A MAXIMAL PROBLEM IN HARMONIC ANALYSIS, II

I. I. HIRSCHMAN, JR.

1. Introduction. Let G be a compact topological group with elements
x, %, ete. We denote by dx the Haar measure of G normalized by the
condition that the measure of G is 1. Let the matrices

(1) lo(a, T, 3, )1; 52, ae A

be a complete set' of inequivalent unitary representations of G. We
recall that this implies that?

S g, i, 3, 2)9(B, k, 1, x)*dz = 8a, 1,55 B, k, 1) .
@ r(a)

Here 8(a, 4, 7; 8, k, 1) is 1 if « =B,71=Fk and j =; otherwise it is zero.
Further if f(x) e L*(G) and if

o, i, 3, f) = | f@ole, i, 4, 0)'de,
then
(@) L. 1/2
(2) [Sr@ 3 teta,i 4, nE " = 171

Let 1<p=<2,1/p+1/g=1. The object of the present paper is to
demonstrate the inequalities

(3) [ @ S te@ i 0e [T = 1
3 {S @ S et i g, 00 2 17

and to determine for p # 2 all cases in which equality occurs. (If
p=q =2 then (3') and (3"”) reduce to (2) and equality holds for every
f). The inequalities (3') and (3"”) are an extension to compact groups of
the Young-Hausdorff-Riesz inequalities for Fourier series. The corre-
sponding problem for locally compact Abelian groups has been discussed
by E. Hewitt and the author in [2], and the present paper may be
considered as a continuation of [2]. Closely related results are also
contained in a paper of A. Calderén and A. Zygmund [1].

Note that the r(a) x r(a) matrix [g(a, 7, 7, )] is not uniquely
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! For the definitions of the group theoretic terms used here see [3].

2 If v is a complex number then y* denotes its conjugate.
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specified. Indeed if [i(7,7)] is any #(«) x r(a) unitary matrix then
lg(a, 2, 5. 2)] may be replaced by

[9:(a, %, 7, »)] = [2(3, DIl9(a, %, 7, )]G, I .
Let

el i, ) = | f@aei, 4,2 do .
We assert that

r(a) .. r(a@) ..

i%lcl(a, 1,3, F)F =H§=Lllc(0f, 1,5, FF;
that is the left hand side of (3’) and (3"”) remains unchanged if some
representations are replaced by equivalent representations. This is an
immediate consequence of the easily verified matrix equation

leda, 3, 3, )] = [8(0, D, 1, 3, HHNLE, DI

This property, which is clearly essential if the extremal functions are
to have group theoretic significance, explains the appearance of the terms

T<w) . .
> lela, 1, 9, FIF
t,j=1

in the inequalities (3’) and (3").

2. The inequalities. We begin by demonstrating the inequality (3’)
of §1. Essentially this result is a consequence of the Riesz-Thorin
convexity theorem. However we will give the demonstration in full,
first because the proof differs slightly from the proofs of the previously

known special cases, and secondly because we shall need the apparatus
of the proof in order later to identify the extremal functions.

THEOREM 2a. If f(x) € L*(G)1 < p = 2 then the inequality (3') of
§ 1 holds.

Let sgn re®® = e if » = 0 and let sgn0 = 0. Let w be a complex
number. We define?®

T(w)f @) = | 7@ ¢+ sgn f(2)
o, i, 4, Tw)f) = | [T f@)lglet, i, 4, 2)do .
Let
s, £) =32 lele, 4, 7P

3 If f(x) + 0 we define |f(x)|(®/21+w) to be exp [log[f(x)lép(l + w)] where log | fiz)| is

taken as real,
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Cla, v, 7, f) = [s(a, £)[r(@]=>" - e(a, 1, 5, f)*,
r(@)

St ) =13 1€ (@, i, , ) = st " - r(aye.

We further define
Tyw)C(a, 1, 3, f) = [r(@)[S(a, £)]P-12@+D . Cla, 1, 4, f),

if s(a,f)+0. If s(a,f)=0 we set Ty (w)C(a,1,j,f)=0. Suppose
first that f is a finite simple function; that is, there exist disjoint
measurable sets J,, --,J, in G such that f(x) =a,+0 for xe J,
k=1,.--,m, while f(x) =0 for x e G — (J,UJ,U---UJ,). Then

m

e(a, v, 7, T(w) f) = 3 1a, [P sgn “kg 9(a, v, g, x)*de .
J

k=1 %

Let A, be a finite subset of A and define
(@) .. L.
Fy(w, A)) = Z?f ?”(a),jZ [e(a, 5, 7, T (w)HILTLw)C(ex, 1, 4, ] .
€4y i,j=1

Clearly F(w, A;) is an exponential polynomial with real exponents;
that is Fy(w, 4,) is of the form >, @,e»* with the ¢, real. Thus
F(w, 4,) is an entire function of w bounded in every vertical strip
u, < Rw < u,. By Schwarz’s inequality

IFw, A= (5 @S et 3,5, Tw)sy)

(£ 7@ 31 @i, 5,00

leAO
Suppose Rw = 0; that is w = 0 + wv. Then we have
| Ty(iw) f(x)] = | f(x) >,
By Bessel’s inequality
(@) .. . .
S 7(@) 3 le(, i, 4, LN = | | T f@de = 11713
a€4, ,Jj= o

On the other hand

| T(iv)Cla, 1, 4, £)| = | Cla, i, 4, HI[r(@)]S(e, £)]E-@
and hence

<
<

(@

S Tn)C@, 6,5, £ = [r@)S(a, AT 'S, | 6@ 5,4, 7)1

= p(a)S(, )7 = T s(a, )

Thus
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1/2

| Fy(iv, A1 S 1] S @) -vs(a, £y |

Next suppose Rw =1, that is w =1 + iv. Then we have

| T\(1 + ) f(@)] = | ()" .

Now
ofa,i, 3, TL+ 0)f) = | [T(L + i)/ @)lolex, 7, 4, 2)de
le(ct, 4, 4, T(L + i0)f) |
= |17 + 7@ o, 3,5, ods| | TA+ivf@)de
and thus

3 lete, i3, T+ 0nE = 17| 1@ S i, 5, 98
Since
3 lgte, i, 5,008 = r()
this implies that
el 1,4, T+ i, F < 1717
On the other hand we have
| TL + i0)Clet, &, 4, )| = 7@ S(et, HI*1 Clet, 7, 4, )1
ST+ )0, i, 5N = r(@S(@, £ = r(@)-'s(@ £)

By Schwarz’s inequality

R0, 4) = 5 {r@ 3 ke, i, 4, T s P}

-~
a€4,

x {r@r 3 1 w0, 1, 4, 1)}

1/2
’

and from this it follows that

1/2

F(w, 4)] = {Lub.r(@" 5 le(a, i, 4, Tw) I}

x 5 {r@ S 1 Tl i, 4, )}
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Using the above estimates we obtain
IFUL + v, A)| = 71 3 r(@p-cmos(ar, v}
aer
Finally since
2 _ 2 C .
T(2 1) 7@) = 1@, T(Z~1)0i,5,/) = Cla i, 4, )
we have

9 (@) .. .
F1<~— 1, A0> =3 r(a)i%1 (e, 1, 4, F)C(a, 1, 4, ) ,

D a€ Ay

r(@)=Dis(a, f)
0

Il

a€ A4

By the three lines theorem, see [1 p. 169],

2 . 2-2/p . 2/p~1
Fl(? —1, A0> < [l.u.b. | Fy(iv, A,) 1] [l.u.b. |FA(1 + v, Ay) 1]
Thus if
v =1{ 3 r@rrsa, ol
weAu
we find that

ot < {IlF I e ] f (et} e

which implies that « < || fll,. This has been established under the
assumption that f is a simple function ; however this restriction can be
removed as follows. Let {f.(x)};-. be a sequence of simple functions
such that ||f — f.ll,—> 0 as n—> . We have

{ E ,r(a,)2-q/2s(a,’fn)(l/z)q}llq < an ”p (n =12, .. .) .
®€4,
Since ¢(a, 1, 7, fu) ~ ¢(@, %, 7, f) as n— co we obtain in the limit
1/q

{ 5 ray-onsa, pom " < i £,

@ Aﬂ
Finally, A, being an arbitrary finite subset of A this implies the validity
of (3") of §1.

The second of our two inequalities can be deduced from the first

by a familiar duality argument.

THEOREM 2b. If f(x) e LY(G)2 < ¢ < oo then (3") of §1 holds.
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Let L® be the class of functions g(x) for which ¢(a, 7, J, g) is different

from 0 for only a finite number of indices and for which || g(z)]], = 1.
We have if g e L?

(@)
[ r@0yde = 3 @ 3 e, i, 5, et i, 4, 9)*
and hence

1/q

[, 7@oerde | = { 3 r@-msa, ry} | S rar-ois, gy}
= { S st el
since by Theorem 2a
| 5 r@risa, g} < llgll, = 1.

Since L? is dense in the unit ball of L*(G)

171 =Lub. || f@pgte)

dx ;

it follows that

151l = { 3 rterstae, e}

as desired.

It should be noted that the inequality is valid (3') for p =1 in the
form

r(a) . . 1/2
Lub.[ 7@ S let, i, 4,0 = 1151,
the (elementary) proof of this result being one of the steps in the

demonstration of Theorem 2a. Similarly (3”) is valid for ¢ =  in the
form

(%) 1/2
1£1l = S @] 3 lete, i, 4, ]
Here || f|l.. = ess. sup. | f(zx)].

3. An order relation. If the group G is commutative then the
following result reduces to the Riemann-Lebesgue lemma.

THEOREM 3. If f(x)e LNG) then s(a, f) = o[r(a)].
This means, of course, that given any & > 0 the set of values «
for which s(a, f) > dr(a) is finite. We can write f(x) = fi(z) + fu(x)
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where f,(x) € L*(G) and where || f,|l, < ¢, ¢ being any positive number

given in advance. A familiar inequality implies that s(a, f) <
2s(a, f1) + 2s(e, f,). Since

S r(@sta, £) = 1Ak
it follows that s(a, f,) = o[r(a)]™* and thus a fortiori
s(a, f3) = o[r(a)] .
On the other hand
ol i, 3, £) = | @t i, 3, 2ydz
e, i, 4, £)F = | 1A@)lote, 1, , )z 17 de
s, £) = WA L@ S Lo, 1,4, 2)F 2 AR r@ = @) .
Thus
s(a, f) = o[r(@)] + 2&'r(a) .
4, A duality property. A function f(x) € L*(G) (1 < p < 2) is said
to be maximal in L?(G) if equality obtains in the inequality (8’) of §1;
a function f(x)e LY(G) (2< q < o) is said to be maximal in LYG) if

equality obtains in (3”) of §1.

THEOREM 4a. Let ||f]l, = 1 where 1 < p < 2 and let F(x) = | f(x)]*~*
sgn f(x). If f is maximal in L*(G) then F' is maximal in L(G) and

cla, 1,3, F)= Cla, 1,7, £)* .

Let B be the collection of all finite subsets B of A, partially ordered
by inclusion. For B e B we define

W, B) = 5,r@ 3 O, 5, ol i, ,7)
By Theorem 2b
oz, B)ll, = {gBr(a)z-“/Z)ﬂS(a,f)a/m}l”' .

Now
r(a)~rS(a, f)UD? = ()= Ds(a, )

from which it follows that
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90, Bl = {3, re=cmsta o} <Al =1

Also if B, € B and if BA B, denotes the symmetric difference of B and
B, then

“ (p(w, B) __ (p(x’ Bl)”q =< {,xe;h; 7"(6()2—(1/2)‘18((1’f)qlz}lllv

1

It follows that the limit in the mean of order q of ¢(x, B) exists. Let
us denote this limit by ¢(zx); then

lim || ¢(z) — d(z, B)l, = 0.,
le@)ll, =1,
and
o, 1,4, 9) = Cla, 1, 5, ) .
We have

[, Fbte, Byrds = X (@) 'S el 3,5, £)CCet, 1,4, )
= 3 (@)= 0, f)aD

It follows that
[, f@p(eyde =1tim | p@)ae, Bydo

— lim { S (@)= s, f)“’”“} =|Iflls =

BEB la€B

Here we have made use of the fact that f is maximal in L?. We now
have

1= s@p@rde < 171 Il = 15

that is, equality obtains in Holder’s inequality. Using the fact that
[l fll, =1 this implies, see [2], that

d(x) = | f(x)|*~* sgn f(x)

Thus ¢(x) = F(x) and the statement of our theorem is proved. That
F(x) is maximal in LY(G) follows from an evident computation.

THEOREM 4b. Let || fll, =1 where 1< p<2 and let F(x)=
| f(x)|P-tsgn f(x). If F(x) maximal in LYG) than f(x) is maximal in
L(G) and
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Cla, 1,5, )* =cla, 1,5, F) .
Let us set
r(a)
F(@, B) = 3 r(a) S oa, i, j, F)g(ev, i, j, @)
€EB ij=1
where B € B. Since F' is maximal
{ 3 riep-emesia, pyem|” = | Pl =1,
a€A4
and from this it follows easily using Theorem 2b that
lim || F(x) — F(x, B)|l, =0 .
BEB
We have
()
5, @) S elat, i, g, Fle(et, 1,5, £) = | Fla, Bf*@)de
a€B ,Jj=1 G
and thus passing to the limit
3, r(@etee, i, 4, F)e(e, 6,3, 4)° = | Fla)f*@de = 1.
a€Ad G
On the other hand
/
1= 3 r(@e(@, i, 4, Fle(a, i, 4, £)* = { 5 r@r=cmmsa, prems)”
a€A a€4
. {2 T(a)Z-(lﬂ)zJS(a, F)(l/z),, }1/.11

€A

Now

{g}i r(a)-0rs(q, F)a/m}”" —IFl, =1
by assumption, and this implies that

{3 rep-omse, pemd ™ = 1= 171,

Thus f is maximal in L?. Applying Theorem 4a we see that ¢(a, 7, 7, F')=
Cla, 1, 3, )*.

5. Necessary conditions.

LEMMA 5. If f(x) is maximal then so is f(xi'x) for any x,in G.

The matrix relation

le(e, 4, 3, F(ere))] = [9(a, i, 3, ©)*1e(e, 1, 7, £ (@)]
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is eagily verified, and because [g(«, 7, 7, ©,)*] is unitary this implies that
s(e, fx ) = s(a, f(x)). Since || f(z7* )|, = | f(®)||,, the desired result
follows.

If f(x) is any function on G and if G, is any subset of G then by
fa(x) we denote the function which is equal to f(x) for « € G, and to 0
for x ¢ G,.

THEOREM 5. If f(x) is maximal n L*(1 < p < 2)or LU(2< g < =)
then f(x) ts of the form

S (@) = Yoxu(o, x7 )

where v, 1s a complex constant, H is an open and closed normal subgroup
of G, yla, x) s a character of rank r(a,) such that

lX(aO’ 95)[ = 7"(61’0) xe H y

and x, is an arbitrary element of G.
For B € B let us define as in §2

F(w, B) = X (@) 3 [ele, i, 5, T) AT, 1, 4,01

At the moment we suppose only that fe L (G) and not that f is maximal,
If f is simple then F,(w, B) is analytic for 0 < Rw < 1. If f is not
simple then approximating f by a sequence of simple functions it is easy
to show that F,(w, B) is analytic for 0 < lw < 1 and continuous and
bounded for 0 < Rw < 1. Let

) —_.2_.~ 3 :.___2.__
p(u+W)—1+u, q(u + ) T

By Holder’s inequality |F.(w, B)| < LI, where

)
1= { 3 r(@emas(a, Ty et
0 €B

(1/2)p(w) } 1/p(w)

(@)
1= {3 r@eme] e b, 0r [
By Theorem 2a
1< [ T llcor = 1L F@II

while direct computation gives

Iz — { Z ,y.(a)z_(uz)qs(a,f)(1/2)q}1/p(w) .
a€B

Thus
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| Fy(w, B)| = f(x) IIZ“’(’”){ > r(a)-beg(ar, f)(l/z)q}llp(w) ,

and

| Fiw, B) = Fi(w, B)I 1 f@) 7@ | S r(ap=emms(a, pyem ™

It is easily deduced from this that if

F(w) = lim F(w, B) = 5 7(0) 3 [e(e, 5, ) AT0)C(@, 3,5, £)]

then F(w) is defined for 0 < Rw < 1, and that F,(w, B) — Fy(w) uniformly
in this strip. F,(w) is therefore analytic for 0 < Rw < 1 and continuous
for 0 < Rw < 1. In addition

(1) | Fy(w)| = llf(w)lli“’(”’té ()= CPs(a, £

}Up(w)

We may assume without loss of generality that || f||, = 1. Then
(2) |F(w)| = 1 0<Rw=1.

Let us now use the fact that f is maximal in L?. This implies that
(8) F(2 —1) = 3 r(@romrs(a, fy =1,
D a€4

The relations (2) and (3) together imply, using the maximum modulus
principle, that
F(w)=1 0s=Rws1l.

Let us analyze this relation for w = 1. We have

r(a) .. 1/2[ (@) L. 1/2
1=FW = 3 r@)| 3 e i, 0, TONI| | S 1T0C@, 6 5,08]

(4) = {l.u‘;b.l:T(a)'l :2: le(a, i, , Tl(l)f)lz]llz}
12 [’W S T)C@, i d, f) 12]”2} .

i5=1

Now

Lub.[r@ 3 I, i, 4, TN S UTOF I = 11£1z = 1

by Theorem 2a with p = 1, while since f is maximal in L?

EJW’?E%I T(C(@, i, j, f) lz]lﬂ = 3. r@pCs(a, f)emt =1,
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Thus equality obtains in the inequality (4) and this is possible only if
L @) .. N
r(a)’ i%II T()C(e, 3, 4, f)F =0

except for those values of a for which
7(@) .. ,
r(@)™ X le(e, 1, 7, TA) )P =1.

i,j=1

By Theorem 3 there are only a finite number such «’s. Thus the set
A, of indices a for which s(a, f) # 0 is finite. In particular this implies
that if f(x) is maximal in L? it is almost everywhere equal to a linear
combination of the functions g(a, 1, 7, x)ae 4,; 4,5 =1, --- r(a)). Con-
sequently redefining f(x) if necessary on a set of measure 0 we may
suppose that it is continuous. Because of Lemma 5 it is no restriction
to assume that f(e) = 0.
Let us set

o, w) = 5 r(@) S [T, 7, 4, f)g(et, 7, 4, 2)
We define
Fw) = | @ 0 1)@

It is easily seen that Fy(w) is analytic for 0 < Rlw < 1 and continuous
for 0 < Rw < 1. By Holder’s inequality

(%) | Fy(w)| =< [, w) g 1| To(w) f @) o -
It is easily checked that
| T(w) f (@) llpcwr = Il @) IFP™ =1,

while Theorem 2b gives

Qapw) }llp(W)

b

T(m) - .
1, )l = { S rt@r-emmes ]| S| )0 7,3, 0)F |
@ 0 y =
from which it follows that
R N s Ti/p(w)
1@, W)l = | 35 r(@=0s(a, )00 [ S 1
@& 4y

We have
[Fw)| =1 0<Rw<=1.

Let us put w=2/p—1. Then T,(2/p — 1)f(z) = f(z) while \(z, 2/p —1)=
F(x) by Theorem 4a. Consequently we have



A MAXIMAL PROBLEM IN HARMONIC ANALYSIS, II 537

F(% ~1)=1
and thus

F,(w) =1 0ZRwl.

It follows that in the application of Holder’s inequality (5) there is
equality. This implies that if 0 < Rw < 1

Yz, w) = | Ty(w) f(x) [P~ sgn [Ty(w) f(x)] .
Thus

Ve w) = 5 @) S [Tw)C@, i, 4, o i, 5, 2)
= | Tyw) £ (@) P sgn [ T,w)f@)] .
Letting w — 1 + tv we obtain
(6) (e, 1+i0) = 3 7@ 3 [T+ i0)C(@ i, §, ol i, 4, 2)

= sgn [T(1 + ) f(@)] .

It follows that |+r(x, 1 + tv)| is either 1 or 0 and since |r(x, 1+ )| is
a continuous function of v it follows that the set X of values x where
it is 1 is independent of v. Note that X is both open and closed. If
2 € X then

1= (@, 1)
r(a) .. 1/2[" r(a@) L. 1/2
= 5 @ 3 1@ i, 5,01 ] S Lo i, 5 0]

Il

S @] S ITO0@ 6,50k =1

Thus equality obtains in the above application of Schwarz’s inequality
and from this it follows that if x € X, a € A,, then

(7) TV, 1, 7, f) = t(@d(@)r(a)g(a, 1, j, )
where |8(x)| = 1 and where
(@) .. 12
@ =% I TWC@ i3, £

Since f(e) # 0 we have e ¢ X. Setting © = ¢ in (7) we deduce the matrix
relation

(8) [T(D)C(@, i, 5, £)] = t(@)d(e)yr(a)"I
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where I is the r(a) x r(a) identity matrix. Let

7{®) P
X(a’ x) = 7,=Z1 g(a, ZX2) x)

be the character associated with the representation [¢(«, 1, 7, x)]. From
(7) and (8) we see that if ze X,a e A, then 3@)y(«a, x) = 8(e)r(a).
Thus we find that

(9) IX(Q’,.’X})‘—‘—’I"(CY) (.’IJGX;CI’GAO),
x(a, ®)r(a)™ = x(B, ©)r(B)™ xeX; a,peA).

Let H be the set of all # in G such that (9) holds for o, 8 e 4,. We
have proved X c H. Since it is easily verified that if x e H then
|yr(x,1)| =1 it follows that H c X, and thus H=X. If ze H then
lo(a, 7, 7, )] = r(@)"x(a, ) I from which it is evident that H is a normal
subgroup of G and we have previously noted that H = X is open and
closed. Inserting (7) in (6) we find, using the relation

T(1 + i0)C(at, i, , f) = [TUDO(@, i, 4, f)]- Ir(@)S(e, 407,
that if x € H then

8@)* S (@@ Tr(@)S(a, )10 = [sgn £()] LF ()17

If follows from this on setting » = 0 that sgn f(x)* = 8(x). Dividing
this out we see that | f(x)|***” is independent of x for x € H; that is,
| f(x)| is constant on H. Thus if «, is some index in A, and if v, is a
suitable complex constant we have proved that f(x) = v, yu(c,, ©) where
| x(ay, )| =7(a;) on H. (Note that since we assumed earlier that
Il f(x)ll,=1 the absolute value of v, is determined.) Thus our theorem is
proved if f is maximal in L?,1 < p < 2. The case where f is maximal
in L?,2< ¢ < o, follows from that treated above and Theorem 4b.

6. Sufficient conditions.

THEOREM 6. If f(x) is of the form
(1) F(@) = Yoln(ct, )

where v, is a complex constant, H an open and closed normal subgroup
of G, x(a, ®) @ character such that |y(ct, x)| =r(a,) xe H, or if f is a
left translate of such a function, then f is maximal in L*(1 < p < 2)
and in LY(2 < q < «).

Let fi(z) and fyz) e LX(G). We define

o) = fixfo= | ey )y -
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It is well known and easily verified that this implies the matrix relation

le(a, 1, 7, )] = [e(a, 4, 3, f)lle(e, 1, 3, f2)] .
Let us put

mie, f) = | f@xa,oyde.
If fi(x) and f.(x) are central functions then as a special case we have

( 2 ) "'(a)m(a’ fo) = m(a, fl)m(a! fz) .

Consider the function (1), except that we may without loss of generality
suppose v, = 1. We have

F@y™f(y) = r(a)f(x) (reG,yeH).
It follows from this that
frf=r@) | HLf
where | H| is the Haar measure of H. Applying (2) we see that
ma, £ = rl@m(a, £ f) = r(ayr(ea) | H|m(a, f)

and thus either

(3) m(a, f) = r(a)r(a,) | H |
or
(3") m(a, f) =0 .

A simple computation shows that if A, is the set of indices for which
(3’) holds then

s(a, f) = r(@)ra,)* | H | aeAd,.
Note that || f(z)|l, = r(a,) | H|'*. By Parseval’s equality
S r@pra) |HE = 1 F Il = r(@) | H],

and thus

1/q
’

I: g fr'(a)2—<1’2)qs(a, f)(l/z)qT/q = l: EZA T'(CY)2'(1’2)‘17'(6()(1/2)"7'(61'0)‘1 lqu]

=[rty=1H = 3 @@y HE]",
= (e | H = o= m(@) | H 1 = || £,

and we have proved that f is maximal in L?,1 < p < 2. Exactly the
same argument shows that f is maximal in L% 2 < ¢ < . That the
translates of f are also maximal follows from Lemma 5,
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7. Since the present paper was written, there has appeared ¢‘ L~
Fourier transforms on locally compact unimodular groups’’ by R. A.
Kunze, Trans. Amer. Math. Soc., Vol. 89 (1958), pp. 519-540. Together
with more general results Kunze establishes inequalities like (8’) and
(3”) of §1. Actully Kunze’s inequalities are somewhat sharper than
(8’) and (3”). However since the bulk of the present paper is largely
denoted to finding the extremal functions in (3’) and (3”) and since
these are a fortiori the extremal functions for Kunze’s inequalities, the
two papers are in a certain degree complementary.
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