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1. Introduction. If Y is a topological space then S(Y) denotes
the space of closed subsets of Y, endowed with the finite topology [2].
We say that a multi-valued function F: X ~» Y is continuous provided
F(x) is a closed set for each x e X, and the induced (single-valued)
function/: X-±S(Y) is continuous in the usual sense. This definition
of continuity for multi-valued functions is equivalent to that of Strother
[4]. The space X is said to have the F.p.p. (= fixed point property
for continuous multi-valued functions) if and only if for each such
function F: X->X, there is an xeX such that xeF(x). The space X
has the f. p. p. if it has the fixed point property for continuous single-
valued functions. It is hardly surprising that the !\-spaces with the
F. p. p. constitute a fairly small subclass of those with f. p. p. Indeed,
Plunkett [3] has shown that a Peano continuum has the F. p. p. if and
only if it is a dendrite. It is worth noting that Plunkett's argument
employs the convex metric of a dendrite in much the same manner as
the author [7] has used the order structure of certain acyclic continua
to obtain fixed point theorems. A related argument has been used by
Capel and Strother [1] to show that a tree has the fixed point property
for continuous multi-valued functions for which the image of each point
is connected. Their proof depends on being able to produce a con-
tinuous selection, in the sense of Michael, on the class of subcontinua
of a tree.

In this paper an order-theoretic characterization of a wide class of
acyclic spaces is given. This characterization is in the same spirit as
the analogous results of [6] and [7] for trees and generalized trees. It
is then shown, using their order properties, that such spaces have the
F. p. p. To some extent the argument borrows from all of the proofs
cited above.

2» Topologίcally chained continua. If X is a space and ^ is a
partial order on X, we write L(x) — {a: a <£ x] and M(x) = {a : x <Ξ a}.
It is natural and convenient to define

[a?, y] = M(x) π Uy)

and, if A c l , we write M(A) for the union of all M(x) for which
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x e A. An antichain of X is a subset in which no two distinct ele-
ments are related under the partial order. A zero of a subset A of X
is a member aQ of A such that AaM(aQ).

In what follows it will be convenient to use two theorems from
[5]. These are stated below as Theorems A and B. The partial-order
^ is said to be upper (lower) semicontinuous provided M(x) (L(x)) is
closed, for each x e X. It is semicontinuous if it is both upper and
lower semicontinuous.

THEOREM A. If the compact space X is endowed with an upper
(lower) semicontinuous partial order then X admits a maximal (minimal)
element.

THEOREM B. If the compact space X is endowed with an order-dense
semicontinuous partial order and if the set of maximal elements or the
set of minimal elements is connected, then X is connected.

Recall that a continuum (= compact connected Hausdorff space) is
unicoherent if it cannot be represented as the union of two subcontinua
whose intersection is not connected. A continuum is hereditarily uni-
coherent if each of its subcontinua is unicoherent.

A continuum is topologically chained if each pair of points is con-
tained in a subcontinuum which has exactly two non-cutpoints, and
such a subcontinuum is called a topological chain. This concept is a
natural generalization of the notion of an arc. Note that, if x and y
are distinct elements of a continuum which is topologically chained and
hereditarily unicoherent, there is a unique subcontinuum C(x> y) which
is irreducible about x and y. Moreover, C(x, y) is a topological chain
with x and y for endpoints.

Consider the following five properties enjoyed by some spaces X
admitting a partial order, ^ .

I. [x, y] is closed and simply ordered for each x and y in X.
II. ^ is order-dense.
III. There exists e e X such that M(e) — X,
IV. // x and y are points of the subcontinuum Y and x ^ y, then

lχ, y\ c Y.
V. // A is an antichain of X and P is a continuum contained in

M(A), then PdM(x) for some x e A.

LEMMA 1. If X is a compact Hausdorff space with a partial order
satisfying I and II, and if x < y in X, then [x, y] is a topological chain,
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Proof. For each t e [x, y] the sets

L(t) Π [a?, y] = [x, f],

M(t) Π [a?, y] = [t, y]

are closed so that <Ξ is semicontinuous on [a;, y]. Since [a?, ?/] has only
one minimal element it is connected by Theorem B. If x < t < y then
the continua [x, t] and [£, 2/] have only the point £ in their intersection,
so that x and y are the only non-cutpoints of [a;, y\\ that is, \x} y\ is a
topological chain.

LEMMA 2. If X is a compact Hausdorff space with a partial order
satisfying I, III, and V, then each continuum contained in X has a
zero.

Proof. By I and III the set L(x) = [β, a?] is closed for each x e X
and consequently, by Theorem A, each compact subset of X contains a
minimal element. If Y is a subcontinuum of X then the set A of
minimal elements of Y forms a nonempty antichain. It follows from
V that A contains only one element, that is, Y has a zero.

THEOREM 1. A necessary and sufficient condition that X be a
topologically chained, hereditarily unicoherent continuum is that X be a
compact Hausdorff space which admits a partial order satisfying I-V.

Proof. Necessity. Let X be a topologically chained, hereditarily
unicoherent continuum. Fix e e X and let x ^ y mean that x e C(e, y).
Then L(x) = C(β, a?) and I, II and III are easily verified. If x < y and
x and y are elements of the subcontinuum Y then, by hereditary
unicoherence, [a?, y] Π Y is connected. Since a? and 2/ are elements of Y
it follows that [x, y] c Y. This establishes IV. To see that V is satis-
fied let A be an antichain of X and suppose that P is a continuum
contained in M(A). If P meets M(x) and M(?/) where x and 2/ are dis-
tinct points of A, we may select p e M(x) Π P and g 6 Λf(i/) Π P. In
view of I the points p and q are not comparable. Therefore, the
continua L(p) U P and L(#) U P meet in the non-connected set
P U (£(#) IΊ L(y)), and this contradicts the hereditary unicoherence of X

Sufficiency. Let X be a compact Hausdorff space which admits a
partial order satisfying I-V. By Lemma 1 each set L(x) = [e, x] is a
topological chain and therefore X is a topologically chained continuum.
Now suppose A and B are subcontinua of X and that a; and y are distinct
elements of A f] B. In order to show that AC] B is connected and thus
that X is hereditarily unicoherent it is sufficient to prove that

Z = [z, x\ Όlz,y]cz Af) B,
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where z is the supremum of L(x) Π L(y). The existence of z is assured
by Theorem A. By Lemma 2, A has a zero, α0, so that aQ is a pre-
decessor of # and y and hence also of z. By IV,

[2, x\ c [α0, a?] c A .

It is clear that, by a sequence of analogous arguments, ZCZAΓΪB.

3 The fixed point theorem* The proof of Theorem 2 which fol-
lows is patterned after that of Theorem 10 in [7] where it was assumed
that the partial order had a closed graph. In view of our weaker
hypotheses it has been necessary to revise that argument extensively.
For the remainder of this paper the term sequence is used in its general-
ized sense, that is, a function defined on the predecessors of some
ordinal number. If a? is a sequence then a subsequence of x is the
restriction of x to some cofinal subset of its domain.

A useful continuity property of a partial order satisfying I-V is
given by the following lemma.

LEMMA 3. Let X be a compact Hausdorff space which contains no
indecomposable continuum and which admits a partial order satisfying
I-V. // x is an increasing sequence in X then lim x exists and xa 5g lim
x for each a in the domain of x.

Proof. Let x0 be a limit point of x and suppose x0 e X — M(xβ)
for some β. Without loss of generality we may take β = 1. Let C be
the union of the topological chains [xa, xai], a! > a. If σ is the zero of

C then xQ e C implies <r < #1# If K is a subcontinuum of C which con-
tains the values of some subsequence of x, then by IV, xa e K implies
\xa, xj] c K for each a! > a and hence K contains xQ and σ-. Again by

IV, K = C. It follows that C is the union of no two proper subcontinua
and this contradicts our hypothesis that X contains no indecomposable
continuum. Hence x# ̂  x0 for each a in the domain of x. If y e X is
not a predecessor of x0 then y is a member of the open set
U = X — L(x0). Since xa e X — U for each a, y is not a limit point
of x. Therefore x0 is the unique limit point of x, that is, xQ = lim x.

LEMMA 4. Let K be a connected topological space and let F be a
continuous multi-valued function defined on K. Suppose that F(x) is a
compact set for each x e K. If Q is a quasi-component of F{K) then
F(x) Π Q is nonempty for each x e K.

Proof. By definition Q = Π {Va) where {VΛ} is the family of open
and closed sets containing Q. If F(x) meets each Va then, by the
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compactness of F(x), it meets Q and therefore F~\Q) = Π {F'\Va)}. By
an elementary continuity argument it can be verified that each set
F~\Va) is both open and closed and hence is equal to K. Therefore,
K = F~\Q) and the lemma follows.

For the remainder of this section, X denotes a topologically chained,
hereditarily unicoherent continuum which contains no indecomposable
subcontinuum, and F: X-^Xis a continuous multi-valued function. By
Theorem 1 the space X admits a partial order satisfying I-V. Let J
be the set of all elements x of X such that (i) there exists a minimal
element tx in the set F(x) Π M(x), and (ii) if x < p ^ tx then F(p) and
[p, tx~\ are disjoint.

LEMMA 5. If F is fixed point free then J is not empty. Indeed if
a e X such that F(a) Π M(a) is not empty then M(a) Π J is not empty.

Proof. By Lemma 2, X has a zero and hence there exists a e X
such that F(a) Π M(a) is not empty. If b e F(a) η M(a) then by Theorem A
there is a minimal element ta in the compact set F(a) π \β, &]. Clearly
ta is minimal in F(a)nM(a). Let K denote the set of all p e [a, ta]
such that F(p)f][p, ta] is not empty. Then a e K and ta e X — K. If
xQ = sup K it is easy to construct an increasing sequence y in K such
that lim y = x0. For each a in the domain of y let 2Λ e ίX2/Λ) Π [2/Λ, ία]
Then the sequence £ has a limit point £0 and by continuity zQ e F(xQ).
Further, since ya < zΛ ^ ία for each a, it follows that 20 € [a?0> ̂ J a^cl
hence a?0 e iΓ. Now let tQ be minimal in JP(^0) Π [a?0, «0]- If ô < V ^ *o
and F(p) Π [p, ί0] is not empty then tQ ^ ta implies that F(p) Π [p, ία] i s

not empty. But this is a contradiction since xQ is the supremum of K.
Therefore F(p) and [p, t0] are disjoint, that is, xQ e J and the lemma is
proved.

Consider the set S of all sequences x such that J contains the range
of x and

Xι < X-z < * < XΛ < ' ,

£<* ̂  %a+ι for each α + 1 in the domain of x,

where ta = ίx . If J is not empty then S contains at least one nonempty
sequence. We partially order the elements of S in the following
manner : x precedes y provided x is an initial segment of y. Clearly,
if N is a simply ordered subset of S then U N is a member of S. By
Zorn's lemma S contains a maximal element.

LEMMA 6. If F is fixed point free and x is an element of S then
the domain of xc is not a limit ordinal.
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Proof. If the domain of a; is a limit ordinal, let xQ — lim x,
t0 = lim t. By Lemma 3, xΛ <: x0 and ta ^ tQ for each a. From the defini-
tion of J we have xΛ < tΛ for each a and hence xo^tQ. But by the
definition of S, tΛ+1 ^ #Λ for each a and hence tQ ^ a?0. This implies
that x0 — t0 is a fixed point of JF, which is a contradiction.

LEMMA 7. // JP is ./Z#βcZ pom£ free and x is an element of S then
the domain of x is finite.

Proof. Suppose the domain of x is not finite. We denote by ω the
first infinite ordinal. Then by Lemma 6, ω is a member of the domain
of x. From the definition of S it is clear that x, restricted to ω, is an
element of S9 contrary to Lemma 6.

THEOREM 2. Each topologically chained, hereditarily unicoherent
continuum which contains no indecomposable continuum has the F. p. p.

Proof. If F: X ~* X is fixed point free then, by Lemma 5, J is
not empty and hence S contains a maximal element, x. By Lemma 7
the domain of # is a set {1,2, ••• , N} of integers. We write tN —tx .
By Lemma 5 and the maximality of x it follows that M(tN) Π F(tN) is
empty. Now from Corollary 9.6 of [2] the set F([xN, tNJ) is compact
and hence its components and quasi-components are identical. Let D
be that component of F([xN, tN]) such that tN e D. By Lemma 4,
F(tN) Π D is not empty and hence D — M(tN) is not empty. Now D is
a continuum and hence has a zero z which precedes tN. By IV, [z, tN] c D
but since F is fixed point free there exists q e X with xN < q <tN such
that [ g , y c f l - F(tN). Let b be an infinite increasing sequence in
IQ? tir] s u c h that lim b — tN. For each ba there exists aa, xN < a% < tN,
such that bΛ e F{aoύ). Since xN e J we infer that 6Λ < aa. Clearly lim
a — tN from which it follows that tN e F ( ^ ) , a contradiction. Therefore
F cannot be fixed point free.

4 Remarks. The following question is of some interest. Can the
assumption of hereditary decomposability be omitted from the hypotheses
of Theorem 2? This assumption is essential to Lemma 3 so that an af-
firmative answer to our question would require a substantially different
proof. Even more difficult is the problem of characterizing the F. p. p.
among the topologically chained continua. In view of Plunkett's character-
ization [3] of the F. p. p. for Peano continua, there would seem to
be some hope of discovering a succinct characterization.
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