integer k. If 4,=F(s;,)—F(s;), =1,---, n, then

KP=TI+ 4+ ---+4)
and

KP =1+ d + 41 + 4]+ 41+ (4, + 4)] + ---
+ 4L+ (4 + e+ 4]

=T+ (di+ -+ 4) + [ddy + (ddy + 44) + - -+
+ (ddy A e 4 454570,
j=38,-+-,n and so on for t = 3,4, --- .

Moreover, if I(p, q)y = [F'(p) — F(q)]ly and
Lo, @y = || 4F @)1, a), i=1,2 .-

for each number pair (p, ¢) in [a,b] x [a, b] and all y in S, then
T®(p, 0)x = x + L(p, q)x + -+ + I(v, ¢)z. [2], [9]

If S is a normed, linear and complete space, and F(p)F(q) =
F(q)F(p) for each (p,q) in [a,b] X [a, 0], then I(p, q)x = [1/7!][F(p)—
F(q))=. [4]

ExAMPLE 2. For this example, S is the real numbers. It is shown
how a solution to
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6.2) Y(t) = A+ Sf[u Y (u)]du

can be obtained by means of the continuous product under certain con-
dition on f.

THEOREM G. Suppose that [a, b] is o number interval, ¢ in [a, d],
A a number, r a positive number and f o function from the number
plane wnto the numbers such that +f x s a number then the function g
defined by g(t) = f(¢, x) for each number t is quasi-continuous and the
Junction h defined by h(t) = f(x, t) for each number t is continuous. If
there is a variation function U for [a, b] such that

['170 ) = £, 9000] < 1o — 9T, o)

Jor each (p,q) in [a,b] x [a,b], |l — A| < 7r and |y — A| < 7, then isa
subinterval Q, of [a, b] containing ¢ such that there is only one continuous
Sunction Y from Q, into the numbers such that Y(t) = A + §ifTu, Y (u)ldu
and Y () — A| < r.

Proof. Denote {“f[v, x]dv by F(u)x for each number 2 and each u

in [a,b], and denote I+ F(p)— F(q) by T(p, q) for each (p, ¢) in
[a, b] X [&, b]. Then,

IF(q) — F@o)ke — [F(g) — Fo)lyl
=@ ) = 7, 9lao| < 12~ ¥IU @, ).

Denote by M a number such that M = |f(v, )| if v is in [a,d] and
le — Al =r. Thus, if V(g, p) =g — p|M, then

IF@) - Fokl = |70, 90| = 10 - o111

for (p, ¢) in [a, b] x [@, 0] and |z — A| < r. As in (i) in the proof of
Theorem A, denote by &, a subinterval of [a, b] containing ¢ such that
Vie,t) <r for ¢t in Q..

If Y(¢) = JI' (T, A) for each ¢ in @,, then Y is the only continuous
function from @; into the numbers so that Y(t) = A + §idF-Y and
|Y() — A| < r for each ¢ in @,. Using the definition of F' and several
elementary properties of integrals one can see that

S”dF-Y = S’f[u, Y (u)ldu for each ¢ in Q, .

This establishes the theorem.
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ExampLE 3. The above example may be extended to the system
of equations

Ya(t) = A, + S”fa[u, Y, --, Yo(u)ldu, i=1,--,m

where the f, satisfy suitable conditions. This system of equations may
be written as

Y() = A+ deY

where
Y(0) = [Y(0)], A=[4] and F@)X] = | (Ao, @, -+, 2)d0 |
for each number » and each point [X,], a =1, ---, n.
ExamMPLE 4. The integral equation
6.3) Y@) = o+ S:Y(u)z du

which is a special case of (6.2) has Y (x) = tan = as a solution. This
equation can be written Y (x) = SxdF- Y, where F(u)y =u(l + y*) for
0

all numbers » and y.

This integral equation will be considered in some detail in order to
illustrate how Theorem F and various of the other theorems and corol-
laries of this paper may be applied.

Suppose that » is a positive number. If p, ¢, y and 2z are numbers,
lyl < r and |2) <, then

ILF(p) — F(olyl = |p(1 + v*) — a1 + v

=l@—-d+)I=lp—ql(1+7)=V(pa)

and
I[F(p) — F(o)ly — [F(p) — F(9)lx|
= — @ —2)| <lp—ql@ly —z|=Ulp, q)|ly — 2|,

where U(p, ¢) = 2r|p — ¢| and V(p, q) = A + 7*)|p — ¢| for each number
pair (p, q).

Now the contraction of U and V to an interval is a variation funec-
tion on that interval. Suppose that

T, Qu=y+F@)—Fl@Qly=9v+ (» — )1 + %)

for each of p, ¢, ¥y a number.
According to (i) of the proof of Theorem A, ([1* (T, 0) exists if
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(6.4) V(z,0) =1 + )|x| < r, that is if |z| < r/Q + 7).

Thus (6.4) determines (see (i) of the proof of Theorem A) an in-
terval of convergence for the continuous product for each positive
number r. The longest such interval determined by (6.4) is [—1/2, 1/2]
as 1/2 is the maximum of »/(1 + #*) for all positive numbers r.

Suppose that 0 < |2| < 1/2. Since (1/2) |z| — V'1/2[z]? — 1 is the
least number ¢ such that |z| < ¢/(1 + ¢*), the choice »r, =1/2|z| —
V1/2lz])) — 1 and V(p, q) = (1 + r})|p — q| for each number pair (p, q)
will yield, for each chain J from 0 to z, the smallest upper bound to
[oI17(T, 0) — T1,(T, 0)| of the type given in the corollary to Theorem A’.
By means of (6.4) this yields an interval of convergence containing z.

Suppose that C, r, and 7, are numbers such that |Y(1/2) — C| =
r, < rs. Suppose furthermore that |C|+ r;=1r, U(p, q) = 2r|p — ¢
and V(p,¢) =1 + r)|p — ¢| for each number pair (p,q). Thus, by
Corollary 6 to Theorem A, if @, is an interval such that V(1/2,x) <
ry — 1, if @, is in @, then there is a point which is ,,J[** (T, C) for each
o, in Q.

Suppose that x, is in @, and is greater than 1/2 and J is a chain
from 1/2 to x,. From the inequalities in Corollary 6 to Theorem A and
the corollary to Theorem A, the error in approximating Y(a.,) (i.e., tan
x) by II;(T, C) can be determined. From these corollaries, it follows
that for a positive number ¢ there is a positive number ¢ and a chain
J from 1/2 to a, such that, if |tan 1/2 — C;| < ¢ and J’ is a refinement
of J, then |II, (T, C,) — tan x| <ee.

In this way, the interval of convergence of the continuous product
can be extended beyond [—1/2, 1/2].

Suppose that ¢ is in [—1/2, 1/2], p is between 0 and ¢ and = is a
number such that |x|+ 2]¢ — p| £ 1. As an illustration for §4 it will
now be shown how T ®(p, ¢)x can be determined where T'(u, v)y =
¥+ (u — v)A + ¢*) for each number pair and every number y.

By Theorem B, there is a number which is T®(p, q)x. Suppose
that n is a positive integer greater than 2. Denote by .J, the chain
from p to ¢ which is {p + (¢ — 1)(¢ — p)/n}72!. Denote

Flp+ig—p)/n]l—Flp+ (G —1)—q)n]l by 4, j=1,---,n.
Using the notation of §4 we have
()l =2 + (4 + -+ - + Ap)x
=z + [u(e — p)/n](1 + 2%, wu=20,1,---,m,
[P = [P + 47,10 =T + 4,
[J P =1+ 4y + A[1 + 4] + 41 + (4, + 4,)]
SRS 1 A o 7 N SRR S Py | B J=38,-0,m.
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So,
n i—1
[JJPr =2 + 42+ 3 Ai[x + (2_ Au> x]

=&+ [l — IS {1+ [+ (¢ = )i — DL+ =)l
=a+ (¢ — )1 + a*) + 2o(1 + @)[(¢ — p)/n]n(n — 1)/2]
+ (L + @l(q — p)nJlln — 1)(@n — /6] .

As n—> o we get

[JPw = + (¢ — p)(1 + &) + (1 + @*)(q — p)’
+ @A3)A + @)@ —p) =TM® )z .

The reader may note that the first three terms of 7 ®(p, ¢)x are
the same as the first three terms of the power series expansion about
p of Y(¢) where Y is the function satisfying

Y(t)=(t—p)+x+ gt Y (u) du
for each number ¢ such that |p — ¢| + |t — q|l = |p — ql.
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