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1. Introduction. Let F(x) be a distribution function that is a
nondecreasing, right continuous function such that F( — c») = 0 and

co) = 1. The Fourier transform of F(x), that is, the function

(1.1) f(t) = \°° eu*dF(x)
J

is called the characteristic function of F(x). It is often of interest to
decide whether a given function f(t) can be a characteristic function,
i.e., whether it admits the representation (1.1). Necessary and sufficient
conditions are known which a complex-valued function of a real variable
t must satisfy in order to be a characteristic function (see e. g. [7]).
However, these general conditions are not easily applicable. Therefore
various conditions were derived which are restricted to certain classes
of functions but are applied more readily.

J. Marcinkiewicz [10] derived necessary conditions for an entire
function to be a characteristic function. In the course of this study he
obtained the following result:

THEOREM A. An entire function of finite order p > 2 whose ex-
ponent of convergence pλ is less than p can not be a characteristic function.

As a consequence he obtained also

THEOREM B. Let Pm(t) be a polynomial of degree m > 2 and denote
by f(t) = exp [Pm(t)]. Then f(t) can not be a characteristic function.

Theorem B is frequently called Marcinkiewicz' theorem. This theorem
is quite often useful and was applied by many authors in studies con-
cerning the statistical characterization of the normal distribution. A
short while before the publication of Marcinkiewicz' paper G. Kunetz
proved [5], [6] certain particular cases of the theorem. He did not
however succeed in proving the theorem for arbitrary polynomials.
Marcinkiewicz based his proof on the classical theory of entire functions.
More recently D. Dugue [3] gave a new proof of Theorem B and showed
that the result was due to certain convexity properties of characteristic
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functions. He used a theorem similar to Hadamard's three circle theorem.
In the present note, Marcinkiewicz' theorem is extended to iterated

exponentials and to certain functions of the form f{t) =f1(t) exp [Pm(t)].
The approach is different from the one used by either Marcinkiewicz or
Dugue in so far as it is more elementary. The principal results do not
require tools from the theory of entire functions but are established by
means of a few results from the theory of analytic characteristic func-
tions. In this connection it might be of interest to note that Theorem
B is a particular case of Theorem 1. In this manner a rather elemen-
tary proof of Marcinkiewicz' theorem (Theorem B) is obtained which uses
only the property of analytic characteristic functions which is stated as
Theorem D in the next section. The technique can also be used to prove
Theorem A this however can not be done without using some results
from the theory of entire functions.

2. Some results from the theory of analytic characteristic functions.
A characterististic function is said to be an analytic characteristic func-
tion if it coincides with a regular analytic function in some neighbor-
hood of the origin. The following theorem, due to R. P. Boas [1], is
often useful if one wishes to show that a given characteristic function
is an analytic characteristic function.

THEOREM C. Let A(z) be a function of the complex variable z which
is regular in some neighborhood of the origin. Let f(t) be a character-
istic function, Δ > 0 a positive number and assume that f(t) = A(t) if t
is real and if — A < t < + Δ. Then f(t) is an analytic characteristic
function.

In the following we need one of the basic properties of analytic
characteristic functions which we formulate as

THEOREM D. If a characteristic function f(z) is regular in a neighbor-
hood of the origin then it is also regular in a horizontal strip of the z-
plane and can be represented in this strip by a Fourier integral. This
strip contains the origin in its interior it may degenerate into the whole
plane or into a half plane. For any horizontal line located in the interior
of the strip, the modulus \f{z)\ attains its absolute maximum on the im-
aginary axis.

We say that a characteristic function is an entire characteristic
function if its strip of regularity is the whole 2-plane.

The proof of Theorem D may be found in [8]1 or in [9] the second
1 Theorem 3 of [8] contains an error. The statement concerning the derivatives of ana-

lytic characteristic functions is valid only for derivatives of even order.
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of these papers contains also a bibliography concerning analytic character-
istic functions.

In the next section we state our results. In § 4 we prove a funda-
mental lemma. The proofs of Theorems 1 and 2 are given in §§ 5 and 6
respectively. The final § 7, contains a proof of Marcinkiewicz' Theorem A
which is different from his original proof since it is based on the lemma
of §4.

3. Statement of the results. We introduce first the following con-
venient notation for iterated exponentials.

(3.1) φ) = exp (z), φ) = ββi< >, , ek(z) = ββ*-i«

This notation permits us to formulate our results concisely.

THEOREM 1. Let P(t) = Σ™=(A*fl be a polynomial of degree m > 2
and for any integer n ^ 1 set fn(t) — ιcnen[P(t)] where κ~ι = en(c0). Then
fn(t) can not be a characteristic function.

The determination of the constant κn is necessitated by the known
fact that every characteristic function equals 1 for t = 0. For n = 1
Theorem 1 reduces to Marcinkiewicz' theorem.

THEOREM 2. Let Pm(t) = ΣΓ-A^ be a polynomial of degree m. The
function

(3.2) f(t) = exp [^(β" - 1) + ;a(β-« - 1) + Pm(t)]

is a characteristic function if and only if λx ^ 0, λ2 ^ 0, m ^ 2 and
P2(t) = a^it) — azt

2 where aL and aλ are real and α2 ^ 0.

This theorem contains again as a special case Marcinkiewicz' theo-
rem it is obtained if we put λλ = λ2 = 0. The proof will be based
primarily on the maximum property stated in Theorem D.

4. Proof of a lemma. Before stating the lemma, we introduce the
following notation which will be used consistently throughout the paper.
Let φ (z) = Σ ? - A ^ denote a polynomial of degree m without constant
term and with cm Φ 0. The coefficients cl9 c2 , cm are arbitrary com-
plex numbers. Define the real functions ax{tf y) and βτ(t, y) as the real
and imaginary parts, respectively, of φι(z). Moreover, define

Aλ{t, y) = α x(ί, y) - ^ ( 0 , y)

The chief instrument in the proof of Theorem 1 is the following lemma.

LEMMA 1. Let θ be an arbitrary real number. If m > 2, there
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exists ξm ^ 0 and a real number y* such that for t* — y*\/ξm and some in-
teger gτ

A&*, V*) > 0, ft(t*, 2/*) - 2Qlπ = β.

REMARK. The full statement of the lemma is used only in the
proof of Theorem 1. The proof of Theorem 2 as well as that of Theo-
rems A and B require only the part of the lemma which refers to the
function ^(ί*, 2/*).

Write cυ = aυ + iβυ (v = 1, 2, , m, aυ9 βυ real) and obtain for the
polynomial φ^z) the expression

w

(4.1) φx{z) = Σ(«. + «A)(ί + iyf

Set

[S/2]

(4.2.1) Fs(f) = ΣίDί-f)*- 1 for s ^ 2 and F,(ί) = 0

and
[Cs + l)/2] CCs-l)/2]

(4.2.2) TFs(f) = Σ Gt-iX-f)*"1 = Σ α s + 1)(-f) s for s ^ 1

The symbol [a?] denotes here, as usual, the greatest integer contained
in x. One may show by straight forward computation that

(4.3.1) (t + iyΓ = (-l)Vϋ{l - ?y-*V2υ(t2y-2) ~ ity^W

and

(4.3.2) (ί + iyf*-1 = (-ly-yv-Hty-'W^itfy-t) + iίl-

In the following we write

V* ^ 7 TiV = = ^2ϋ? 7*2«-l = = Γ2v-lt ^2v = = r2ϊ)> ^2ϊ)-l : = : ^2«

and obtain from (4.3.1), (4.3.2) and (4.4) that

(4.5) (α, +

for s = 1, 2, •-, m.
The last formula permits the computation of α^ί, ?/) and of βx(t, y) one
obtains immediately

2 This is stated below as Lemma la.



SOME EXTENSIONS OF A THEOREM OF MARCINKIEWICS 491

(4.6.1) aλ{t, y)

= Σ {(-1)[(S+1)/2V Γ l - ί V ^ ί V 2 ) ] + (-l)ι mδ,ty-ιW.(i?y-*)W
s - 1

and

(4.6.2) βr{t, y)

= Σ {(-i)ι<-lilίlr^y-1W,(t^y-t) + (-i)C s /%[i-ί22
S = l

Since A^t, y) = a^t, y) — tfi(0, y) we obtain from (4.6.1)

(4.6.3) Aλ(t, y)

= Σ {(-lF'-^Vr
υ = l

we introduce a new variable ξ = ί2?/"2 (f ^ 0) and write

(4.7)

then

, H) = Σ
(4.8)

m

The functions A^yx/Ύ, V) and β1{yχ/~ξ', y) are polynomials in ι/ whose
coefficients depend on ξ. We study next the coefficients of the highest
power of y and prove the following two statements.

LEMMA 2. Let m ^ 4, £/&ew iί is possible to find a real number

ξm>0 such that Am(ξJ > 0 while Bm{ξm) Φ 0.

LEMMA 3. If m = 3 αwώ ft Φ 0, ί/̂ β^ ί/̂ erβ raises ξ3 > 0
βsAiζs) < 0 α̂ cZ B3(f3) ^ 0. 1/ m = 3 αraZ ft = 0 ίAerc ίΛβrβ β^ΐsίs f3 > 0
such that A3(ζs) > 0 and B3(ξ3) Φ 0.

Consider the expression (l+ii/T)s where s is a positive integer

and ξ ^ 0 and set φ = arc tan i / F with |φ | ^ -̂ -. Then

(4.9.1) (1 + ή / T ) s = (1 + f)s/2(cos sφ + i sin sφ) .

For s ^ 2 w e expand (1 + ίVΎ)s according to the binomial theorem and

obtain
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(4.9.2) (l + n/?> = [ΣG*)(- if + [ Γ Σ ?
Λ=0 k=0

We note that (1 + f)(s/2) = (cos φ)'s and obtain from (4.9.1) and (4.9.2)

= (cos sφ)/(cos φ)s

(4.10)
τ/f Ws(ξ) = (sin sφ)/(cos φ)s .

For the sake of brevity we introduce the notation

(4.11)

Δ = ( - l ) « ^ m

and express the functions AJβ) and Z?m(6) in terms of the variable φ.
If we write

(4.12) ξ = tan2 φ , C(φ) - Am(tan2 φ) , Z)(φ) = 5m(tan2 φ)

we get from (4.7), (4.10) and (4.11)

(4.13.1) C(φ) = / ( 1 - J ^ ^ Ί + Δ sm mφ
L (cosφ)^J (cosφ)m

(4.13.2) D(φ) = Γ - 8 1 1 ^ ^ - + Δ - ^ 8 - 7 ^ .
v (cosφ)w (cosφ)™

We prove Lemma 2 by showing that it is always possible to find a
value φ0 such that C(φ0) > 0 while D(φQ) Φ 0.

We give the following rule for the selection of φ 0:

(I) If Γ > 0 and Δ ^ 0 then select φ0 so that -?— < φ0 < — while
2m ?n

tan mφ0 ̂  — Δ/Γ

(II) If Γ > 0 and Δ < 0 then select φ0 so that - ^ - < φ0 < - ^ w h ί l e

m 4m
tan mφ0 ̂  — Δ/Γ

(III) If Γ = 0 and Δ > 0 then select φ0 so that - ^ - < φ0 < —
2m m

(IV) If Γ = 0 and Δ < 0 then select φ0 so that -7Γ < φ0 <
 57Γ

?^ 4 m

(V) If Γ < 0 select a value φ0 which satisfies the following three
ditions :

4m

con-
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(a) <Φ0< —
m m

(b) tan mφ0 Φ — Δ//τ

(c) h(φ0) = Γ(cosm φ0 — cos mφ0) + Δ sin mφ0 > 0 .

To show that it is possible to select φ0 in case (V) so that condition (c)
is satisfied, we observe that h(φ) — Γ(cosm φ — cos mφ) + Δ sin mφ is a
continuous function and that h(2πlm) > 0. Hence the function h(φ) will
be positive in some neighborhood of φ = 2πjm so that a solution in ac-
cordance with V is possible. The assumption cm Φ 0 implies that Γ and
Δ can not vanish simultaneously so that the selection covers all pos-
sibilities. Using this fact as well as the assumption m ^ 4 it is easily
seen that the value φ0 whose selection we just described satisfies the
conditions C(φ0) > 0 and D(φQ) Φ 0. But then it is seen from (4.12) that
ξm = tan2 0o satisfies the conditions of Lemma 2.

We prove next Lemma 3. We see from (4.7) that

- ay~f(S - ξ)

ξ (3 - ξ) - all - 3f) .

If β3 φ 0 and a3β3 < 0, choose ξ3 > 3 and if β3 Φ 0, aφz ^ 0 choose
0 < f3 < 3. If ft = 0 select ξ3 > 3 if α3 > 0 but 0 < 63 < 3 if α3 < 0.

In the following we assume that m ^ 3 and choose ξm in accordance
with Lemmas 2 and 3 respectively. We write

(4.14) A

and from (4.7) and (4.8) obtain

(4.14.1) Λd/i/e,., 2/) = Λ»r + Σ
υ«l

Let now m ^ 4, then

as

We see from Lemma 2 that Am > 0, so that AiO/V^, 2/) is positive for
sufficiently large positive values of y.

We consider next the case m = 3 and write e = sign y = 2//I2/I. We
choose ε so that εβ3 < 0. Then

We know from Lemma 3 that εA3 > 0 so that AfyVί,, y) becomes posi-
tive if the sign of y is opposite to the sign of βz and if \y\ is sufficiently
large. We summarize these findings in the following statement:
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LEMMA la. Let m ^ 3 and suppose that one or the other of the fol-
lowing two conditions is satisfied.

( i ) m > 3 or m = 3 and β3 = 0

(ii) m = 3 a n d j 8 3 ^ 0 .

Then there exists a ξm ϊ> 0 and an A > 0

where the estimate holds in case (i) asy->°o but in case (ii) as (—si#^ /?3) ?/-> °o.
2%ew ί/z-erβ exists also a value Y = Y(m) such that

Aλ(yVYm, y)>0

provided that in case (i) y ^ Y while in case (ii) one must require
(—sign β3)y ^ Y.

We choose again ξm in accordance with Lemmas 2 and 3 respectively
and consider the polynomial

(4.15) B(y) = β^yVϊ^ y) - Σ Bvy
υ .

Here i?,, is given by formula (4.14). Again let Y be the number deter-
mined by Lemma la. Since Bm Φ 0 we conclude from (4.15) that

B(y) - Bmy™[l + o(l)] as \y\->™.

This means that B(y) is monotone if y is sufficiently large. We can

therefore find a Yo > Y such that i?(ί/) is monotone for \y\ ^ Yo. In

view of Lemma la it is always possible to find a real y0 such that

\yo\ > Yo and A1(?/o'V/fm, ?y0) > 0. Let θ be an arbitrary real number,

then there exists an integer g such that

θ + 2πg £ B(y0) < θ + 2π(g + 1) .

We consider from now on only such values of y for which yy0 > 0 and
I y I ̂  Vo For such values B(y) is either monotone increasing or monotone
decreasing. In the first case we can find a value y1 such that B(yλ) =
θ + 2(g + l)π in the second case there exists a value yλ for which
B(Vι) = & + 2gπ. Since \yA^yQ and yλyQ > 0 we see from Lemma la that

Ad/iV^, y) > 0 while B ^ ) - ^ = β^y{]/%,, yλ) - θ is an integer multiple

of 2π. To complete the proof of Lemma 1 we must only put y% = y1

and ί* =

5 Proof of Theorem 1. Let P(t) = Σ ? - o ^ β be a polynomial of
degree m > 2, (cw ^ 0) and κ~ι = βn(c0). We carry an indirect proof for
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Theorem 1 and suppose therefore that

is a characteristic function. The function fn(t) agrees for real values of
z with the function A(z) — fcnen[P(z)l so that the conditions of Theorem
C are satisfied. Hence fn(t) is an entire characteristic function. We
consider from now on this characteristic function also for complex val-
ues of the argument z = t + iy and can apply Theorem D. The last
part of this theorem indicates that necessarily

(5.1) R(t, y) =

for all real t and y.
Define the functions

fn(iy)
< 1

(5.2) fυ(z) = κυeυ[P(z)] (v =[1, 2, . -., n)

where κυ = [^(CQ)]"1 and note that fυ(0) = 1 (v = 1, 2, , n) and that
fλ(z) = exp [φi(z)]. We (easily) obtain from the definition (5.2) of the
functions fΏ(z) the recursion formula

(5.3) fυ(z) = exp K-Λ[Λ-i(z) - 1]} (v - 2, . . . , n) .

We introduce now the functions

(5.4.1) φυ(z) = ic llfv-Az) - 1] (v = 2, 3, . . -, n)

and write av(t, y) for the real part and βΌ(t, y) for the imaginary part of
φυ(z) so that

(5.4.2) φυ(z) = aυ(t, y) + iβυ(t, y) (v = 1, 2, . ., n)

and

(5.4.3) Λ(^) - exp [φ,(s)] (v = 1, 2, , w)

Let JOB, ; υ be real numbers satisfying

(5.5.1) Λ,-1 = exp (Pv + iλυ) (v = 2, 3, ., n) .

Since ic l̂x = eβ-i(co) we see that κ~ι = exp (/ĉ ii) or exp (^ + iAB) =
e z{pυ-ι + iK-i) Therefore

(5.5.2) pυ + iλυ = exp (ioϋ_1 + iλΌ^) + 2^ττi

where gυ is an integer. It follows from (5.5.2) that

(5.5.3) λυ = epv-i sin V i + 2gΌπ .

We combine (5.4.1), (5.4.3) and (5.5.1) to get
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φυ(z) = exp {pυ.λ + i/lί,_1){exp [aΌ^(t, y) + iβΌ-i(t9 2/)] —1} (v = 2, 3, , w).

Separating real an imaginary parts in the last formula we obtain for-
mulae for aυ(t, y) and βΏ(t, y)

(5.6.1) aυ(t, y) = ^ - i - » - i ( w cos [^_x + &_i(*, y)] - βP*-i cos

(5.6.2) β,(ί, 2/) = βP«-i+*-i^> sin [̂ _x + βυ^(tf y)\ - e p -i sin λΌ^

(v = 2,3, ••

Moreover, setting ^ ( ί , ?/) = αβ(f, ?/) — αβ(0, ?/) we obtain

(5.7) Λ(ί, 2/) - {^-ic*^ cos [4-x + Λ-x(ί, 2/)] - cos [Vi + A-!(0, y)]}

x exp [>„_! + av^(0, y)] (v = 2, 3, , n) .

We apply now Lemma 1 and select θ — — λx. Then it is possible to find
a pair of real numbers t*, y* such that

(5.8.1) ^ ( i * , i/*) > 0

while

(5.8.2) &(**, 2/*) + ^ = 2^τr (^ an integer).

We show next by induction that a similar relation holds for all functions
βv(t, y) namely that

(5.9) &(**, y*) + ^β = 2Λτr .

Here £*, #* are the values determined by Lemma 1, λv is given by (5.5.3)
and gυ is an integer. We prove (5.9) by induction. Formula (5.8.2) in-
dicates that (5.9) is valid for v = 1, we suppose now that it holds for
all subscripts inferior to v. In particular then, βυ-λ{t^y y*) + λυ^ =
2#Ή_17r. Substituting this into (5.6.2) we see that &(£*, y*) = — βp«-i sin ^.x =
—λΌ + 2gυπ. Thus (5.9) is generally valid.

We see from (5.7) and (5.9) that

, V*) = {^- i^w - cos [̂ _x + ^.,(0, i/*)]} exp frv, + ^ ^ ( 0 , «*)]

From this formula we see that the relation ^ . ^ ί * , 2/*) > 0 implies

> 2/*) > 0. We can therefore conclude from (5.8.1) that

(5.10) 4,(ί*, 1/*) > 0 .

It follows immediately from (5.1), (5.4.2) and (5.4.3) that R(t, y) =
exp {An(t,y)}. We have therefore determined values £*, 2/* such that

(5.11)
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But this contradicts (5.1) which must be satisfied if /„(£) is a character-
istic function. This contradiction completes the proof of Theorem 1 since
it shows that fn(t) can not be a characteristic function if m > 2.

In case m ^ 2 the iterated exponential polynomials fn(t) = en[P(t)]
can be characteristic functions. The function f(t) = exp (—α/2 + iaxt)
where ai and a2 are both real, α2 ^ 0, is a characteristic function it
follows then from the recursion formula (5.3) and a Theorem of B. de
Finetti [4] that fυ(z) as defined by (5.2) is a characteristic function for
all values of v. For the sake of completeness we quote de Finetti's
result.

Theorem of de Finetti. If f(t) is an arbitrary characteristic func-
tion and if p is a positive real number then g(t) — exp {p[f(t) — 1]} is
also a characteristic function.

6. Proof of Theorem 2. In this section we investigate the func-
tion

(3.2) f(t) = exp [λλ(eu - 1) + λ,(e'ιt - 1) + Pm(ί)]

where

m

Pm{t) = Σ cβί (cm Φ 0)
υ = 0

is a polynomial of degree m.
If f{t) is a characteristic function then it must be, according to

Theorem C, an entire characteristic function and we write

(6.1) f(z) - exp {̂ (β* - 1) + λ,{e-iz - 1) + Pm(z)}

where z — t + iy. We can apply Theorem D and see that necessarily

(6.2) R(t, y) - f(t + iy)
f(iy)

< 1

for all real t and y.
The familiar normalization of characteristic function [/(0) = 1] in-

dicates that it is no restriction to assume that c0 — 0. We write

f(z) - exp {λx{eiz - 1) + λ2(e~ίz - 1)] ,

/,(«) = exp

so

We see easily that
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(6.3.1) = exp [(1 - cos t)(- λφ-y - λ2e
y)] .

Since /2(z) = exp [PJt) - cQ] = exp [αx(ί, y) + iβ^t, y)~\ we get, using the
notation of Lemma 1,

(6.3.2) Λ(t + iy)
= exp

From (6.1), (6.2), (6.3.1) and (6.3.2) we obtain

(6.4) R(t, y) = exp [(1 - cos ί ) ( - Xxe~y - λ2e
y) + Ax{t, y)] .

We show first by means of an indirect proof that m < 3. Suppose
therefore that m ^ 3, we can then apply Lemma la and see that there

exist ξm ;> 0 and y such that Aλ{yV'ξm, y) > 0 provided that y satisfies

either condition (i) or condition (ii) of Lemma la. Substituting t = yλ/ζm

into (6.4) we get

R{yVTm, y) = exp [(1 - cos yVTm\-λλe'y - λ,ey) + Ax{yVTm, y)]

We select now an integer k which satisfies one of the following two con-
ditions :

(a) if m > 3 or if m = 3 but β3 = 0 then fc > (Γv/lw)/(2τr)

(b) if m = 3 and & =£ 0 then ( - sign βd)k > (Fl/?J/(27r)

Then y = 2πk satisfies either condition (i) or condition (ii) of Lemma
= lib

la. We substitute in the preceding formula y = (2πk)jVξm and obtain

R\2πk, —-—:) = exp AΛ 2πk,—-— I > 1

in contradiction with (6.2). Thus we have proven that necessarily m ^ 2.
In this case we have

(ί, V) = ait + aφ2 - 2β,ty

and

(6.5) R(t, y) = exp [(1 - cos t ) ( - ^e" t f - axt

We prove next that λλ and λ2 are non-negative. If either
negative we choose t — π, then

or is

R{π, y) = exp [2(- /l^-^ - λ2e
y) + axπ

It is then possible to make the exponent on the right side of (6.5) positive



SOME EXTENSIONS OF A THEOREM OF MARCINKIEWICZ 499

by selecting y sufficiently large and giving it an appropriate sign.

Therefore there exists a value y* such that R(π, y*) > 1 in contradiction

with (6.2). Morever it follows from the hermitian property [/(— t) =

of characteristic funcions that cλ is purely imaginary while c2 is

real. We conclude finally from the boundedness of characteristic func-
tions that c2 is negative. Writing cτ = ialf c.λ— — a% we obtain the com-
plete statement of Theorem 2.

Theorem B is also a special case of Theorem 2 it is obtained by
putting λx — l2 = 0.

7. Proof of Theorem A. In this section3 we consider an entire
characteristic function f(z) of finite order p. By Hadamard's factoriza-
tion theorem we can write f(z) in the form

(7.1) f(z) = G(z)eH&

where G(z) is the canonical product of the zeros of f(z) and H(z) is a
polynomial of degree m ^ p. We denote by pλ the exponent of con-
vergence of the zeros of f(z). It is easily seen that p = max (plt m).
If ft < P then necessarily p = m. It is known that the order of a ca-
nonical product equals its exponent of convergence. Let G(z) be a ca-
nonical product of order plf then for any ε > 0 the modulus | G(z) \ ^
exp(|z|pi+ s) provided that \z\ is sufficiently large. We will also use the
following result which is due to E. Borel:

If G(z) is a canonical product of order px and if ε is an arbitrary
positive number then there exists an infinite number of circles of arbi-
trarily large radius on which the inequality

holds.

Let z = t + iy and denote by r = \z\ = Vϊι + y2. We see then that
there exist arbitrarily large values of r such that

\G(t + iy)\ > exp ( - r p i + s ) .

On the other hand, we know that for arbitrary ε > 0 and sufficiently
large y

\G(iy)\ ^ exp (ypi+s) ^ exp (rpi+ε) .

We combine the last two inequalities and see that there exists an
increasing sequence {rk} of positive real number such that lim rk — oo

and that for arbitrary ε > 0 and sufficiently large k
3 We use in the following certain theorems from the theory of functions of a complex

variable. The needed results may be found, for instance, in [2], pp. 165-175.
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(7.2) Rι(t, y) =

EUGENE LUKACS

G(t + iy)
exp (—

provided that Vΐι + y" — rk .
We consider next ffa) = eH<:z) and write

(7.3)

so that

(7.4)

R&, y) = I exp [H{t + iy) - H(iy)]\

R{t, y) =
f(iy)

= Rtf, y)R2(t, y) .

We give an indirect proof for the statement of Theorem A and
assume therefore that f(z) is an entire characteristic function of order
p > 2 and suppose that the exponent of convergence pλ of the zeros of
f(z) is less than p Pi < p. Then necessarily (Theorem D)

(7.5) R(t, y)

for all real t and y.
Since pλ < p we have necessarily p — m, the degree of the poly-

nomial H(z). As a characteristic function f{z) must satisfy the condi-
tion /(0) = 1 so that H(0) — 0. We can then use the notation of Lemma
1 and write

so that

(7.6)

φL(z) = H(z) = Σ fa, +

Rλ(t, y) = exp [Aλ{ty y)] .

We see then from (7.2), (7.4) and (7.6) that there exists an infinite
sequence {rk} of indefinitely increasing real numbers such that for an
arbitrary ε > 0

(7.7) , y) > exp [- A1(tf y)]

provided that k is sufficiently large and that t2 + y1 = r%.
We define now an infinite sequence of points (tk, yk) in the ^ -plane.

In order to be able to apply Lemma la we subject these points to the fol-
lowing restrictions :

( i i ) I tk + iyk I = rk

(iii) if m > 3 or m = 3 while β3 — 0 then yk > 0

(iv) if m = 3 and /53 ̂  0 then (— sign β3yyk > 0
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From (i) and (ii) we see that all these points are located in the

same quadrant and that \yk\ = rk\V\ + ξm. We deduce from Lemma la
that

(7.8) A1(tk9 yk) = A\yk\
m[l + o(l)] as

We denote by C = A(l + ξm)-m/2 and obtain from (7.7) and (7.8)

k, yk) > exp {- 2r£i+8 + O ? [ l + o(l)]} as k^™ .

Since by assumption p == m > p19 we can choose the arbitrary posi-
tive quantity ε so that pλ + ε < m we conclude then from the last in-
equality that

R(tk, yk) > exp {O?[ l + o(l)]} as k-+™ .

Since C > 0 we can determine k so large that R(tk, yk) > 1. This,
however, contradicts (7.5) and we see therefore that f(z) can not be a
characteristic functions and have therefore completed the proof of Theo-
rem A.
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