SOME EXTENSIONS OF A THEOREM OF
MARCINKIEWICZ

EUGENE LUKACS

1. Introduction. Let F'(x) be a distribution function that is a
nondecreasing, right continuous funection such that F(—o) =0 and
F(+o) =1, The Fourier transform of F'(x), that is, the function

(1.1) ft) = Sle“”dF(x)

is called the characteristic function of F'(x). It is often of interest to
decide whether a given function f(t) can be a characteristic function,
i.e., whether it admits the representation (1.1). Necessary and sufficient
conditions are known which a complex-valued function of a real variable
t must satisfy in order to be a characteristic function (see e. g. [7]).
However, these general conditions are not easily applicable. Therefore
various conditions were derived which are restricted to certain classes
of functions but are applied more readily.

J. Marcinkiewicz [10] derived necessary conditions for an entire
function to be a characteristic function. In the course of this study he
obtained the following result :

THEOREM A. An entire function of finite order p > 2 whose ex-
ponent of convergence p, is less than p can not be a characteristic function.

As a consequence he obtained also

THEOREM B. Let P,(t) be a polynomial of degree m > 2 and denote
by f(t) = exp [P,(t)]. Then f(t) can not be a characteristic function.

Theorem B is frequently called Marcinkiewicz’ theorem. This theorem
is quite often useful and was applied by many authors in studies con-
cerning the statistical characterization of the normal distribution. A
short while before the publication of Marcinkiewicz’ paper G. Kunetz
proved [5], [6] certain particular cases of the theorem. He did not
however succeed in proving the theorem for arbitrary polynomials.
Marcinkiewicz based his proof on the classical theory of entire functions.
More recently D. Dugué [3] gave a new proof of Theorem B and showed
that the result was due to certain convexity properties of characteristic
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functions. He used a theorem similar to Hadamard’s three circle theorem.

In the present note, Marcinkiewicz’ theorem is extended to iterated
exponentials and to certain functions of the form f(¢) = fi(t) exp [P.(t)].
The approach is different from the one used by either Marcinkiewicz or
Dugué in so far as it is more elementary. The principal results do not
require tools from the theory of entire functions but are established by
means of a few results from the theory of analytic characteristic fune-
tions. In this connection it might be of interest to note that Theorem
B is a particular case of Theorem 1. In this manner a rather elemen-
tary proof of Marcinkiewicz’ theorem (Theorem B) is obtained which uses
only the property of analytic characteristic functions which is stated as
Theorem D in the next section. The technique can also be used to prove
Theorem A ; this however can not be done without using some results
from the theory of entire functions.

2. Some results from the theory of analytic characteristic functions.
A characterististic function is said to be an analytic characteristic funec-
tion if it coincides with a regular analytic function in some neighbor-
hood of the origin. The following theorem, due to R. P. Boas [1], is
often useful if one wishes to show that a given characteristic function
is an analytic characteristic function.

THEOREM C. Let A(z) be a function of the complex variable z which
is regular in some neighborhood of the origin. Let f(t) be a character-
istic function, A > 0 a positive number and assume that f(t) = A®t) of ¢t
8 real and if — A<t < + A, Then f(t) is an analytic characteristic
Junction.

In the following we need one of the basic properties of analytic
characteristic functions which we formulate as

THEOREM D. If a characteristic function f(2) is regular in a neighbor-
hood of the origin then it is also regular in a horizontal strip of the z-
plane and can be represented in this strip by a Fourier integral. This
strip contains the origin in its interior ; it may degenerate into the whole
plane or into a half plane. For any horizontal line located in the interior
of the strip, the modulus |f(2)| attains its absolute maximum on the im-
aginary axis.

We say that a characteristic function is an entire characteristic
function if its strip of regularity is the whole z-plane.
The proof of Theorem D may be found in [8] or in [9]; the second

1 Theorem 3 of [8] contains an error. The statement concerning the derivatives of ana-
lytic characteristic functions is valid only for derivatives of even order.
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of these papers contains also a bibliography concerning analytic character-
istic functions.

In the next section we state our results. In §4 we prove a funda-
mental lemma. The proofs of Theorems 1 and 2 are given in §§ 5 and 6
respectively. The final § 7, contains a proof of Marcinkiewicz’ Theorem A
which is different from his original proof since it is based on the lemma
of §4.

3. Statement of the results. We introduce first the following con-
venient notation for iterated exponentials.

(3.1) e/(z) = exp (2), ez) = €1, + -, 4(2) = k-1

This notation permits us to formulate our results concisely.

THEOREM 1. Let P(t) = S0 ict” be a polynomial of degree m > 2
and for any integer n =1 set f,(t) = ke [P(t)] where k;' = e (c,). Then
Sa(t) can not be a characteristic function.

The determination of the constant r, is necessitated by the known
fact that every characteristic function equals 1 for ¢t =0. For n =1
Theorem 1 reduces to Marcinkiewicz’ theorem.

THEOREM 2. Let P,(t) = D\ ct’ be a polynomial of degree m. The
Sfunction

(3.2) S(t) = exp [A(e"* — 1) + Afe™" — 1) + Pu(?)]

is a characteristic function of and only iof 4, =0,4,=>0,m <2 and
Py(t) = a,(1t) — a,t* where a, and a, are real and a, = 0.

This theorem contains again as a special case Marcinkiewiez’ theo-
rem; it is obtained if we put 2, =2, = 0. The proof will be based
primarily on the maximum property stated in Theorem D.

4. Proof of a lemma. Before stating the lemma, we introduce the
following notation which will be used consistently throughout the paper.
Let ¢ (2) = > .c,2° denote a polynomial of degree m without constant
term and with ¢, # 0. The coefficients ¢, ¢,---, ¢, are arbitrary com-
plex numbers. Define the real functions (¢, y) and B(¢, ¥) as the real
and imaginary parts, respectively, of ¢,(z). Moreover, define

A, y) = au(t, y) — a,(0, y)

The chief instrument in the proof of Theorem 1 is the following lemma.

LEMMA 1. Let 0 be an arbitrary real number. If m > 2, there
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exists £, = 0 and a real number y* such that for t* = y*1/€, and some in-
teger ¢,

Al(t*’ y*) >0, ﬂl(t*’ y*) - 29177-' =4.

REMARK. The full statement of the lemma is used only in the
proof of Theorem 1. The proof of Theorem 2 as well as that of Theo-
rems A and B require only the part of the lemma which refers to the
function A,(t*, y*).

Write ¢, = a, + 48, w=1,2, --+, m, a,, B, real) and obtain for the
polynomial ¢,(z) the expression

(4.1) () = S, + i)t + )

Set
(4.2.1) V) = fﬁ(gk)(—s)k—l fors=2and V(&) =0
and

(s

[(s+1)/2] -1)/2]
(4.2.2) W€ = kg(ik_l)(—é)’“ = I;)(ém)(—f)" for s=1

The symbol [«] denotes here, as usual, the greatest integer contained
in 2. One may show by straight forward computation that
(48.1)  (t+ )" = (1w {1 — ey Valy™) — ity Wa(y™)}

and

(4.3.2) (¢ + )y = (=1 oy Woa(By™) + 11—y~ Ve (Py )]}
In the following we write

(4.4) To = Gy Tpm1 = Bro-1s 020 = Paoy Grmt = Clayy

and obtain from (4.3.1), (4.3.2) and (4.4) that

(4.5)  (a; +iB)( + )y

= {(=DfC Dy [1—tyV(ty™)] + (=1)FM8ty~ Wty )}y
+ (=IOt Wty ) + (—1)F8[1 -y~ V(ty )]}y

for s=1,2, -+, m.
The last formula permits the computation of «;(¢, ) and of Ai(¢, y); one
obtains immediately

2 This is stated below as Lemma la.
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4.6.1)  at,v)
— i {(=Dteny [L—ty=* Vi(ey™)] + (= 1)ty Wty ™)}y
and

(4.6.2) Bt )
— :ZZ: {(_1)[(3—1)/Z]Tsty—1Ws(t2y~2) + (_1)[3/2]68[1_tzy—ZVs(tZy—Z)]}ys.

Since A,(¢, y) = a(t, y) — ay(0, y) we obtain from (4.6.1)
(4.6.3) A,y
= S (=) Ey V) 4 (=), Wy )y
we introduce a new variable & = #y~* (¢ = 0) and write
Av(g) — (_1)[(1:—1)/2]7,”5 V,,(E) + (_1)[«:/2]3051/2Wv(5)
(4.7) B,(§) = (=D g (E) + (=)Mo, [1 — EV(E)]
then
AWV E ) = 2 A6

(4.8)
By &,y) = 2 B -

The functions A,(y1/ &,y) and B(yy/ €,y) are polynomials in y whose
coefficients depend on &. We study next the coefficients of the highest
power of y and prove the following two statements.

LEMMA 2. Let m = 4, then it 48 possible to find a real number
&, > 0 such that A,(§,) > 0 while B,(£.) + 0.

LEMMA 3. If m =3 and B; # 0, then there exists & > 0 such that
B.A3(&) < 0 and By(&) +# 0. If m =8 and B, = 0 then there exists & > 0
such that Ay(&) > 0 and Bs(&) = 0.

Consider the expression (1441 £§)° where s is a positive integer
and £=>0 and set ¢ = arec tan /& with |¢| < ]25. Then
(4.9.1) 1+ 7/ &E) =1+ & (cos sp + 4 sin sp) .

For s = 2 we expand (1 + i1/ € )* according to the binomial theorem and
obtain
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(4.9.2) A+ €)= :i](;k)(— £y +[%s-]:2|)=/:](;k+l)( _1)kECken
=1—¢eV(&) + VEW).
We note that (1 + £)®» = (cos ¢)~* and obtain from (4.9.1) and (4.9.2)

1 — £V () = (cos sp)/(cos ¢’
(4.10) -
1V'E W(€) = (sin sp)/(cos ¢)* .
For the sake of brevity we introduce the notation
I = (=1,
(4.11)
A= (_I)Emlﬂam

and express the functions A,(¢) and B,(§) in terms of the variable ¢.
If we write

(4.12) £ =tan’ ¢, C(¢) = Au(tan’ ), D(¢) = By(tan® ¢)

we get from (4.7), (4.10) and (4.11)

13. — 11— cosmP sin me
(4.13.1) C($) [1 o ¢)’J +agnmd
(4.13.2) D(¢) = . sinme_ , cos me

(cos ¢)™ (cos )™

We prove Lemma 2 by showing that it is always possible to find a
value ¢, such that C(¢,) > 0 while D(¢,) # 0.
We give the following rule for the selection of ¢,:

T

(I) If " >0 and A = 0 then select ¢, so that 5
m

< ¢ < - while
m
(I) If I" >0 and A < 0 then select ¢, so that " < ¢, < —45—%% while
m

tan mep, = — A[I"

(IIl) If 7" =0 and A > 0 then select ¢, so that 7 < ¢, <
2m m

T <<

(IV) If I" =0 and A < 0 then select ¢, so that e

(V) If I' <0 select a value ¢, which satisfies the following three con-
ditions :



SOME EXTENSIONS OF A THEOREM MARCINKIEWICZ 493

@ T <g< T
m m

(b) tanme, = — AL
(€)  Alp) = I'(cos™ ¢, — cos mepy) + A sin mep, > 0 .

To show that it is possible to select ¢, in case (V) so that condition (c)
is satisfied, we observe that A(¢) = I'(cos™ ¢ — cos mep) + A sin mep is a
continuous function and that A(2z/m) > 0. Hence the function A(¢) will
be positive in some neighborhood of ¢ = 2z/m so that a solution in ac-
cordance with V is possible. The assumption ¢, # 0 implies that I" and
A can not vanish simultaneously so that the selection covers all pos-
sibilities. Using this fact as well as the assumption m = 4 it is easily
seen that the value ¢, whose selection we just described satisfies the
conditions C(¢,) > 0 and D(¢,) #+ 0. But then it is seen from (4.12) that
&, = tan® ¢, satisfies the conditions of Lemma 2.
We prove next Lemma 3. We see from (4.7) that

Ay§) = — 3£ — d3l/_§(3 —£)
B(§)=— BV B —¢&) —ay(l — 3%) .

If 3,0 and ay3 <0, choose & >3 and if B;# 0, ayf; =0 choose
0<&<8, If Bf=0select £, >3 if «a; >0 but 0 <& <3 if a; < 0.

In the following we assume that m > 8 and choose &, in accordance
with Lemmas 2 and 3 respectively. We write

(4.14) A, = Af&n), B, = By(§,)
and from (4.7) and (4.8) obtain
(4.14.1) AV &) = Ay + S A
Let now m = 4, then
AV En, y) = A1 + o(1)] as y—oo .

We see from Lemma 2 that A4, > 0, so that A,(yV/&,, y) is positive for
sufficiently large positive values of y.

We consider next the case m = 3 and write e = sign y = y/|ly|. We
choose ¢ 8o that ¢8, < 0. Then

AWVE , y) = AelylP + Ay® + Aclyl = AlyP[1 4 o(1)] .

We know from Lemma 3 that ¢4, > 0 so that A,(yV/&,,y) becomes posi-
tive if the sign of y is opposite to the sign of f; and if |y| is sufficiently
large. We summarize these findings in the following statement :
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LEMMA la. Let m = 8 and suppose that one or the other of the fol-
lowing two conditions s satisfied .

(i) m>3o0r m=3 and B, =0
(i) m=38and 8, #0.

Then there exists a &, = 0 and an A > 0 such that

AWV e ) = AlyI™[1 + o(1)]

where the estimate holds in case (i) asy— o but in case (ii) as (—sign fB5) y—> .
Then there exists also a value Y = Y(m) such that

AV Eny) >0

provided that in case (i) y =Y while in case (ii) one must require
(—sign By = Y.

We choose again ¢, in accordance with Lemmas 2 and 3 respectively
and consider the polynomial

(4.15) B) = AV b ¥) = 2B

Here B, is given by formula (4.14). Again let Y be the number deter-
mined by Lemma la. Since B, # 0 we conclude from (4.15) that

Bly) = B,y"[1 + o(1)] as |y|—>co.

This means that B(y) is monotone if y is sufficiently large. We can
therefore find a Y, > Y such that B(y) is monotone for |y|= Y,. In
view of Lemma la it is always possible to find a real y, such that

ly,l > Y, and A,(yV'&, %) > 0. Let 6 be an arbitrary real number,
then there exists an integer ¢ such that

0+ 27ng < B(y,) < 0 + 27(9g + 1) .

We consider from now on only such values of y for which yy, > 0 and
lyl =y, For such values B(y) is either monotone increasing or monotone
decreasing. In the first case we can find a value y, such that B(y,) =
0 4+ 2(¢9 + 1) ; in the second case there exists a value y, for which
B(y,) = 6 + 2gn. Since |y| = y, and yy, > 0 we see from Lemma la that
Ay V Eny y) > 0 while B(y,) — 0 = Bi(yV/ &n, 41) — 0 is an integer multiple
of 2z. To complete the proof of Lemma 1 we must only put v* =y,
and t* = y,V/¢,.

5. Proof of Theorem 1. Let P(t) = > ™,c,t* be a polynomial of
degree m > 2, (¢, # 0) and ;' = e,(c,). We carry an indirect proof for
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Theorem 1 and suppose therefore that
fn(t) = ﬁ;nen[P(t)]

is a characteristic function. The function f,(¢) agrees for real values of
z with the function A(2) = k,¢,[P(2)] so that the conditions of Theorem
C are satisfied. Hence f,(t) is an entire characteristic function. We
consider from now on this characteristic function also for complex val-
ues of the argument z = ¢ + 7y and can apply Theorem D. The last
part of this theorem indicates that necessarily

_ | Jalt + i)
(5.1) R(t, y) = (i) ‘él

for all real ¢ and y.
Define the functions

(5.2) fi2) = ke[ P(2)] (v=1,2--+,n)

where &, = [e,(c,)]"* and note that f,(0)=1 (v=1,2,---,%) and that
fiz) = exp [¢p,(z)]. We (easily) obtain from the definition (5.2) of the
functions f,(z) the recursion formula

(5.3) So(2) = exp {k;2\[f,-1(2) — 1]} w=2---,m).
We introduce now the functions
(5.4.1) $u(2) = K2 [frms() — 1] (=23, --,n)

and write «,(¢, y) for the real part and f,(¢, y) for the imaginary part of
¢y(2) so that

(5'4’2) ¢v(z) = av(t! y) + Zﬂv(t’ y) ('I) = 17 2’ *t ?’L)
and
(5.4.3) So(z) = exp [¢,(2)] (v=1,2+-+,m)

Let p,, 4, be real numbers satisfying
(5'5'1) ’C;;l = exp (Pv + ’Mv) (1) = 2r 3y M) 'n) .

Since k;!; = ¢,_,(c;) we see that r;!=exp (k;}) or exp (o, + i4,) =

e(py-1 + 92,-,). Therefore

(5.5.2) Py + 14y = XD (Py-1 + 94,-1) + 29,70
where ¢, is an integer. It follows from (5.5.2) that
(5.5.3) A, = €v-18in A,_, + 29,7 .
We combine (5.4.1), (5.4.3) and (5.5.1) to get
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$(2) = exp (py-1 + 14,-1){exD [, (¢, y) + iB,-.(t, y)]fl} v=2,3,---,n).

Separating real an imaginary parts in the last formula we obtain for-
mulae for «,(¢, y) and B,(¢, y)

(56.6.1) a(t, y) = ev-1*%-10 co8 [A,-; + B,_.(¢, y)] — €*v-1 cos 4,_,
(?) - 2y3’ '°°,7Z)

(56.6.2) Bu(t, y) = @v-1+%0-1C0 sin [4,, + B,oi(t, ¥)] — €o-1 8in A,
wv=238,++,m).

Moreover, setting A, (¢, ¥) = «,(¢, y) — a,(0, y) we obtain

(6.7 A, y) = {e*-1¢ cos [A—1 + Loty Y)] — €08 [A,—; + Bo-i(0, ¥)1}

X XD [0y + @,-1(0, ¥)] (v=2,3++m).
We apply now Lemma 1 and select § = — 1,. Then it is possible to find
a pair of real numbers t*, y* such that
(5.8.1) Ay(t*, ") >0
while
(5.8.2) Bi(t*, y*) + 4 = 2¢:7 (9. an integer) .

We show next by induction that a similar relation holds for all funetions
B.(t, y) namely that

(5.9) B(t*, y*) + 2, = 29,7 .

Here ¢*, y* are the values determined by Lemma 1, 2, is given by (5.5.3)
and ¢, is an integer. We prove (5.9) by induction. Formula (5.8.2) in-
dicates that (5.9) is valid for » = 1, we suppose now that it holds for
all subscripts inferior to ». In particular then, f£,.(t*, y*) + 2,-1 =
29,-. Substituting this into (5.6.2) we see that 8,(t*, y*) = —¢*>-18in 1,., =
—2, + 2¢g,7. Thus (5.9) is generally valid.

We see from (5.7) and (5.9) that

Av(t*’ y*) = {eA‘v—l(t*,y*) — COS8 [21)—1 + ﬂ'v—l(or y*)]} exp [pv—l + av-—l(oy y*)]
v=2,8,--4,m).

From this formula we see that the relation A, (¢* y*) > 0 implies
A%, y*) > 0. We can therefore conclude from (5.8.1) that

(5.10) A (5, y*) > 0.

It follows immediately from (5.1), (5.4.2) and (5.4.3) that R(¢,y) =
exp {4,(¢,y)}. We have therefore determined values t*, y* such that

(5.11) R(t*, y*) > 1.
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But this contradicts (5.1) which must be satisfied if f,(f) is a character-
istic function. This contradiction completes the proof of Theorem 1 since
it shows that f,(¢) can not be a characteristic function if m > 2.

In case m = 2 the iterated exponential polynomials f,(¢) = e,[P(t)]
can be characteristic functions. The function f,() = exp (—a.t® 4 ta,t)
where «, and «, are both real, @, = 0, is a characteristic function; it
follows then from the recursion formula (5.3) and a Theorem of B. de
Finetti [4] that f,(z) as defined by (5.2) is a characteristic function for
all values of ». For the sake of completeness we quote de Finetti’s

result.

Theorem of de Finetti. If f(t) is an arbitrary characteristic func-
tion and if p is a positive real number then g(t) = exp {plf(t) — 1]} s
also a characleristic function.

6. Proof of Theorem 2. In this section we investigate the func-
tion

(3.2) f(t) = exp [4(e" — 1) + A(e™™ — 1) + Pu(t)]

where

Po(t) = %cvtv (¢, # 0)

is a polynomial of degree m.
If f(¢t) is a characteristic function then it must be, according to
Theorem C, an entire characteristic function and we write

(6.1) S(z) = exp {A(e"* — 1) + Afe™* — 1) + Pu(2)}

where z =t - 4y. We can apply Theorem D and see that necessarily

(6.2) R(t, y) =} S (;gyjyl <1

for all real ¢ and y.
The familiar normalization of characteristic function [f(0) = 1] in-
dicates that it is no restriction to assume that ¢, = 0. We write

Si(z) = exp [4(e” — 1) + A(e™* — 1)],
fiz) = exp [é c,,z”]

so that f(z) = fi(2)f(2).
We see easily that
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(6.3.1) lﬂquy;y) — exp [(1 — cos £)(— Ae~? — 4e')] .

Since fy(z) = exp [Pn(t) — ] = exp [ai(t, y) + i4i(¢, y)] we get, using the
notation of Lemma 1,

St +ay) | _
(6.3.2) _—fz_@/‘)— = exp [A\(¢, v)] .
From (6.1), (6.2), (6.3.1) and (6.3.2) we obtain
(6.4) R(t, y) = exp [(1 — cos &)(— Ae7? — Ae¥) + AL, v)] -

We show first by means of an indirect proof that m < 3. Suppose
therefore that m = 3, we can then apply Lemma 1a and see that there

exist £, = 0 and y such that A,(yv/&,,y) > 0 provided that y satisfies

either condition (i) or condition (ii) of Lemma la. Substituting ¢ = yV/€,
into (6.4) we get

R@yV'&n y) = exp [(1 — cos yV/E,)(—he™ — 4e’) + AV &, v)]

We select now an integer k& which satisfies one of the following two con-
ditions :

(@) if m > 8 or if m =8 but B, = 0 then k > (YV'E,)/(2n)

(b) if m =8 and B; # 0 then (— sign By)k > (YV'E,)/(2n)
Then y = ﬁé satisfies either condition (i) or condition (ii) of Lemma

m

la. We substitute in the preceding formula y = (27k)/V €, and obtain

R(2sk, 1_/%%) = exp I:AI(an,l/sz%):‘ >1

in contradiction with (6.2). Thus we have proven that necessarily m < 2.
In this case we have

Al y) = ait + at’ — 2[ity
and
(6.5) R(t,y) = exp [(1 — cos t)(— e ¥ — Ae¥) + af + a,t® — 28,ty] .

We prove next that 4, and 2, are non-negative. If either A, or 1, is
negative we choose ¢t = 7, then

R(z, y) = exp [2(— eV — ,¢¥) + a + a.n* — 2B,7y] .

It is then possible to make the exponent on the right side of (6.5) positive
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by selecting y sufficiently large and giving it an appropriate sign.
Therefore there exists a value y* such that R(z, ¥*) > 1 in contradiction
with (6.2). Morever it follows from the hermitian property [f(—¢t) =

F(@®)]1 of characteristic funcions that ¢, is purely imaginary while e, is
real. We conclude finally from the boundedness of characteristic func-
tions that ¢, is negative. Writing ¢, = i, ¢, = — @, we obtain the com-
plete statement of Theorem 2.

Theorem B is also a special case of Theorem 2; it is obtained by
putting 2, = 2, = 0.

7. Proof of Theorem A. In this section’ we consider an entire
characteristic function f(z) of finite order p. By Hadamard’s factoriza-
tion theorem we can write f(z) in the form

(7.1 f(2) = G(2)e"®

where G(z) is the canonical product of the zeros of f(2) and H(z) is a
polynomial of degree m < p. We denote by p, the exponent of con-
vergence of the zeros of f(z). It is easily seen that p = max (p;, m).
If p, < p then necessarily p = m. It is known that the order of a ca-
nonical product equals its exponent of convergence. Let G(z) be a ca-
nonical product of order p,, then for any ¢ > 0 the modulus |G(z)| <
exp (|z[r**) provided that |z| is sufficiently large. We will also use the
following result which is due to E. Borel:

If G(2) is a canonical product of order p, and if ¢ is an arbitrary
positive number then there exists an infinite number of circles of arbi-
trarily large radius on which the inequality

|G(2)| > exp (— |z]n*°)

holds.

Letz = t+iyand denote by r = [2] =Vt + y°'. We see then that
there exist arbitrarily large values of r such that

|G(t + iy)| > exp (— r71*7) .
On the other hand, we know that for arbitrary ¢ > 0 and sufficiently
large y
|G(iy)| = exp (y*°) < exp (r"*) .
We combine the last two inequalities and see that there exists an

increasing sequence {r,} of positive real number such that lim r, = «
k—oo

and that for arbitrary ¢ > 0 and sufficiently large k

3 We use in the following certain theorems from the theory of functions of a complex
variable. The needed results may be found, for instance, in [2], pp. 165-175.
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(7.2) Rt 1) = | G(ggyjy) > exp (— 2rp+)

provided that V& + * = r, .
We consider next fi(z) = ¢7® and write

(7.3) Ry(t, y) = lexp [H(t + iy) — H(iy)]|

so that

(7.4) R(t, y) = ] SCEW) |\ R, ) -
f(y)

We give an indirect proof for the statement of Theorem A and
assume therefore that f(z) is an entire characteristic function of order
p > 2 and suppose that the exponent of convergence p, of the zeros of
f(z) is less than p; p; < p. Then necessarily (Theorem D)

(7.5) R(t,y) =1

for all real ¢ and y.

Since p, < p we have necessarily p = m, the degree of the poly-
nomial H(z). As a characteristic function f(z) must satisfy the condi-
tion f(0) =1 so that H(0) = 0. We can then use the notation of Lemma
1 and write

() = HE) = 3 (@ + if)2
so that

(7.6) R\(t,y) = exp [A(¢, )] .

We see then from (7.2), (7.4) and (7.6) that there exists an infinite
sequence {r,} of indefinitely increasing real numbers such that for an
arbitrary ¢ > 0

(7.7) R(t, y) > exp [—2ri*s + Ay, y)]

provided that k is sufficiently large and that # + y* = ..

We define now an infinite sequence of points (¢, y;) in the z-plane.
In order to be able to apply Lemma la we subject these points to the fol-
lowing restrictions :

(i) tkzykl/g;

(i) |t + | = 7%

(iii) if m > 3 or m = 8 while #; = 0 then y, > 0
(iv) if m =38 and B; + 0 then (— sign B,)y; > 0
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From (i) and (ii) we see that all these points are located in the

same quadrant and that |y,| = r,/V'1 + £,. We deduce from Lemma la
that

(7.8) Ayt yi) = Aly,I"[1 + o(1)] as k—oo .
We denote by C = A(1 + &,)"™? and obtain from (7.7) and (7.8)
R(ty, ) > exp {— 2rp*® + Cri[l + o(1)]} as k—oo .

Since by assumption p = m > p,, we can choose the arbitrary posi-

tive quantity ¢ so that p, + ¢ < m; we conclude then from the last in-
equality that

R(ty, y,) > exp {Cr7[1 + o(1)]} as k> .

Since C > 0 we can determine % so large that R(t;,y,) > 1. This,
however, contradicts (7.5) and we see therefore that f(z) can not be a

characteristic functions and have therefore completed the proof of Theo-
rem A.
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