ON A COMMUTATIVE EXTENSION OF A COMMUTATIVE BANACH ALGEBRA

CIPRIAN FOIAS

Let A be a commutative Banach algebra without identity such that (1.a) there exists an approximate identity (i.e. there exists a net $\{u_{\alpha}\} \subset A$, so that $||u_{\alpha}|| = 1$ and $u_{\alpha}x \to x$ for all $x \in A$);

(1.b) if \hat{A} designates Gelfand's representation of A [3], and M the space of regular maximal ideals of A, then the boundary of M with respect to \hat{A} , is equal to M^1 .

Let $\mathcal{L}(A)$ be the algebra of all bounded linear operators on A; the mapping $x \to T_x$ of A into $\mathcal{L}(A)$, where $T_x y = x y$, $y \in A$, is isomorphic and isometric (by (1.a)) onto a subalgebra \tilde{A} of $\mathcal{L}(A)$,

Let \mathscr{A} be the set of those operators $T \in \mathscr{L}(A)$ which commute with all $T_x \in \tilde{A}$, that is such that

$$(1) T(xy) = (Tx)y = x(Ty), x, y \in A.$$

LEMMA (i). For all $T \in \mathcal{A}$, we have $T = \lim T_{Tu_{\alpha}}$, the limit being considered in the strong operator topology.

- (ii) \mathscr{A} is the closure of \tilde{A} in the strong operator topology.
- (iii) $\mathscr A$ is the largest commutative subalgebra of $\mathscr L(A)$ which contains $\tilde A$.
 - (iv) \tilde{A} is an ideal in \mathscr{A} .

Proof. From (1) and (1.a), it follows that

$$T_{Tu_{\alpha}}y = Tu_{\alpha} \cdot y = T(u_{\alpha}y) \to Ty$$

for all $T \in \mathcal{A}$ and $y \in A$, hence (i) is proved. (ii) results from (i). Concerning (iii), it is enough to prove that \mathcal{A} is commutative; or, by (i) and (1)

$$T_{_1}T_{_2}\,x=\lim\,T_{_{T_1u_lpha}}\,T_{_2}\,x=T_{_2}\lim\,\,T_{_{T_1u_lpha}}\,x=T_{_2}T_{_1}\,x, \ T_{_1},T_{_2}\in\mathscr{N},\,\,x\in A.$$

If $T \in \mathscr{A}$ and $x, y \in A$, then

$$TT_xy = T(xy) = (Tx)y = T_{Tx}y$$
 ,

hence

Received March 21, 1958.

¹ For example this condition is satisfied if \mathscr{L} is regular or selfadjoint, see [3, p. 81].

$$TT_x = T_x T = T_{Tx},$$

whence (iv) follows.

Now, let \mathcal{M} be the space of the maximal ideals of \mathcal{M} . We can pass to the main result of our note.

THEOREM 1. There is a homeomorphism $m \to \tilde{m}$ of M, on an open subset \tilde{M} of \mathcal{M} , such that for all $m \in M$, and $x \in A$,

$$\hat{T}_x(\tilde{m}) = \hat{x}(m);$$

 $if \ \tilde{m}_0
otin ilde{M} \ then \ \hat{T}_x(\tilde{m}_0) = 0.$

Proof. Observe that by (1.b) and by a theorem of Neumark [4]² to every $m \in M$ there corresponds an $\tilde{m} \in \mathcal{M}$ such that $\hat{x}(m) = \hat{T}_x(\tilde{m})$ for all $x \in A$. We shall show that \tilde{m} is uniquely determined. If $\hat{T}_x(\tilde{m}_1) = \hat{x}(m) = \hat{T}_x(\tilde{m}_2)$ for all $x \in A$, then by (2)

$$egin{aligned} \hat{T}(ilde{m}_1)\hat{x}(m) &= \hat{T}(ilde{m}_1)\hat{T}_x(ilde{m}_1) = \hat{TT}_x(ilde{m}_1) = \hat{T}_{Tx}(ilde{m}_1) = \hat{T}x(m) \ &= \hat{T}_{Tx}(ilde{m}_2) = \hat{TT}_x(ilde{m}_2) = \hat{T}(ilde{m}_2)\hat{x}(m) \;, \end{aligned}$$

where $x \in A$ and $T \in \mathscr{A}$ are arbitrary. Choose $x \in \mathscr{A}$ such that $\hat{x}(m) \neq 0$; then $\hat{T}(\tilde{m}_1) = \hat{T}(\tilde{m}_2)$ for all $T \in \mathscr{A}$; hence $\tilde{m}_1 = \tilde{m}_2$.

Let $\hat{T}_x(\tilde{m}_0) \not\equiv 0$; then the homomorphism $x \to \hat{T}_x(\tilde{m}_0)$ has as kernel a regular maximal ideal m_0 of A, and from $\hat{x}(m_0) = \hat{T}_x(\tilde{m}_0)$ it follows that $\tilde{m}_0 \in \tilde{M}$. Thus, if $\tilde{m}_0 \notin \tilde{M}_0$, then necessarily $\hat{T}_x(\tilde{m}_0) \equiv 0$. This result shows also that \tilde{M} is open in \mathscr{M} . In fact, if $\tilde{m}_0 \in \tilde{M}$, there exists an $x \in A$ such that $\hat{T}_x(\tilde{m}_0) \neq 0$; but then $\hat{T}_x(\tilde{m}) \neq 0$ in a neighborhood V of \tilde{m}_0 ; hence $V \subset \tilde{M}$.

The mapping $\tilde{m} \to m$ being evidently continuous, it remains to prove the continuity of the direct mapping $m \to \tilde{m}$. It is enough to show that the topology of $\tilde{M} \subset \mathscr{M}$ is the weak topology generated on \tilde{M} by the functions $\hat{T}_x(\tilde{m}), x \in A$; this results from Theorem 5 G of [3], because that the functions $\hat{T}_x(\tilde{m})$ are continuous on \tilde{M} , vanish at infinity (with respect to \tilde{M}), separate the points of \tilde{M} and do not all vanish at any point of \tilde{M} . (These facts are direct consequences of the preceding results).

In this manner, M can be considered identical with \tilde{M} ; in what follows we consider $M\subset \mathscr{M}$ and $\hat{T}_x(m)=\hat{x}(m)$.

From now on, we suppose that A is semi-simple. Then we have the following

 $^{^{2}}$ In fact we use a slight extension of the Theorem 3, p. 195.

COROLLARY. (i) If $\hat{T}_1(m) = \hat{T}_2(m)$ for $m \in M$ then $T_1 = T_2$ (ii) A is semi-simple.

Proof. (ii) results from (i), and (i) results from the relation $\widehat{T_1x}(m) = \widehat{T_1T_x}(m) = \widehat{T_1}(m)\widehat{T_x}(m) = \widehat{T_2}(m)\widehat{T_x}(m) = \widehat{T_2T_x}(m) = \widehat{T_2T_x}(m)$;

A being semi-simple, we conclude that $T_1x=T_2x$ for all $x\in A$, that is $T_1=T_2$.

THEOREM 2. A function f defined on M is a factor function of \hat{A} (that is $f\hat{x} = \hat{y} \in \hat{A}$ for all $\hat{x} \in \hat{A}$) if and only if there is a $T \in \mathcal{N}$, such that $f(m) = \hat{T}(m)$, $m \in M$.

Proof. If
$$f(m) = \hat{T}(m)$$
 then by (2)
$$f(m)\hat{x}(m) = \hat{T}(m)\hat{x}(m) = \widehat{TT}_x(m) = \widehat{TT}_x(m) = \widehat{Tx}(m) \in \hat{A}.$$

Conversely, if f is a factor function of \hat{A} , then the operator T_f defined by $T_f x = y$ where $\hat{y} = f\hat{x}$ is a linear closed operator defined on A, since A is semi-simple. Hence T_f is bounded. But $f\hat{x}\hat{y} = \hat{x}f\hat{y}$, so that $T_f \in \mathcal{A}$. Thus for all $m \in M$ we have

$$\hat{T}_f(m)\hat{x}(m)=\hat{T}_f(m)\hat{T}_x(m)=\widehat{T}_f\hat{x}(m)=\hat{y}(m)=f(m)\hat{x}(m)$$
 ,

for arbitrary $x \in A$. It follows that $\hat{T}_f(m) = f(m)$.

To understand the sense of these results, let us consider the case $A = L^1(G)$ where G is a locally compact abelian group which is not discrete. Let M'(G) be the algebra of all bounded complex measures on G. Then, if $T_{\mu}x = \mu * x$, $x \in L^1(G)$ then T_{μ} is a linear bounded operator on A, and the mapping $\mu \to T_{\mu}$ is isomorphic and isometric on $M^1(G)$ into \mathscr{A} [1]. Observing that $M = \hat{G}$ one may see easily that

(3)
$$\hat{T}_{\mu}(m) = \int_{G} (\overline{m,s}) d\mu(s) .$$

THEOREM 3. \mathscr{A} is isomorphic and isometric with M'(G).

Proof. It remains to show that for every $T \in \mathscr{L}$, there is a $\mu \in M^1(G)$ such that $T = T_{\mu}$. For the measures $\{\mu_{\alpha}\}$, where $d\mu_{\alpha}(s) = Tu_{\alpha}(\gamma)ds$, we have $||\mu_{\alpha}|| \leq ||T||$. But the sphere of radius ||T|| of M'(G) (considered as the conjugate space of K(G) or $C(G \cup \{\infty\})$) is weakly compact. Hence there is a $\mu \in M^1(G)$, which is a weak cluster point of $\{\mu_{\alpha}\}$. Consequently, by Lemma (i),

$$\hat{T}(m) = \lim \hat{T}u_{lpha}(m) = \lim \int_{\sigma} \overline{(m,s)} Tu_{lpha}(s) ds = \int_{\sigma} \overline{(m,s)} d\mu(s) = \hat{T}_{\mu}(m)$$
 .

By Corollary (i) we conclude that $T = T_{\mu}$.

Let us give some known corollaries of these results. From Theorems 1 and 3, we may obtain directly that every maximal ideal of $M^1(G)$ which does not contain $L^1(G)$ corresponds to a character of the group G, a fact established by H. Cartan and R. Godement [1]. In the same manner, Theorems 2,3 and (3) show that every factor function for the Fourier transform is the Fourier transform of a bounded measure (both the definition of a factor function and this result in the special case of the additive group of the real numbers are due to E. Hille [2]; the extension to the general case of a locally compact abelian group was done by R.S. Edwards, Pacific J. Math. 1953 and independently by I. Cuculescu).

REFERENCES

- 1. J. Dieudonné, Análize Harmônica, Rio de Janeiro, 1952.
- 2. E. Hille, Functional analysis and semigroups, New-York, 1948, Theorem 18.2.2, p. 362.
- 3. L. H. Loomis, An introduction to abstract harmonic analysis, New York, 1953.
- 4. M. A. Neumark, Normed rings, Moskwa, 1956 (in Russian).

University of Bucharest Rumania