
AN OPERATOR IDENTITY

GLEN BAXTER

l Introduction. Recently, some combinatorial results by Andersen
[1, 2], Spitzer [5], and others have been applied quite successfully to
problems in probability theory. Many of these applications have given
rise to results which are entirely analytical in nature. For example,
Spitzer used a combinatorial theorem to find the distribution function
for the maximum of the partial sums Su S.l9 , Sn for a sequence {Xk}
of independent, identically distributed random variables. His final result
is a functional identity,

(1.1) t

where φn(t) is the characteristic function of max (0, Sl9 , Sn) and where
ψic(t) is the characteristic function of max (0, Sk). One of our purposes
in this paper is to generalize (1.1) to an identity involving operators.
Our proofs involve more or less analytical methods and thus show that
the combinatorial methods hitherto employed can be avoided. We also
obtain certain results concerning max(X0, Xl9 , Xn) when {Xk, k > 0}
forms a stationary Markov process.

To illustrate the results we consider a simple example. Let N be
an n x n matrix and let N+ be the matrix formed from N by replacing
with zeros all elements of N which are either on or below the diagonal.
Let N~ = N — N+, and suppose that N+ and N~ commute. Now con-
sider the matrix equation

(1.2) PQ = eN = / + N + iV2/2 ! + . . .

where P-I (I is the identity matrix) has non-zero terms only above the
diagonal and where Q — I has non-zero terms only on or below the
diagonal. The properties of Λ7"+ and N" imply that

(1.3) P = eN+ - / + N+ + (N+Y/2 ! + •••,

Q = eN" = I + N- + (N~fl2 ! + . . .

satisfy (1.2) and have the proper form for P and Q. In particular,
exp(iV+) has the proper form for P by virtue of the fact that the product
of two matrices with non-zero elements only above the diagonal is a
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matrix of the same type. A similar statement holds for exp(iV~). It
is not hard to see that P and Q are uniquely determined by (1.2). Thus
(1.3) is the unique solution of (1.2).

Suppose further that in some neighborhood of s — 0, N = Nxs + N%s2

+ , where convergence of the infinite series of (n x n) matrices is
equivalent to convergence of the series of ijtYi elements for all fixed i
and j . Relations (1.3) may be rewritten as power series in s

which converge in some neighborhood of s = 0. It follows from the
form of P and Q that Pl9 P2, have non-zero elements only above the
diagonal while QL, Q2, have non-zero elements only on or below the
diagonal. Certain problems will lead directly to an equation of the form
(1.2) where P and Q have the form (1.4). For example, in one case
we will have

(1.5) PQ = (I- sM)-1 = exp { Σ ^~sh \ .
U-i Jc )

Under the appropriate commutativity conditions it will follow that

.6) P = e x p ^ Σ v ' sk\ , Q —

We see later that (1.6) is the operator analogue of Spitzer's identity
(1.1) whenever the operator M has a special form.

Equation (1.5) is of particular importance in finding the distribution
of max(X0, Xl9 , Xn) when {Xk, k > 0} is a Markov process with a
stationary transition probability matrix M. In this case the matrix M
in (1.5) is identified (see § 4) with the stationary transition probability
matrix M. Unfortunately, in the general Markov chain, the commuta-
tivity conditions which give (1.6) as the solution of (1.5) are not satisfied.
Some information can be obtained directly from (1.5).

In the next section we give general definitions and a few preliminary
results. The main theorems are proved in § 3 and illustrated in § 5.
A probabilistic interpretation of the theorems is contained in § 4.

2. Definitions and preliminaries Let Lo be the space of bounded
Baire functions (real-valued and Borel measurable) f(x) on the infinite
interval — oo < x < ^ . We will deal with bounded linear operators M
defined over Lύ which have the form

(2.1)
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where m(x A) is a function of a real number x and a linear Borel
measurable set A such that

(i) for each fixed set A, m(x A) is a Baire function of a?,
(2.2) (ii) for each fixed x, m(x A) is a signed measure in A on the

linear Borel sets.

The norm of the operator M is defined in the usual way in terms of
the norm | | / | | = max \f(x)\ in the Banach space Ld. Let μ(x A) and
v(x Λ) be, respectivery, the upper variation and the lower variation of
the signed measure m(x A) (see [4, page 122]) The boundedness of M
in (2.1) implies that

I \β{x dy) + v{x dy)]
(2.3) J -

< max 1 [μ(x dy) + v{x dy)] = || M || < oo .
-oo<χ<0oj_co

We call m(x A) the kernel of the operator M. The notation which will
be used for integration with respect to a given measure is indicated in
(2.1). From now on when we call M a bounded linear operater of the
form (2.1), we imply that (2.2) is also satisfied. As a matter of fact,
with proper understanding of the notation, (2.2) follows directly from
(2.1). If Mi and Λfa are bounded linear operators of the form (2.1) with
kernels m^x A) and m.z(x A), respectively, then MτM2 is also of the
form (2.1) with kernel

(2.4) m{x A) = \ wφj A)mι(x dy) .

We now let [x] be the greatest integer less than or equal to x.

DEFINITION 2.1. Set Bn{x) = {y:y> [2nx + 1]/2W}. For any bounded
linear operator M of the form (2.1) with kernel mix A), define

(2.5) m+(x A) Ξ= lim m(x Bn(x)A) ,

and let M+ be the operator of form (2.1) with kernel m+(x A). Finally,
set, Λf- = Λf — M+.

Almost directly from the definition of M+ follow certain useful facts
which we list below. The bounded, linear operators M, Ml9 M29 etc. are
all of the form (2.1) / denotes the identity operator, which is also of
the form (2.1) and s, α, and β, are real numbers :

(i) /- = / ,
(ii) (ilf+)+ = M* , (iϋ) (Λf-)- = M~ ,
(iv) {MϊMty = MtMi , (v) {MTM Y = M M; ,
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(vi) I | M + | | < I I M | | , (vii) \\M-\\<\\M\\,

(viii) (aM1 + βM2)
+ = aMϊ + βM+ ,

(2.6) (ix) if Mo + ikf2 + is a strongly convergent series of bounded,
linear operators of the form (2.1), i.e. if ||AfnH \-Mm || -> 0
as n, m -> oo, then T = Mo + Mτ + M2 + is of the form
(2.1), and Mo

+ + Λfί + Af? + and Mό + Mΐ + M; +
are both convergent in the strong sense. Moreover, T+ =
Mo

+ + Mΐ + M2

+ + and T" = Mό + Mr + M* + . . .

We prove only (ix) of (2.6). Let Tn = Λf0 + + Afn, let ίn(a? A) be
the kernel of Tn, and let χ^ be the characteristic function of a measura-
ble set A. If T = lim Γn, we note that || T \\ is finite. Now

I tn{x A) - tjx A) \ = \ (Tn - Tm)χA \ < \\ Tn - Tm \\ ,

so that lim tn(x A) = ί(a; A) exists uniformly in A. If A = 2Άfc where
the Afc are disjoint, then by the Moore double-limit theorem

(2.7) Σ t(x A4) = lim lim Σ ί»(« Λ ) = lim ί«(» -A) = *(« J A) .

This shows that ί(α; A) is a signed measure. Since TχA — t(x A), a
simple argument shows that t{x A) is the kernel of T. Finally, since
II T+ - Γ ί | | <\\T ~Tn II, it follows that Γ+ = lim T7:. In terms of Mn

this means T+ = ilί0

+ + Λfί + M2

+ + . A similar argument gives Γ" =
Mo +M{ + M; + •••.

It is interesting to note that the proofs of the main theorems will
depend only on the facts listed in (2.6). Before proceeding to the next
section we mention two special subclasses of operators which have the
form (2.1).

Case 1. Let M — {mi5) be a matrix for which uniformly in i

(2.8) Σ\miΛ<C
a)

for some constant C. For any Borel measurable set A and any real
number x define

f Σ mij x — i (an integer)
(2.9) m(x A) = jeA

10 x Φ [a?].

Condition (2.8) insures the existence of a bounded linear operator of
form (2.1) with the kernel m(x A) of (2.9). Certainly the operator given
by (2.1) in this case and the original matrix M can be identified. In
fact, Lo could be replaced here by the class of bounded, doubly infinite
sequences {ak}, that is ak =f(k)(— OD < k < oo) where f(x) e Lo. It will
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be convenient whenever possible to think of the matrix M rather than
the operator M. Note that the matrix M+ is formed from the matrix
M by replacing with zeros all elements of M either on or below the
diagonal. Moreover, the matrix M+ satisfies (2.6).

Case 2. Let m(x, y) be Borel measurable and integrable over the
plane and such that for some constant C

(2.10) \~Jm(x,y)\dy< C

uniformly in x. For any Borel measurable set A and any real number
x, define

(2.11) m(x A) = \m(x, y)dy .
A

Then, (2.1) gives a bounded, linear operator M which has the form

(2.12) M = Γ m(x, y)dy ,
J -oo

and M+ becomes simply

(2.13) M+ = (~ m{x, y)dy
Jx

with a similar formula for M~.

3. The theorems. When we say a sequence of operators {Mn} con-
verges to an operator M, we mean it converges in the strong sense,
that is \\Mn — M \\ ~> 0 as n becomes infinite.

LEMMA 3.1. Let {Kk}, {Pk}, and {Qk}, k = 1, 2, 3, •••, be sequences

of bounded, linear operators of the form (2.1) for which P£ = Pk and

Qk = Qk' For any \ s \ < s0, let

P = I + P l S + Pβ2 + ,

(3.1) Q = I+Ql8 + Q^ + ,

K = / + K\s + Kβ2 +

converge. If PQ — K for all \s\< sQ, then {Pk} and {Qk} are uniquely
determined by {Kk}.

Proof. Equating coefficients of like powers of s on the two sides
of the equation PQ — K we obtain

(3.2) ±P*Qn-* = Kn.
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If Pu P2, *",Pn^1 and Qlf Q2, •• ,Qn~1 have been uniquely determined
by K1} Kz, •• ,ifn_1, then we may write (3.2) as

(3.3) Pn+Qn = Jn

where Jn is determined uniquely by Kl9 K2, , Kn. Since P~ = Q+ = 0,
we have Pn = J ^ and Qw = Jΰ and the proof follows by induction.

The next theorems give results in the direction of solving equations
which involve the operation " + " . Later we give a probabilistic interpre-
tation of these equations. As we will see, in certain cases the equations
may be solved completely in terms of the known operator M.

THEOREM 3.1. Let M be a bounded, linear operator of the form (2.1).
Define the sequences {Pk}, {QΛ}, {Rk}9 and {Tk} by

Po = Qo = 19 RQ — ^ o — 0 ,

(3.4) Pn+1 = (MPnY , Qn+1 = (QnMY ,

Tn+λ = {MPnY , Rn+1 = (QnM)+ ,

and let the generating functions of these sequences be

P=±Pns
n , Q = Σ Qns

n ,
(3.5) n-° n~a

Then, the series' in (3.5) all converge for \s\< l/[[Λf ||, and, moreover,
they are the unique bounded, linear operators of the form (2.1) which
satisfy.

( 3 6 ) P=I + s(MP)+ , T = s{MPY ,

Q = I + s(QM)~ , R = s(QM)+ .

Proof. Let P be a bounded, linear operator of the form (2.1) which
satisfies the first equation of (3.6). By iteration we may write P =
1 + P,s + P2s

2 + + Pns
n + Ln, where Lo = s(MP)+ and Ln = s{MLn^Y

and where Pl9 P2, •••, Pn are determined in (3.4). Property (vi) of (2.6)
implies that [ [ L w [ [ < | s [ w | | M | [ w l [ P [ | which approaches zero as n becomes
infinite for all [s | < 1/||M||. Thus, the solution (if it exists) of the
first equation of (3.6) is unique. Let {Pk} satisfy the conditions of (3.4).
By property (vi) of (2.6), it follows that | | P n | | < \\M\\\ For \s | < 1/|| Afl|,
the power series in (3.5) for P converges and by property (ix) of (2.6)

(3.7) P - I = Σ Pn+ιsn+1 = Σ (MPn)
+sn+\ - ( Σ MPns

n+1) = s(MP)+ .

The proofs of the other parts of the theorem follow similarly.
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THEOREM 3.2. Let \s\< l/||Λf || and let P and Q be the bounded,
linear operators of the form (2.1) which satisfy the equations of (3.6). Then,

(3.8)

SP' = P(QP - iy , BQ = (QP - IYQ ,

where ' indicates derivative with respect to s.

Proof. From (3.6) we find t h a t \\Q\\< 1/(1 - | s \ \\ M \\) and

Thus, for 1 s 1 < (1 - 1 s 11| M | |)/ | | M ||, the operator (/ - R)'1 is a bounded
linear operator of the form (2.1) and has a convergent power series
expansion in s. But Q = / — R + sQΛf, or equivalently, (I — R)~ιQ =
(/ — sM)"1. Similarly we show that (/ — T)'1 is a bounded linear operator
of the form (2.1) which has a convergent power series expansion in s for
I s | < (1 - I s III MID/H Λf ||, and that P(/ - T)-1 = (I - sM)'\ Applying
Lemma 3.1 in the common interval of convergence of P, Q, (/— Γ)" 1

and (ί — R)~ι, we deduce that

(3.9) P=(I- R)-1 , Q = (I- T)~ι .

and hence that PQ = (/ — sM)~\ Since P, Q, and (/ — sM)~ι all converge
for U | < 1/H Λf ||, we have finally PQ = (I - sM)-1 for all | s | < 1/|| Λf ||.
To show the second half of (3.8), we consider {PQ)f = P'Q + PQ' =
(/ - sikf)-2Λf. It follows that

(3.10) (PQY - s(PQY = (/ - sM)-2(/ - aflf) = PQ .

Multiplying on the left of (3.10) by P~ι and on the right by Q~ι (take
I β | < (1 - 1 β 11| ilf ID/ll M ||) we obtain

(3.11) QP - 8(P-Ψ' + Q'Q-1) - / .

By properties (iv), (v), and (ix) of (2.6), it is not hard to see that
(P-1P')+ = P-1P' and (QVΨ = Q'Q"1. From (3.11) we find sP; = P(QP-I)+

and sQr = (QP — /)~Q. These latter equations can certainly be extended
to hold for all \s\ < 1/||M||, and the theorem is proved.

THEOREM 3.3. Let {ak} be a sequence of real numbers such that
axs + a2s

2 + α3s
3 + has a positive radius of convergence. Let M be a

bounded, linear operator of the form (2.1) such that (Mk)+M = M(Mlύ)+

for all k = 1, 2, 3, . Then for \ s \ such that

(3.12) Σ K I I | M | | f c | s | f c < l ,
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there is a unique pair of bounded linear operators P and Q of the form
(2.1) which satisfy

(3.13)
P = i + Γ Σ (MΓV)P"Γ ,

Lfc=1 J

Moreover, the solution of (3.13) is

P = exp IΓ- log (I - £ MίV)?l ,
(3.14) ( L fc=1 J j

Q = exp { [ - log (I - Σ αfcM

Before proving Theorem 3.3 we mention a result of particular interest
which occurs when both Theorems 3.1 and 3.3 apply, i.e. when αx = 1
and a2 = a3 = = 0 .

COROLLARY 3.1. Let M be a bounded linear operator of the form
(2.1) such that (MψM = M{MhY for all A; = 1, 2, 3, •-., αrod Zβfi ίAe
sequences {Pk} and {Qfc} δe defined as in (3.4) . 7%βw, for all \s\ < 1 / | | M | | ,
the P and Q of (3.5) have the form

(3.15) P = exp {Σ ^ - V l , Q = exp

Proof of Theorem 3.3. Let | s | satisfy the condition of (3.12), and
let

L = Σ αfcikfV ,
(3.16) fc=1

N = log(/ - Σ ^Mfcsfc) = Σ Lηk .
fc=l fc=l

Both L and iV are bounded linear operators of the form (2.1). The
commutativity of (Mk)+ and M together with property (ix) of (2.6) im-
plies that L+L = LL+. Again by property (ix) of (2.6) and the second
relation of (3.16), we deduce that N+N= NN+. In terms of iVthe first
equation in (3.13) may be written in the form

(3.17) P=I+ [(I-eN)Py.

Using that (exp(- N+))+ = e x p ( - N+) - I and that (exp(iV~))+ = 0, it is
easy to show by substitution that P = exp(— N+) is a solution of (3.17).
To show that this solution is unique we apply Theorem 3.1, where the
operator "M" of Theorem 3.1 is now
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(3.18) i > s M V
fc=ί

and the number " s " of Theorem 3.1 is now 1. In a similar manner
we can show that the Q of (3.14) is the unique solution of the second
equation in (3.13). This finishes the proof.

Before proceeding into the next section, we point out some implica-
tions of the theorems above. In Theorem 3.3, the operators P, Q, M, M+,
and M~ all commute. Thus, the order of the factors Q and Mk or of
P and Mk in (3.13) is unimportant. In the s interval determined by
(3.12), there is a power series expansion in s for the solutions of (3.13).
The coefficients in this power series satisfy

Po = Qo — I,

(3.19) Pn+ι = {aλMPn + azM*Pn-ι + '•••+ an+Mn+1Y ,

Qn+ι = (aLQnM + a,Qn-xM* + + an+ιM
n+1)~ .

If the M in Theorem 3.1 is a matrix of finite order, the P and Q of
(3.5) can be conveniently evaluated in terms of subdeterminants of the
matrix / — sM (See example 3, § 5).

4 Probabilistic interpretation* In this section we give a probabi-
listic interpretation of the sequences {Pk}, {QΛ}, {̂ 4}, and {Tk} of
Theorem 3.1. Let m(x 4̂) be a function of a real number x and a
linear Borel measurable set A such that

(i) for each fixed set A, m(x A) is a Baire function of x,
(4.1) (ii) for each fixed %, m(x A) is a probability measure in A on

the linear Borel measurable sets.

Let {Xk, k > 0} be a stationary Markov process for which m(x A) =
P{Xfc+Le A[Xfc = x] is defined and satisfies the conditions of (4.1) (see
[3, pp. 18, 26-27]). We deal here only with processes of this type. By
(2.1) and (2.3) each Markov process under consideration has associated
with it a bounded linear operator M, with | | M | | = 1. We call this the
transition probability operator of the process.

Two subcases of special interest may be mentioned. The first one
is that of a discrete Markov chain (countable state space). In this case
the transition probabilities form a matrix M = (mi3). The connection
between the matrix M and the function m(x A) has already been dis-
cussed in § 2, case 1. The second type process of interest is the one
for which the joint distributions have densities. In this latter case, there
exists a transition probability density function m(x, y), and the connec-
tion with m(x A) is given in § 2, case 2.

For convenience in stating the next theorem we introduce a random
variable Ln.
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/4 g) Ln : the index k (= 0, 1, 2, •) for which max(X0, Xu

= X* and max(Zo, Xx, ., X ^ ) < Xk .

Note in particular the meaning of the statements Ln = w and Lw = 0.
In Theorem 4.1 and thereafter we will have occasion to refer to the
kernel associated with a given operator of the form (2.1). If the operator
is denoted by some capital letter, the kernel will be denoted by the
corresponding small letter.

THEOREM 4.1. Let {Xk, k > 0} be a stationary Markov process with
transition probability operator M, and let {PJ, {Qk}> {Rk} and {T^} be
defined as in (3.4). Then, if the right hand members of (4.3) are defined
and satisfy (2.2), we have

pn(x A) = P{Ln = n, Xn e A \ Xo = x) ,

(4.3) q»(χ ; A ) = PίLn = °' Xn 6 A I X o = ^ '
rn(x A) = P{Ln - n, Ln^ = 0, Zw e A 1 Xo - x} ,
ίn(α? A) = P{LW = 0, max(ii, , Zw-,) < Zn, Zw e A | Xo = x} .

Proof. We prove only the first one of the relations in (4.3). Our
proof is by induction. Since Po = I, it follows that

(4.4) po(x A) = P{X0 e A \ Xo = x} = -f1 x G A

(0 x$ A .

Now assume the first relation of (4.3) is true for the case n and set
BN{x) - {y: y> [2Nx + l]/2^} f or N - 1, 2, 3, . . Then,

P{Ln+1 = n + 1, Xw + 1 6

= Γ P{max(ii, , XJ < Xw+1, Xn+1 e BN{x)A \X1 = z}
J-oo

(4-5) -P{̂ i edz\X0 = x}

= (" {Ln = n,Xne BN{x)A IXo = z}P{X1 edz\X0 = x}
J-oo

= I pn(z 5^(α;)A)m(^ dz) .

From (2.4) we see that the last term of (4.5) is the kernel of MPn eval-
uated at x and BN(x)A. Set Ax = A Π (x, oo), and note that for any
^ > 0,

Thus, by Definition 2.1 and (4.5)
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pn+ι(x A) = lim pn(z BN(x)A, m(x dz)
N->oo J -oo

(4.6) = lim P{Ln+1 = n + 1, Xn+1 e 5Λ(ar)A | Xo = x}

1 = rc + 1, Xw+1 e Ax I Xo = ^}

1 = n + 1, Xw+1 e A [ Xo - x} ,

and the proof follows by induction.
Combining the first and second of the relations in (4.3) we get certain

additional information about max(X0, « ,XW). In fact, we can evaluate
the generating function

(4.6) Σ P{max(Xc, . ., Xn) e A | Xΰ - x}sn

n = 0

in terms of the kernels of P and Q. Let S = (—cvf oo). Then, by
Theorem 4.1

P{max(X 0 , .. ,Xn)eA\X0 = x}

= Σ P{Ln = Λ, max(X0, . , X J e A | Xd = x}

(4.7) = Σ ί P{Ln_ t = 0 IZ o = y}P{Lk = k,Xkedy\X0 = x}

n f
= Σ g»-fc(2/ S)pk(x d2/) .

λ;=0 JA

Multiplying through (4.7) by sn and summing over s = 0, 1, 2, we
obtain

(4.8) ( q(y S)p(α dy) = Σ P{max(X0, . , X J e A \ Xo = x}sn .

Relation (4.8) takes on a particularly simple form if q(y S) is in-
dependent of y (See example 2, § 5). In fact, in this special case we
have the following Corollary to Theorem 4.1 :

COROLLARY 4.1. Let {Xfc, k > 0} be a stationary Markov process with
transition probability operator M and let P and Q be defined as in Theorem
3.1. Furthermore, let q(x A) be the kernel of Q, and let Φ be the
bounded, linear operator of the form (2.1) determined by

(4.9) Ψ(x A) = Σ P{max(X 0 , ••-, Xn) e A\Xd = x}sn .
71=0

Then, if q(x S) = q is independent of x,

(4.10) Φ = qP.

Relation (4.10) is an operator analogue of Spitzer's identity (1.1).
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5. Examples* We now give applications of the theorems to some
particular examples.

EXAMPLE 1. Let the operator of form (2.1) be (See case 1, §2)

b

(5.1) Af

so that for k — 1, 2, 3,

a 0

(a — c)dlb c

0 0

(5.2) Λf* = (ak - ck)dlb

0

kak~Lb 1

kak~ιd

0

It is not hard to see that (Mk)+M = M(Mk)+ in this case so Corollary
3.1 applies here. The solution of P = I + s(MP)+ for \s\< 1/||M | | <
1/1 a I is

P = exp Σ — i
=i k

= e χ P

(5.3) {'•'

= exp

0 bsl(l - as)

0 cfe/(l - as)

0 0

0
0

0

0

1

0

a'-'d

0

1
1

6β/(l -

ώ/(l -

1

as) '

as)

In a similar manner it follows that the solution of Q = I + s(QM)~ for
1 β | < 1/U Λf H < l / m i n ( | α |, \c\) i s

(5.4) Q =

1/(1 - as) 0

(α - c)άs/6(l - αs)(l - cs) 1/(1 - cs)

0

0

0 0 1/(1 - as)

These solutions are easily checked by substitution.

EXAMPLE 2. Let {Xk}(k = 1, 2, 3, •) be a sequence of independent,
identically distributed random variables with a common density function
f(x), and let Sn = Xλ + — + XM. If To is any random variable inde-
pendent of {Xk}, and if we set Tn = Sn + Ta(n = 1, 2, 3, ••), then
{ΓM, JZ > 0} is a stationary Markov process with transition probability

(5.5) m(x A) = P{Tk+1 eA\Tk = x} = - x)dy .

The conditions (4.1) are satisfied by m(x A) (as well as by the right
hand members of (4.3)) in this case so we so may talk about the
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transition probability operator M associated with {Tni n> 0}. This oper-
ator has the form

(5.6) M =\~_ f(y-x)dy.

Using (2.4) and (5.6) it is not hard to deduce that Mk also has a kernel
with a density. In fact,

(5.7) Mk - = Γ -My-x)dy,
j -°°

where fk(x) is the jfc-fold convolution of f(x) with itself.
By (5.6), (5.7), and (2.4) we see that the kernel of (Mk)+M has a

density of the form

(5.8) \ f(y — w)fi{w — x)dw = \ f(y — w)fk(w — x)dw .

We now make the change of variable z = y + x — w in the second in-
tegral of (5.8) to get

(5.9) \~fk(y - z)f(z - x)dz = [" fi(y - z)f(z - x)dz .

The second term of (5.9) is the density of the kernel of M(Mk)+. Thus,
{Mk)+M = M{Mk)+ in this case and Corollary 3.1 applies. If P and Q are
as defined in Theorem 3.1, then for \s \ < 1 (that is ||Λf || = 1)

(5.10) P = expIf {-Mm , Q = exp I f ^
( k ) t f c i A:

Since (Mk)~ has a kernel with a density of the form fk(y — x), we
deduce that Q must have a kernel with a density of the form q(y — a;).
This means

(5.11) q(x S) = Γ g(2/ - a?)di/ = exp Γ f
k

is independent of x and Corollary 4.1 applies. Spitzer's identity (1.1)
is found in this case from (4.10) by operating with each side on the
function g(y) = exp(ity). In fact, in the notation of (1.1)

φg = eitx Σ Γ eu(v-χ>P{max(T0, -, Tn) e dy\T0 = x}sn

(5.12) = eu* Σ (" eίί!/P{max(0, Slt , Sn) e dy}sn

J
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Now in the special case of the exponential function g(y) = eιtv,

(5.13) (Mh)+(Mη+gβ-Ux

From (6.10), we find1

i k
(5.14)

= eu* expΓf, ζ- Γ eι»P{Sk e
Lfc=i A: Jo

Putting (5.11), (5.12), and (5.14) into (4.10), it follows that

(1.1) Σ Ψn(t>n = exp [ Σ ~ Γ e"*P{max(0, Sk) e dy}l .

In passing we note that the existence of a density is convenient
but not necessary for the derivation of (1.1) from (4.10). In general,
we can replace (5.5) by

(5.15) m{x A) - P{(Xχ + x) e A} ,

which is Borel measurable in x for each fixed set A. The conditions
(4.1) are satisfied and the derivation continues in the obvious manner.

EXAMPLE 3. Let M be a matrix of finite order. We denote by Dk

the subdeterminant formed from the determinant of / — sM by crossing
out all but the first k rows and columns. Moreover, Dk(i j) (1 <i,j< k)
will denote the cofactor of the ijth element in Dk. Finally, for any
matrix N, let N(k) denote the matrix formed from N by crossing out
all but the first k rows and columns.

Let {Pn}, {Qn}> P =• (Pij), a n d Q = (Qtj) denote the matrices defined
by (3.4) and (3.5) when Theorem 3.1 is applied to M. We may also
apply Theorem 3.1 to M(k). It is not hard to show by induction that
{Pn(k)}9 {Qn(k)}, P(k), and Q(k) are the matrices defined by (3.4) and
(3.5) when Theorem 3.1 is applied to M(k). Thus, by (3.8)

(5.16) P(k)Q(k) = [I(k) - sMik)]'1 .

Equating elements of the last row (the A th row) in the matrix product
of (5.16), we find

(5.17) qkJ = Dk(j k^D, , j = 1, 2, . . . , k .

Using (5.17) and the elements of the last column of the product in (5.16),
it follows that

(5.18) vac - Dk(k i)IDk-τ , ί - 1, 2, . . , k .

1 The referee points out that (5.14) holds if and only if g is the exponential function.



AN OPERATOR IDENTITY 663

Let M be the transition probability matrix of a stationary Markov
chain {Xfc, k > 0} with states ax < a2 < • < <xN. From (4.3), we find

(5.19)
P{Ln = 0, Xw = Λ j I Xo = α4} = Z)t0' i)/A , (i < j) .
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