CHARACTERIZATIONS OF CERTAIN
LATTICES OF FUNCTIONS

FRANK W. ANDERSON AND ROBERT L. BLAIR

Introduction. The set C(X, R) of all real-valued continuous func-
tions on a compact Hausdorff space X has been characterized from
a variety of points of view. We mention, in particular, those charac-
terizations of C(X, R) as a partially ordered system of some prescribed
kind: namely, the characterizations of C(X, R) by Stone as a partially
ordered ring [14] and as a lattice-ordered group [15], those by Kakutani
[7] and by M. and S. Krein [11] as a lattice-ordered Banach space, and
those by Fan [4] and Fleischer [5] as a partially ordered group. The
problem of characterizing C(X, R) as a lattice alone was posed by
Birkhoff [1, Problem 81] and by Kaplansky [9]. As a partial solution
of this problem Kaplansky [9] characterized certain sublattices of C(X, R)
as ‘‘ translation lattices ”’. A solution of the general problem has re-
cently been obtained by Heider [6], and, still more recently, another
solution has been announced by Pinsker [12].

In the present paper we obtain, as corollaries of our main results,
two new characterizations of the lattice C(X, R). We shall actually
solve, however, problems somewhat more general than that of Birkhoff
and Kaplansky mentioned above. In the first place, we replace the real
chain R by a conditionally complete dense-in-itself chain K which has
neither a first nor a last element and which is equipped with its interval
topology. In the second, we characterize not only C(X, K) but also an
extensive class of sublattices of C(X, K).

We give next a more detailed summary of the results of this paper;
following this, we pose some unsolved problems suggested by these re-
sults.

A sublattice L of C(X, K) is characterizing (Definition 1.1) in case
L separates points in X in a certain strong sense. The space X is K-
normal in case C(X, K) is itself characterizing. In Definition 2.10 the
notion of an ‘‘S-lattice ’’ is introduced. The main result (Theorem 2.16)
of §2 states that a characterizing sublattice of C(X, K) is an S-lattice.
(This usage of the term ‘¢ S-lattice ’’ is inexact but will suffice for the
present; the concept itself is inspired by work of Shirota [13].) Section
3 is devoted to a further study of S-lattices and of ¢ S-ideals’’ in S-
lattices. The results of §3, when applied (in §4) to a characterizing
sublattice L of C(X, K), enable us to reconstruct X as a space of
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maximal S-ideals of L. From this it follows (Theorem 4.3) that L com-
pletely determines the topology of X.

Those characterizing sublattices of C(X, K) which contain a set @ of
constant functions order-dense in K constitute an extensive and reasona-
bly accessible subclass of the class of all characterizing sublattices of
C(X, K); we call such sublattices characterizing @-sublattices of C(X, K).
This notion finds its abstract counterpart in the concept of a ¢ C,-lattice
relative to a separating chain @’ (Definition 5.8). The main result
(Theorem 5.12) of §5 states that a characterizing @-sublattice of C(X, K)
is a C)-lattice relative to Q.

Section 6 is devoted to ‘‘ C-lattices '’ (Definition 5.8), a somewhat
wider class of lattices than that of C,-lattices. Theorem 6.8 asserts that
a C-lattice L is also an S-lattice so that the results of §3 are applicable.
It then becomes possible to associate with L a uniquely determined com-
pact Hausdorff space X, (Theorem 6.16).

In §7 we are ready to attack the problem of representing a bounded
C-lattice (Definition 7.83) as a lattice of functions. As a preliminary re-
sult, Theorem 7.4 states (in effect) that a bounded C-lattice admits
a characterizing @Q-sublattice of C(X;, K) as a homomorphic image.
Theorem 7.7 then accomplishes a complete description of characterizing
Q-sublattices: A lattice L is isomorphic to a characterizing Q-sublattice
of C(X, K) for some (topologically unique) compact K-normal space X if
and only if L is a bounded C,-lattice relative to Q. Once this basic re-
sult is at hand, one need only impose on the bounded C,-lattice L a suitable
hypothesis of completeness in order to obtain the entire lattice C(X, K).
This we do in §8 in two different ways: In the first, an intrinsically
defined uniformity is introduced on L and L is required to be locally
complete in this uniformity (Theorem 8.3); in the second, Fan’s notion
of a direct extension [4] is adapted to the present context and L is re-
quired to be isomorphic to each of its bounded direct extensions (Theorem
8.9). Solutions of the Birkhoff-Kaplansky problem emerge as Corollaries
8.4 and 8.10.

In the concluding section the results of the present paper are com-
pared with certain earlier characterizations of C(X, R). In particular,
we indicate how our results can be used to deduce the characterizations
of Stone, Fan, and Fleischer mentioned above.

The results of the present paper suggest certain more general
problems.

I. Given an arbitrary chain K, characterize those lattices L which
are isomorphic to C(X, K) for some (compact) space X.

II. Given an arbitrary chain K, characterize those lattices L with
the property that, for some (compact) space X, L is isomorphic to some
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sublattice of C(X, K) which determines X. In particular, characterize
those lattices L with the property that, for some compact space X, L
is isomorphic to some sublattice of C(X, K) which is characterizing in
the sense of Definition 1.1.

Related problems are obtained from problems I and II by dropping
the requirement that the chain K be specified in advance.

The difficulty involved in solving either of these problems will proba-
bly depend upon the type of solution sought. In this connection it is
clear that the type of solution obtained is of an importance approaching
that of the solution itself. We propose, as the most desirable type of
solution, that type in which the conditions imposed on the lattice
(L, VY, A> are all artthmetical [17] relative to {L, YV, A>; that is, for-
mulable solely in terms of (i) elements of L, (ii) elementary logical con-
stants (connectives, quantifiers, identity symbol), and (iii) the operations
V and A. (Thus, for example, conditions involving assertions about
ideals of L are non-arithmetical and, therefore, in such a solution, in-
admissable.) A solution of either I or II of this ideal type is probably
impossible. In the first place, a (non-arithmetical) assumption of the
sort that I contains (a replica of) a suitable subset Q of K seems
inevitable. Admitting this assumption, however, and introducing the
predicate &, expressing elementhood in @, we can still insist that al-
lowable conditions be arithmetical relative to the system {L, V, A, &;
that is, formulable solely in terms of (i)-(iii) and (iv) the predicate &
A solution of II of this modified type seems not unfeasible. When it
comes to I, however, a solution seems to require first a solution of II
(in some form) followed by the imposition of a suitable hypothesis of
completeness. Again, it appears difficult, if not impossible, to formulate
such a completeness hypothesis arithmetically relative to <L, V, A, &>.
For a complete solution of I, therefore, a further relaxation of arithme-
tical requirements seems unavoidable.

Using the above terminology we can now describe more precisely
the nature of our present results and their relation to those of Heider
and of Pinsker. Theorem 7.7, described above, is a solution of the spe-
cial case of II in which K is conditionally complete, dense-in-itself, and
without extreme points, and in which the characterizing sublattice in
question is a @-sublattice. Moreover, our solution of this problem is
arithmetical relative to <L, V, A, &,>. Theorems 8.3 and 8.9 are solu-
tions of I with the specified restrictions on K; they are, furthermore,
non-arithmetical (relative to <L, V, A, %) only in their hypotheses of
completeness. These same remarks apply also to the solutions of the
Birkhoff-Kaplansky problem embodied in Corollaries 8.4 and 8.10. On
the other hand, an inspection of the solutions by Heider and by Pinsker
of the Birkhoff-Kaplansky problem shows that they are both non-arithme-
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tical, not only with respect to their completeness hypotheses, but also
with respect to most of their remaining hypotheses. We mention, in
particular, that Heider relies on assumptions concerning the real lattice
homomorphisms of I and that (among other non-arithmetical assumptions)

Pinsker assumes outright the existence of a certain dual lattice auto-
morphism of L.

1. Preliminary remarks. In this section we list some of the defini-
tions, notational conventions, and facts essential to the rest of the paper.

We begin by adopting the following convention: Throughout the
paper K will denote a chain which is condittonally complete [1], dense-
wn-itself [1], and with netther a first nor a last element.

The letter R will be reserved for the chain of real numbers.

If @ is any chain, then we shall denote by @ the completion of @
by cuts [1, p. 58]. We denote by Q the conditionally complete subchain
of @ obtained by removing those extreme points of Q, if any, which are
not in @, and we call Q the conditional completion of Q. If @ is an or-
der-dense subchain [1] of K, then Q = K and Q = K.

If @ is a chain and if X is a non-empty set, then we denote by
F(X, Q) the set of all functions on X to Q. For f, g ¢ F(X, Q) we set
f =<9 in case f(x) < g(x) for all z e X; with respect to this partial or-
dering F(X, Q) is a distributive lattice. If A < X and if f, ¢ ¢ F(X, Q),
then we shall say that ““f < g (respectively, f<g) on A” in case
f(x) < g(x) (respectively, f(x) < g(x)) for all z e A.

If X is a topological space, and if @ is endowed with its interval
topology [1, p. 60], then we denote by C(X, Q) the sublattice of F(X, Q)
consisting of all continuous functions on X to Q. If ae @, then we
shall also denote by « the function in C(X, @) which is identically equal
to @ on X.

Let X be a topological space. We shall for the most part be con-
cerned with a certain class of sublattices of C(X, K) which we now
define.

DEFINITION 1.1. A sublattice L of C(X, K) is characterizing® in case
for each pair of distinct points z,y in X and each pair of functions
f, g in L, there is an h e L such that h(x) < f(x) and h(y) > g(¥).

The proof of the following proposition will be omitted.

(1.2) If X is compact and if L is a characterizing sublattice of
C(X, K), then for each pair of disjoint closed subsets A, B of X and
each patr f,g e L there is an h € L such that h < f on A and h > g
on B.

1 If X is compact, then, in view of our restrictions on K, this is equivalent to the
notion of characterjzing used in [3].
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For some compact Hausdorff spaces X and some chains K it may be
the case that no sublattice of C(X, K) is characterizing, and it may be
the case that C(X, K) itself is not characterizing even though it has
characterizing sublattices.

DEFINITION 1.8. We say that a compact space X is K-normal in
case C(X, K) is characterizing (cf. [8]).

We observe that K-normal spaces do exist. In fact, every totally
disconnected compact Hausdorff space is clearly K-normal. It is also
clear that every compact K-normal space is necessarily Hausdorft.

Throughout the remainder of this paper we shall assume that X s
a compact Hoausdor(f space containing at least two points.

DEFINITION 1.4. Let @ be an order-dense subchain of K. Then
a sublattice L of C(X, K) is a Q-sublattice of C(X, K) in case L con-
tains the set @ of constant functions.

We observe that if @, is order-dense in @ and if @ is order-dense
in K, then a Q-sublattice of C(X, K) is also a @Q,-sublattice of C(X, K)
Note also that C(X, K) contains a characterizing Q-sublattice if and
only if X is K-normal.

The symbols |J and ) will denote set union and intersection, re-
spectively, whereas, when dealing with ¢ abstract’’ lattices, the symbols
Y and A will be used to denote joins and meets.

If A X, then we denote by A~ and A’, respectively, the closure
and the complement of 4 in X.

2. A class of binary relations on characterizing sublattices. If L is
a distributive lattice, if [ e L, and if < is a transitive binary . relation
on L, then (according to Definition 2.10) I is an S-lattice at I, relative
to <&, in case L satisfies conditions (2.11)-(2.15) below. The main pur-
pose of this section is to prove that if L is a characterizing sublattice
of C(X, K), and if [ e L, then there is a transitive binary relation <,
on L relative to which L is an S-lattice at I. We point out that the
results of this and of the next section rely heavily on the ideas of Shirota
[13].

DEFINITION 2.1. If L is a distributive lattice and if 1 e L, then
we define the binary relation —, on L as follows: For each pair
f,9eL,fc,9 in case h A g <1 implies h A f <1 for every h e L.

The following facts are easily verified.

(2.2) The relation c, is transitive on L.

2.3) If f,ge L with f<g, then fC,g for every l e L.

(2.4) If fc,l, then f <.

(2.5) If fi,9:€ Lwith f, C,9,(i =1,2), then fi N\ f, C.9: \ g, and
fl va Clgl \/gZ’
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DEFINITION 2.6. If L is a sublattice of C(X, K), and if [ e L, then
we define the binary relation <, on L as follows:* For each pair
frge L, f<, g in case for each ke L there exist ¢', h € L such that
9’ C, 9 and such that both ¢ VA =k and f A h Z 1.

It is clear (taking ¢’ = ¢ and h = k) that [ <, ¢ for every g € L.

(2.7) Let L be a sublattice of C(X, K) and let l € L. Then

(i) <& is transitive on L;

(i) of fL9e L with f<, g, then f C,g.

Proof. The first statement follows at once from (ii) and the defini-
tion of <,. Thus we shall prove (ii). Let f< g; then there exist
g’ heL such that ¢’ C,9,9' Vh=Ff, and fARZI. If ke L with
kNg=1l then EANf=kAN@G@ VHANF=[EANG)VENMIANF=
VEANMIAFSIVIEARAf]1=1. Hence fC,g.

If f,9 e C(X, K), then we set

P(f, 9) = {x e X; f(x) > g(x)} .

Observe that since f and ¢ are continuous, P(f, g) is open in X.

We now characterize the relations c, and <, on a characterizing
sublattice in terms of sets of the form P(f,1).}

(2.8) If L 1is a characterizing sublattice of C(X, K), and if f,9,le L,
then the following statements hold :

(i) f g if and only if P(f, 1)~ < P(g,1)".

(i) f<ig iof and only if P(f, 1)~ < P(g, )"~

Proof. Statement (i) follows from (1.2) and the fact that if f, he L,
then P(f, 1) N P(h, 1) = P(f A h, ).

To prove the second statement assume first that f<,g. From (1.2)
we conclude that P(k, ) = X for some ke L. Then there exist ¢’,he L
such that ¢’ c,9,9' Vh =2k, and f Ak <. Now if xe P(g,1)”'-, then
g'(x) < l(x), and hence h(x) = k(x) > l(x). Therefore x € P(k, 1), and
since P(h, 1) N P(f,1) = ¢, we have x ¢ P(f, ).

Conversely, let P(f, 1)~ < P(g,1)”'"" and let ke L. By (1.2) there
exist ¢’, he L such that ¢’ >k on P(f,1)",9' <l on P(g,l)”'",h <l on
P(f,l)~ and h >k on P(9’, k). Theng' C, 9,9 Vh =k, and f AN b < L.
That is, /<, 9.

DEFINITION 2.9. If L is any lattice and if p is a binary relation on
L, then an element e € L is a unit for p in case fpe for every fe L.

2 If L has a least element [, then it can be shown that the relation < ; coincides with
the relation < of Shirota [13, Definition 4]. We note, however, that if L is characterizing,
then L has no least element.

3 Cf. [18, Lemma 1].



CHARACTERIZATIONS OF CERTAIN LATTICES OF FUNCTIONS 341

If L is a distributive lattice and if [ € L, then we denote by FE, the set
of all units of L for the binary relation c,.

We note that if L is a characterizing sublattice of C(X, K) and if
le L, then by (2.8) and (1.2) it is clear that fe E, if and only if
P(f,)- = X.

DEFINITION 2.10. Let L be a distributive lattice, let [ € L, and let
< be a transitive binary relation on L. We say that L is an S-lattice
at | (relative to <) in case the following conditions are satisfied:*

(2.11) Iffi<gi(i:1’2)! thenfl\/f2<g1\/gz-

2.12) If <y, then f<h<g for some h e L.

(2.13) L contains a unit for <.

2.14) If f<g, then f AR <1 and g \/ he E, for some h € L.

2.15) If f<g, if g Nk <1, and if f\/ he E, then k<h.

The preceding definition is motivated by the following theorem.

THEOREM 2.16. If L is a characterizing sublattice of C(X, K) and
if L e L, then L is an S-lattice at | relative to the relation <,.

Proof. Suppose first that f;, <, 9, (¢ =1,2) in L. Let k€ L. Then
there exist ¢, h, € L such that ¢, c,9, 9, Vh; =k, and fiANh =1
(t=1,2). Set g’'=g¢,V g, and h = h, A h,. Using (2.5) and the dis-
tributive law we have ¢’ <,(g, V ¢.),9' Vh =k, and (f,V fi)) Ah =1
Thus (2.11) is satisfied. Conditions (2.12), (2.18), and (2.14) are readily
established by applying (1.2), (2.8), and the fact that P(e, !) = X for
some e € L. Finally, to show that (2.15) holds, let f, g,k ke L with
<9, 9N Nk<l, and fVheE, Then

P(f, )~ < Plg, )", P(g, )" N Pk, 1) = ¢,

and P(f,1)~ U P(h,1)- = X. Therefore P(k,l)- < P(g, )" < P(f, 1)<
Pk, 1),

3. Some fundamental properties of S-lattices. This section is devoted
to a study of several important properties of S-lattices. In view of the
connection between S-lattices and R-lattices (see footnote 4) many of the
results obtained here provide sharpened versions of certain results of
[13].

Throughout this section we shall assume that L is an S-lattice at some
element 1 e L.

In Definition 3.7 we introduce the notion of an S,-ideal of L. The

¢ If I is a lattice that satisfies the dual of (2.11), a stronger version of (2.13), to-
gether with (2.12), (2.14), and (2.15), then it can be verified that L, reduced modulo a con-
gruence (f congruent g in case fCC; g and g, f), is an R-lattice in the sense of Shirota
[13].
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main result of this section, Theorem 8.10, states that the set of all
maximal proper S;-ideals of L admits the Stone topology, relative to
which it is a compact Hausdorff space.’

3B.1) If f,ge L with f<g, then f C,g.

Proof. Since f< g, there exists, by (2.14), an h e L such that
fAh=landgV hekFE,. Thus f C,(g \V k). Since also f C,f, we have
by (2.5) that fc,fA@VR=UADVIFAR (A VI But
clearly (f A g) V1 C,g; hence, by (2.2) and (2.8), it follows that f C,g.

(3.2) If f,9e L with f<g, then there exist hy, h,e L such that
SANh =1, gV h,e E, and h,<h,.

Proof. Since f<g, there exist, by (2.12), f,,f.€ L such that
[ iL f,<g. Thus, by (2.14), there exist 4, h,e L such that f A h, < 1,
SinNh, =1, fiVh e E, and g\ h,e E,. Then from fAh <1, fiVh ek,
and f, < f, together with (2.15), we have h, < h,.

B.3) If fig,h,ke L with h C,f, f<g, and g <k, then h<k.

Proof. Let h,, h,e L be as in (3.2). Thenh Ah, <! and k\ h,e E|.
Therefore, by (2.15), h < k.
B.4) If fi,9.e L with /i< g, 0 =1,2), then fi N fL< g A G-

Proof. By (3.3) and (2.3) it will suffice to prove that if f< g, and
<9, then f<g, A g, By (3.2) there exist 2y, h, k), k, e L such that
SAMESLIANEZTL 9V hheE,g,VkeE,h<h, and k,<k,. Then
hy V k, < by \V ky by (2.11). Moreover, f A (b, V k) <1 and

(9: N gs) V (hy V k) € B
so that, by (2.15), f<g, A 9,

(8.5) The set of units in L for < coincides with the set L, of

units tn L for C,.

Proof. By (3.1), E, contains every unit for <. On the other hand,
by (2.18), L contains a unit e for <. Let fe E,. Then e C,f, so that,
from (3.3) and the fact that e <e, we have e < f. By the transitivity
of < we conclude that f is a unit for <.

(3.6) For every fe L, 1< f.

Proof. Let e e E, (clearly, E, + ¢) and let fe L. Then e Al <1,
eV fe E, and by (3.5), e<e. Hence by (2.15), I < f.

The remainder of this section is devoted to a study of certain ideals
in L. We begin with the following definition.

DEFINITION 3.7. An ideal I of L is an Si-ideal in case (i) if fe I,
then f< ¢ for some g € I, and (ii) if fe I and g<f, then ge I. We
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denote by &, the set of all S,-ideals of L and by I, the set of all
maximal proper S,-ideals of L.

We note that for every fe L the set {ge L;g< f} is an S;-ideal.
Moreover, there exists a proper S;-ideal in L provided that f £ for
some f e L; in fact, by (2.4) and (3.1) this latter condition holds if and
only if the ideal {g e L; g <1} is proper.

We also observe that if Te &, if fe I, and if g C,f, then ge I
For if f< h with h e I, then g < h by (3.3). In particular, then, lel
for every Ie &,,.

As a notational convenience we shall, for the remainder of this sec-
tion, dispense with the subseripts in the symbols —,, E,, S, &,, and ,.

We now remark that, relative to set inclusion, & is a complete lat-
tice. In fact, if ¥ < &, then, as in easily proved by (3.3), (2.11), and
(2.13),

VE={feL;f<V F for some finite FF < U I}

and

AT={feL;f<g for some ge N T} .

It is clear that if € £ & is a chain, then YV € = €. Moreover, if
I, J e &, then it follows from (3.4) that IA J=1nNJ. We therefore
conclude that & is an F-lattice of sets [2]. It is easy to see that a prop-
er ideal of L is s-irreducible’ in the lattice of ideals of L if and only
if it is prime. The s-irreducible elements of the lattice © coincide with
the maximal proper S-ideals of L, but need not, however, be prime
ideals.® The situation is made precise by the following lemma.

LEmMA 3.8. Let H be a proper S-ideal of L. Then the following
statements are equivalent:

(i) He M.

() If fANge Hand f ¢ H, then g, € H for all g,<g.

(iii) H is s-irreducible in the lattice S.

Proof. (i)— (ii). Let He M, f AgeHand f ¢ H. SetI={heL;
for some k e H and some ¢, < g, h <k \ g,}. It is easily verified that
Ie & and H < I; thus, by the maximality of H, either H =1 or L = I.
If the latter holds, then f e I, so that there exist k € H and g, < ¢ such that
F<kV g, and thus fc (k\V g). Butthen fCc(kVg)AfFCkVINSf=
kANF)V (g ANf) However, k A fand g A f are elements of H, so

5 An element x of a lattice I is s-irreducible [2] in case (i) 22y for some y €L,
and (ii) if @, b € L with a A b=, then either a <<z or b= .

6 Since X is compact Hausdorff, it can be shown that if ! € C(X, R), then every s-ir-
reducible S;-ideal of C(X, R) is prime if and only if X is discrete.
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that f e H, contrary to hypothesis. Hence I = H, and since it is evident
by (2.12) that g, € I for all g, < g, H satisfies (ii).

(i) — (iii). Since H is proper, we need only prove that if I, Je &
and if I A J<Z H, then either ICH or JZH. If IZ H, then g, ¢ H
for some g, € I. Let g € I be such that g, < g and let f be any element
of J. Since fAgelIndJand INJ=1AJ, it follows that f A ge H.
Hence f e H.

(iii) —» (i). Since E # ¢, Zorn’s lemma will supply an M e M such
that H< M. If H # M, then there exist f< f, < f, with f¢ H and
f.€ M. By (3.2) there exist h, < h, such that f, Ak, <1 and f, \V h,e E.
Since ! € H, we must have f, A hy,e H. Let I(f\) = {ke L; k< f,} and
Ih) = {keL; k<h}. Then I(f,), I(h) € &, and, by (3.4), I(f) N I(h,) <
H. Thus, by the s-irreducibility of H, and since f ¢ H, it is clear that
h,e H. Therefore h,e M, so that f,\V h,e M N E, a contradiction.
Hence H = M, as desired.

In view of the preceding lemma and Theorems 1.1 and 1.2 of [2],
the set MM admits the Stone topology relative to which it is 7). More-
over, since K +# ¢, Theorem 3.4 of [2] implies that Wt is compact in this
topology. Throughout the remainder of this paper whenever It is con-
sidered as a topological space, its topology will be this ‘‘ Stone topology ’’.

LEMMA 3.9. For each fe L, the set F(f)={MeW;f¢& M} is
closed in M.

Proof. Recall first that if A M and if A* = A {MeIN; Me A},
then - = {(Me WM; A* < M}. Now let fe L, Me M, and F(f)* < M;
we must prove that f ¢ M. Suppose on the contrary that fe M. Then
f<g for some g e M. By (3.2) and (2.12) there exist h, < k < h, such
that fA R <l and g Vh,e E. If Ne F(f), then f A h, e N so that,
by Lemma 3.8, ke N. This implies that &, e F(f)*, and therefore
gV h,e M N E, a contradiction. Hence f ¢ M, and the proof is complete.

We can now prove the main result of this section (¢f. [13, Theorem 2]).

THEOREM 3.10. Let L be an S-lattice at the element | € L. Then
the set M, of all maximal Si-ideals admits the Stome topology, and,
relative to this topology, M, is a compact Hausdorff space.

Proof. From the preceding remarks it will suffice to prove that M,
is Hausdorff. Let M = N in M, so that there exist f ¢ M and ge N
with f<g. By (3.2) and Lemma 3.8, there exists an element % e L such
that he M and h\V ge E,. Thus M¢ (), N¢ F(g), and F(h) UF(g) =M.

4. Maximal S;-ideals in characterizing sublattices of C(X, K). Let
L be a characterizing sublattice of C(X, K) and let le L. We first
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obtain a characterization of the maximal S,-ideals of L. This charac-
terization is then used to show that L determines the topology of X.

If L is a characterizing sublattice of C(X, K), and if [ e L, then
for each x € X set

M) = {feL;xze P(f,1)"'} .

It is evident that each M,(x) is an ideal, and in fact, by (2.8) and (1.2),
an Siideal in L. Since it is clear that if z #+ y in X, then M(x) #
M(y), we have proved a portion of the following key result:

THEOREM 4.1. If L is a characterizing sublattice of C(X, K), and
if le L, then a subset M of L is a maximal proper S-ideal of L if

and only if there exists a (necessarily unique) element x € X such that
M = M(x).

Proof. In view of the above remarks it will suffice to prove that
each M,(x) is maximal in &, and that each M ¢ 9, is contained in some
M,(x). Suppose first that f A ge M(x), f ¢ M/ (x), and ¢’ <, 9. Then
xe P(f,)-. Thus if ¢ ¢ M,(x), then xze P(¢’,1)- < P(g,1)”'~’, and
hence it follows that x e [P(g,1)~"~' N P(/, )] =[P(9,1) n P(f, )] =
P(f ANg, )", contrary to f A ge M(x). Therefore, by Lemma 3.8,
M(x) e ;.

Conversely, let M e M, and suppose that for each x e X there is
an f, € M with x e P(f,,1)~. Then for each « there is an h, € M such
that f, < h,, and hence x € P(h,,1)~’~'. Now since X is compact, there
is a finite set %, ---, 2, € X such that

X =P,y <PV h,, ).
i=1 i=1

But then
g C, i\zllhri
for every g € L, and
Z\Zh’i eM,

contrary to g ¢ M for some g € L. Thus M < M,(x) for some x € X.

DEFINITION 4.2. If L is a characterizing sublattice of C(X, K), if
leL, and if ze X, then we say that the maximal S;-ideal M,(x) is
associated with x.

The preceding theorem then asserts that each maximal S-ideal of L
is associated with a unique point in X.
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THEOREM 4.3. If L is a characterizing sublattice of C(X, K), and
if le L, then the mapping M,(x) — x s a homeomorphism of the space
M, onto X. Thus the space X 1is determined by any characterizing
sublattice of C(X, K).

Proof. By Theorem 4.1 the mapping M,(x) — x is one-to-one from
M, onto X; since M, is compact, it will therefore suffice to prove that
this mapping is continuous. Thus let U be a neighborhood of « € X and

let feL be such that f <1 at z and f>1 on U’. By Lemma 3.9,
the set

U= {MeM;fe M

is open in M,, and clearly M,(x) e 1. To complete the proof we show
that y € U for every M(y) e U. If M,(y) e U, then y € P(f,)”’; hence
fy) < l(y). But f>1 on U’ so that y € U, as desired.

5. C-lattices. Motivated by the notion of a characterizing Q-sub-
lattice of C(X, K) we introduce in this section a class of abstract lat-
tices, called C-lattices, and an important subclass, called C,-lattices.
The main result of this section is that every characterizing Q-sublattice
of C(X, K) is a C,-lattice.

DEFINITION 5.1. If L is a distributive lattice and if «, 8 ¢ L, then
we write &« 3 3 in case « < 3 and, for every f, g€ L, the following
conditions hold:

i) If fVvg=p, and if g < a, then f = 8.

(i) If fFAg=Za, and if g = B, then f < a.

It is readily seen that -3 is a transitive relation on L Moreover,
if vy<a, if a33, andif B <3, then ¥y 3 3.

(5.2) If L is a distributive lattice, and iof a 3 3 in L, then 3 is
a unit for C, in L.

Proof. Let « 3B in L and let ge L. If fe L with fA B =Za,
then, since 8 = B, we have f < «, so that f A g < a. That is, g C. 3.

(6.83) If L is a distributive lattice, if o 3 B in L, and if f;, g,e L
(t=1,2), then

() AiVez=B V=B and fi N f, =a imply g,V ¢, = B;

i) ANG=EafiNg=a, and f,V f, =B imply .\ 9, = a.

Proof. If fiV g, =B (1 =1,2), then using the distributive law we
have (fiANf) V(9. V ¢) =B. Thus if « 383, and if fAANfiZa@, we
have g, \VV ¢, = 3, establishing (i). In a similar manner (ii) is proved.
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DEFINITION 5.4. A non-empty subset @ of a distributive lattice L
is a separating chain in L in case, relative to -3, @ is a chain having
neither a first nor a last element.

(56.5) If L is a Q-sublattice of C(X, K), then Q is a separating chain
i L.

Proof. It will suffice to prove that if «, 8¢ @, and if @ < 3, then
a -3 8. Thus suppose that f, ge L with g <« and f% 3. Then f(x)<g for
some ¢ € X and, since g(x) < «, it follows that (f V g)(x) < f(x) V a <pB.
Similarly, if ¢ =8 and f £ a, then f A g La. Hence a 3 8.

LEMMA 5.6. Let L be a characterizing Q-sublattice of C(X, K), let
a,B,v,8eQ, and let fe C(X,K). If B <, then there exist k,l, me L
such that kv mzZ 6, fAmMZ v, kANl Za, and fVI=8.

Proof. Since @ is dense-in-itself, there exist p,7 e @ such that
B<p<n<v. Now the closed sets P(f,n), P(f,v)", and P(f, )~
are disjoint, respectively, from the closed sets P(f, o), P(f, %), and
P(f,8). Therefore gince L is characterizing, there exist, by (1.2),
elements k,1, m e L such that P(f, 7)) < P(k, ), P(f, p)y < P(k, ),
P(f,v)- < P(m, ), P(f, 7)) < P(m, 8), P(f, o)~ < P(l, @), and P(f, B)' <
P(l, B). Since X = P(f,n) U P(f,n) < P(k,d) U P(m, d) = P(k VvV m, J),
we have &k Vv m = §, and since P(f,v) < P(m,v), we have f A m <.
In a similar fashion it follows that k¥ Al < «a and f VI = B.

Motivated by the preceding lemma we introduce the following
definition :

DEFINITION 5.7. It L is a distributive lattice and if @ is a separat-
ing chain in L, then the ‘‘stretching function’ 9% is the function on
the cartesian product L x Q* to the subsets of the cartesian product L?
defined as follows: (k, [, m) e S5*(f, «, B, 7, 8) in case

Evmz=¢6, fAMZy,
EnNl=a, fVIz=PB.

Whenever no confusion is likely, we shall omit the indices L and @
in the symbol 7%

We observe that in most cases A, @, B, v, d) = ¢. However it is
easily seen that if B<a, if §<v, or if £ <v, then </(f, a,B,7,8) # ¢.

DEFINITION 5.8. Let L be a distributive lattice, let @ be a non-
empty subset of L, and consider the following conditions:

(C.0) @ is a separating chain in L.

(C.1) If B,veQ with B8 < v, then G (f, a, 3,7, 8 # ¢ for all
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a,d€ @ and all fe L.

(C.2) @ is dense-in-itself.

(C.2) If feL,if ae@Q, and if f< B for all 8>« in @, then
f=a

(C3) If f,ge L and if f C,g for all « e Q, then f <g.
We say that L is a C-lattice relative to @ in case (C.0), (C.1), and (C.2)
are satisfied. We say that L is a C-lattice relative to @ in case (C.0),
(C.1), (C.2), and (C.3) are satisfied.

We observe that (C.0) and (C.2') together imply (C.2). For if a < B
in Q, then there is a vy € Q with v > a and 8L v; that is, a <v < 8.
Thus every C,-lattice is also a C-lattice.

We remark also that the defining conditions for a C-lattice and for
a C;-lattice are all arithmetical relative to the system <L, V, A, &>.
That is, each is formulated solely in terms of (i) elements of L, (ii)
elementary logical constants (connectives, quantifiers, identity symbol),
(iii) the operations VY and A, and (iv) the predicate &, expressing ele-
menthood in @ (¢f. [17] and the Introduection).

The following examples show that, in the presence of (C.0), condi-
tions (C.1), (C.2), and (C.3) are independent, and that (C.2') is not
implied by (C.1), (C.2), and (C.3).

ExAMPLE 5.9. Let R(e) be the chain obtained by adjoining to the
real chain R an element ¢ ¢ R in such a manner that 0 <e < a for
every @ >0 in R. If Q = {ae R; « =+ 0}, then Q is a separating chain
in R(e), and, relative to @, R(e) satisfies (C.1) and (C.2'). However R(e)
is. not a C,-lattice relative to @ since e <, 0 for all o € Q.

ExAMPLE 5.10. The chain R is also a separating chain in R(e), but,
relative to R, R(e) is not a C -lattice since ¢ £ 0 and yet e < a for all
a >0 in R. We note, however, that, relative to R, R(e) satisfies (C.1),
(C.2), and (C.3).

ExaMPLE 5.11. Let L be the set of all real-valued functions f on
the two element set {x,y} such that |f(x) — f(y)|<1. Then L is
a distributive lattice, the set B of constants functions in L is a separat-
ing chain, and, relative to R, L satisfies (C.2) and (C.3). However, L
fails to satisfy (C.1), and hence it is not a C-lattice.

We now prove the main result of this section.

THEOREM 5.12. If L is a characterizing @Q-sublattice of C(X, K),
then L is a C-lattice relative to Q.

Proof. By (5.5), Q is a separating chain in L, and, since @ is
order-dense in K, it is clear that (C.2') is satisfied. Moreover, Lemma
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5.6, shows that L satisfies (C.1). Finally, to prove that L satisfies
(C.3), suppose that fX¢g in L. Then for some ze X and some
ae@, f(x) > a > g(x). Thus, by the continuity of g, we have P(f, a)- &
P(g, @)~ so that, by (2.8), f Z.9.

6. Some fundamental properties of C-lattices, Of the two major
results of this section the first, an analogue of Theorem 2.16, states that
if L is a C-lattice relative to the separating chain @ in L, then for each
a € Q there is a transitive binary relation <, on L relative to which L
is an S-lattice at «. Thus each a € Q determines a lattice &, of S,-
ideals and its associated compact Hausdorff space 9,. The second major
result establishes a certain homogeneity in L. Explicity, if L is as
above, then for every pair a, 8 € Q there is an isomorphism @ of &,
onto &, and consequently there is a homeomorphism of M, onto N,
Moreover, @ has the property that if « < 3, then I < @(I) for all Ie&,.

Throughout this section we shall assume that L is a C-lattice re-
lative to the separating chain Q.”

We shall adopt the convention that all lower case letters, Greek and
Latin, will denote elements of L. In particular, lower case Greek let-
ters will be reserved for elements in the chain Q.

6.1) If vy<n<96, if fVhz=y and if k1, m)e Af, a, B, 7, 9),
then k \/ h = .

Proof. In view of f Vh=nk\Vm=35, and f Am =7, the desired
inequality follows from (5.3).

DEFINITION 6.2. For each a € @ we define the relations <., and
<, on L as follows:

(i) f<sgincase g\VVh=pB and fAh <a for some he L and
some B > « in Q.

(i) f<, g in case f <,¢" for some ¢’ C, 9.}

It is clear that if f <,¢ in L, then f<.g.

6.3) If f<ag tn L, then f C,g.

Proof. Since by (2.2) the relation —, is transitive, it will suffice
to prove that f <, g implies f C,¢9. Butif gVhA=8FfA Lk <a and
B > «a, then, by (6.3), k A g <« implies £k A f <a. That is, fC.g.

(6.4) Both <, and <, are transitive relations on L.

Proof. This follows from (6.3) and the obvious fact that if f, C.f

7 Propositions (6.1) and (6.3)-(6.6) actually require only that I be a distributive lattice
and that @ be a separating chain in L.

8 If L is a characterizing Q-sublattice of C(X, K) and if « € @, then it is easily seen
that the definitions of < in 6.2 and 2.6 coincide.
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and f <,g, then f, <,g.
6.5) If a<pB, of v<36, and if (k,l,m)e < (f,«, 3, v 8), then
fF<yk and k <,f.

Proof. Since (k, 1, m) e & (f, @, 3,7, 98), we have f A m <v, and
kv m=35; hence f<,k. Also, kAl<a and fVI=p3 together
imply that &k <, f.

(6.6) Let « < B and v <3d. If (k,l,m)e o (f, a, 3,7 38), and if
&, UV, mye <<k, a,B,v,08), then k <, k', k' <,k,m <,m, and | <,1'.

Proof. The first two relations follow from (6.5). From k\V m =&
and k A m' <v we have m/ <,m, and from kv I'=B and kAl < «,
it follows that [ <, 1.

(6.7 If L is a C-lattice relative to the separating chain Q, and
if ae @, then L satisfies (2.11), (2.12), (2.13), and (2.14) at « relative
to <,

Proof. For 1 =1,2, let f; <.g; so that for some h; € L and some
B,e @ we have 9, Vh; =B, fi ANh; =, and B =5, A B, > a. Then

(gi\/ 92) V (hl A\ h:)) = (gl Vg,V hl) AN (gl Vg,V hz)
= (9, V h) A (9, V hy)
=Zp>a,

and similarly,

((LVIIANBAR)Sa.

Thus £, V f. <.0, V g, and <, satisfies (2.11). Now let f <, g and let
heL,8§e¢@Q be such that fAA<a and g\VVh=38>a. Since Q is
dense-in-itself, there exist B, ve @ with a < B3 < v <, and since L
satisfies (C.1) relative to @, there exists (k, I, m) € .<“(g9, a, B, 7, 8). By
(6.5) we have k <,g, and by (6.1) we have k£ \V h = &, so that f <, k.
Hence f <,k <.g, and (2.12) holds. If 8> «, then f<,B for all
fe L; hence 8 is a unit for <, and (2.13) is satisfied. Suppose, finally,
that f <,g so that g VA =B >a and f A h <« for some h e L and
some Be Q. By (5.2), Se E,; hence g \V he E, and (2.14) is established.

THEOREM 6.8. [f L is a C-lattice relative to a separating chain
Q, and if a e Q, then L is an S-lattice at « relative to the relation <..

Proof. That L satisfies (2.11), (2.12), (2.13), and (2.14) relative to
<, follows readily from (6.7). For example, if f;<,g; then there ex-
ist g/ e I such that f; <,¢, and ¢} C.g; (¢t =1,2). Then by (6.7) and
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(2.5) we have f,V f,<.91Vg;and g1V 9:Cag,Vg,; hence f1V f,<0 0,V g,
Finally, to establish (2.15) suppose that f<,9,9 ANk <a, and f\V he E,.
Then for some ¢,, h, € L and some B >« in Q, g, 2.9, N f < @, and
h,V g =pB. Since g,C,g9 and g A k <a«, it follows that g, A k < a.
But this, together with h, \V g, = B, implies k <, h,. Thus in order to
prove the desired relation, &k <, h, it will suffice to show that h, C.h.
Therefore let 1 € L with Il Ah <«a. Then (! A k) A (fV k) <a. How-
ever, since f\VV h e E, we have (I Ah) NS =<a for every B> a.
Therefore, since @ is a separating chain, I A b, < «. That is, h, C.h,
as desired.

From Theorems 3.10 and 6.8 we conclude that if L is a C-lattice
relative to the separating chain @, then there is associated with each
« e @ a compact Hausdorff space, namely, the space M, of maximal S.-
ideals of L. We conclude this section by proving that these spaces are
pairwise homeomorphic.

DEFINITION 6.9. If a <8, then we define the mappings @,,: S, —> S,
and 9%*: &S, - &, as follows: For each e &, and each J ¢ &,

Ol = N{HeSs; ICH},
and
o] =V {HeS,; HZJ}.

Since &, and &, are complete lattices, it is clear that @,; and @+
are single-valued mappings. We intend to prove that @,; is, in fact,
an isomorphism of &, onto &; and that @* is its inverse. This is
obviously the case for a = 8.

6.10) If a < B and if I € &,, set

I*"={keL;k<,9 and g <gk for some ge I} .
Then
Ol = {feL;f<gk for some ke I*},
and
I*<I<o,l.

Proof. Firstset I" = {feL;f <zk for some ke I*}. Since ke I*
implies that k¥ <, g for some g e I, it follows that k e I; hence I* C I.
Next it is easily seen, using (6.7), that I* is closed under joins. Hence,
again from (6.7), I" is an ideal in L; in fact, I" € S,;. Now let fe I so

that for some ge I both f<¢ and f<,g. Since L is a C-lattice relative to
Q, it follows from (6.5) that there is a k € L with k¥ <,9 and g <gk.
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Thus ke I*. But f < g then implies f <gk; hence fe I". Since f is
arbitrary in I, this implies the inclusion I < I". From this and the fact
that I" € &; we also conclude @,,] < I". On the other hand, let J e &,
with I J; then I* < J. If fel”, then f <gzk for some ke I*; hence
fed. Thatis, I" < J, so that I" < @,,I. Thus the proof is complete.

6.11) If a<pB and if f <, V7.0, then there ewist k,e L (i =
1, «--, n) such that

O ki<.9; (@E=1+-4,m);

(i) f<gVi-ks

(iii) ©f V i1k, <gk', then f <,k

Proof. Since f <,V ?.9; there is an h e L such that f AN I S«
and AV (Vig)=¢>a Leta<a,<a,<¢AB=¢VEA<B and,
for each ¢ =1, ---, m, let(k,, l;,, m;) e &“(g;, @, ay, @, B,) so that, by (6.5),
ki <.9:. Set g=Vi.9uk=Vikim= Ai.im,, and = A7.l;. Then,
using the distributive law, it is easily proved that (k,1, m) e < (g9,a,a,,a,,53,).
Thus from g Am o, fARS a<a,gVh=(>a, and (5.3) we
conclude that f A m < a, < 8. But then since k vV m = 3, > 8, we have
f <gk. Finally, suppose that &k <gk’, so that k AR =B and k' V' =
7y > 3 for some k' € L and some 7 € Q. Combining these two inequali-
ties with & v m = B, > 8 and using (5.3) we have ' Vv m =7 A B, > 5.
But ¥ vm>BgVh=tgAmEa,<&ARB, and (5.3) imply that
K\~ h=¢ANB>a. Therefore f <,k as desired.

6.12) If a<pB, and if I,Je®,, then 1 J iof and only if
Dol @ .

Proof. Clearly I < J implies @,1< @,,J. Thus suppose that
QI Z Oy and let fel. For some ge I with f<,g, let k e L satis-
fy (i), (ii), and (iii) of (6.11) (for the case n = 1). By (6.10) we have
ke @,J so that, again by (6.10), k <gk' for some k'e J* < J. But
then, by (iii) of (6.11), f <, k' so that fe J.

6.13) If a < B and if Je S, then D,z0%J = J.

Proof. First let fe @*J so that f<,VYi.g; for some g, --,
g.eU{le,; I J}. By (6.11) there exist k,,---,k, e U {[eS,; ITJ}
such that f <z Vi, k;; hence fe J. Thus ¢**J < J which clearly im-
plies that @,,0% J Z J.

For the reverse inclusion, let fe J and let f <zg for some g e J.
Then there is an he L such that f AR <5 and g V h =7 > B for some
neQ. Let B<B,<B<n< B in Q and let (k, [, m)e (g, a, By, B, B:)
sothat k Al<aand gVVI=pB>8. Nowif k, <, k, then k, Nl < a
so that k, <z¢9 and hence k, e J. Thus H= {k,e L; k, <, k} is an
S.-ideal such that H < @*¢J. Therefore, by (6.10) and (6.12), H <
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O, HZ 0,50 J. Next, by (6.5) there is a k, e L such that k, <.k
and k <gk,. Hence k, e @,,0% J. But, by (6.1), k\Vh =7 so that, since
SAR=<pB, we have f<gzk. Then f <,k, so that fe @,,0%®J. Thus
J Z Q08 J.

THEOREM 6.14. If a < 3, then @,z is an isomorphism of the lattice
&, onto the lattice Sy such that @5 = @*. Moreover, the restriction
of Dag to M, is a homeomorphism of M, onto M, with the following
property: For every M, e M, and every Mg e WMy, @5 M, = My tf and
only if M, < M,.

Proof. The theorem is obvious for « = 8. If a < B, then the first
statement is an immediate consequence of (6.12) and (6.13), and the
second statement follows from the maximality of M, and M, the final
statement of (6.10), and the first statement of this theorem.

Now let M(L) = U {M,; ae Q}. We define the relation ~ on M =
W(L) as follows: For each M, Ne MM, we write M~ N in case MN N e M.

(6.15) Let a = B, let M e My, and let Ne WM, Then the follow-
ing statements are equivalent:

(i) M~ N;

(i) M < N;

(iii) @, M = N.

Proof. The equivalence of (ii) and (iii) follows from Theorem 6.14.
Moreover, (ii) clearly implies (i). To see that (i) implies (ii) suppose that
M~ N. Then ¢ € M N N while vy ¢ M N N whenever v > «, so that
MnN Ne P, Thus by the maximality of M and M N N we conclude
that M = M N N < N.

If a<B <7, and if Ne M, then by Theorem 6.14 there exists
exactly one Me 9, and exactly one Pe W&, such that M < N and
N C P. Therefore we conclude from (6.15) that ~is an equivalence
relation on W such that the ~ -equivalence class, M~, determined by
M e M, is precisely the set of images of M under all mappings @,, for
a < B and 2% for a = v.

We now agree that, for each M € Ut and each «a e @, M, will denote
the unique maximal S,-ideal M~ N M, in M".

THEOREM 6.16. If for each a e Q and each fe L we set

U(f, ) = {M~; fe M},

then the family {U(f, @); fe L and a e Q} s an open base for a com-
pact Hausdorff topology on

X, = {M~; Me M} .
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Moreover, the mapping 0,: M,— M,~ 1is a homeomorphism of W, onto
XL'

Proof. Suppose that M~ e U(f, ) N Uy, B) and, say, « < 8. Then
feM,ge My, and M,< M,. By (6.10) there is a ke L such that
keM, and g<gk. Thus g<s(k\V f) and f=< (k\V f) so that if
N e Uk vV f,a), then fe N, and ge N,. That is, Uk V f, o) <
U(f, @) N Ulg, B). But M~ e Uk \ f, «); hence the family {U(f, @)} is
an open base. Since, by Theorem 3.10, I, is a compact Hausdorff space,
the proof will be completed by showing that #, is a homeomorphism.

Let a e Q; then clearly the mapping #, is one-to-one and onto X,.
Consider a basic open set U= U(f, 8) in X,. Let ¥ be the homeomor-
phism @., if a<pB or @ if a>pB. Then 6.'(U) = (0,¥)(U) =
v-'05'(U) is open in M, since, by Lemma 3.9, #;'(U) is open in M,.
Hence ©, is continuous. Since I, is compact, it will suffice to show
that X, is Hausdorff. Thus let M~, N~ be distinct elements of X,.
Then by Lemma 3.9 and the proof of Theorem 8.10 there exist h, g € L
such that the open sets U(h) = {PeWM,; he P} and U(g) = {PeM,; g€ P}
in M, separate M, and N,. Thus it is clear that U(h, ) and U(g, «)
separate M~ and N~ in X,.

7. Representations of C-lattices as function lattices. In this section
we prove that if L is a C-lattice relative to the separating chain @,
then L is lattice-homomorphic [1] to a sublattice of C(X,, Q). In par-
ticular, if L is a C,-lattice relative to @ satisfying a suitable bounded-
ness condition, then L is isomorphic to a characterizing Q-sublattice of
C(X,, @). The latter result, together with Theorem 5.12, provides a com-
plete characterization of characterizing Q-sublattices.

Let L be a C-lattice relative to the separating chain @. We shall
continue to use the conventions of §6 concerning lower case letters and
concerning the labelling of the elements of the ~ -equivalence classes of
M = M(L) (see the paragraph preceding Theorem 6.16). Now for each
feL and each M~ e X, set

M(f) = {xeQ;fe M} .
Then for each fe L define f* e F(X,, Q) by
M) = AM(Sf)

for all M~ e X,. Note that since Q is complete, f* is a well-defined
element in F(X,, Q).

LeEMMA 7.1. If L is a C-lattice relative to the separating chain Q,
then the mapping f— f* is a lattice-homomorphism of L onto a sub-
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Proof. Clearly if f< ¢ in L and if Me I, then M(g) < M(f);
hence f* < g*. Thus to complete the proof we need only verify that
forevery f,ge L, f* VvV g* = (fVgFand f* A g* < (f A g)*. To prove
the first of these inequalities, note that for every M e I, if f,g9e L,
then M(f) N M(g9) < M(fV 9); hence (f*V g*) (M) =[A M(F)IVIA M(g)]=
A N M@l = AIM(FV @)l = (fV 9)*"(M™). To prove the second,
let M~ e X, and suppose that o, Be @ are such that a >8> (f A 9)*(M 7).
Then f A g€ Mg and Mz < M,. We shall prove that either fe M, or
g € M,. By (6.5) there exists k € L such that k <z¢ and g <. k. Since
SN ge Mg we have by Lemma 3.8 that either fe M, or ke My, If
fe M, then fe M,. If ke M,, then ke M,, so that ¢ <,k implies
ge M, Thus (f* A g") M) =<a for every a > (f A 9)"(M~); hence
AN = (A9

THEOREM 7.2. If L is a C-lattice relative to the separating chain
Q, then the mapping f— f* is a lattice-homomorphism of L onto a sublat-
tice of C(X,, Q). Moreover, for each ae @, a*(M™) = « for all M~ e X,.

Proof. If fe L, then f*e C(X,, Q) provided that for every a e Q the
sets {(M™; f*(M~) > a} and {M™; f*(M") < a} are open. Thus let ae @
and let f*(M~) > «a. Then for some v >, f ¢ M,. Let a <B <v <8
in Q, let (k, 1, m) e <(f, a, B,7,8), and let (&', ', m') e < (k, @, 8,7, ).
Then, by (6.5) and (6.6), f <,k <, k" so that k' ¢ M, and k' ¢ M,. But
EANlZa, and, by (6.6), ¥ <,k so that I € M, by Lemma 3.8; hence
M~ e U(l, a). Suppose that N~ e U(l,«) and that f*(N*)=a. If
a<n<pB, then f,le N,, But 8= f VI so that B8 e N,, contrary to
7 < B. Therefore f*(N~) > a for all N~ in the open neighborhood
U, «) of M~.

To complete the proof let f*(M~) < «. Then for some \ < «, fe M,.
Let M <7< ¢<aand let (k, 1, m)e .<7(f, N, 7, & ). Then k <,f, so
that k e M, or, equivalently, M~ e U(k, \). Suppose that N~ e Uk, \)
so that ke N,. Then ke N; and since f <.k, we have fe N;. There-
fore f*(N™) £ ¢ < a. That is, f* < « on the open neighborhood U(k, \)
of M~.

Since the final statement of the theorem is obvious, the proof is
complete.

DerFINITION 7.3. Let L be a C-lattice relative to the separating
chain @ and let

Ly,={feL;a<f<pB for some a, B e Q} .



356 FRANK W. ANDERSON AND ROBERT L. BLAIR

We call the lattice L a bounded C-lattice in case L = L,.
It follows readily that if L is a C-lattice (C,-lattice) relative to @,
then so is Lj.

THEOREM 7.4. If L is a C-lattice relative to the separating chain

Q, then X, is a compact Q-normal space and the mapping f— f* is
a lattice-homomorphism of Ly onto a characterizing Q-sublattice of

C(X,, Q).

Proof. That L, is lattice-homomorphic, under f— f*, to a Q-sub-
lattice of C(X,, Q) follows from Theorem 7.2. To prove that the image
of L, under this homomorphism is a characterizing sublattice of C(X,, Q)
it will suffice to prove that if M~ %+ N~ in X,, and if a,B e @, then
there exists an fe Ly such that fe M, and f ¢ Ns. But M, +* N
implies M, & Ng, which in turn implies M, N Ly £ Ny N L. To com-
plete the proof, observe that X, is compact by Theorem 6.16 and is
@Q-normal since C(X,, Q) contains a characterizing @-sublattice.

By Theorem 5.12 it is known that the image of L, under f— f*
is a Ci-lattice relative to @ (identifying @ with its image in C(X, Q)).
Moreover, it is obviously the case that if the mapping f— f* is an
isomorphism, then L, is itself a C,-lattice relative to Q. Thus the ex-
istence of bounded C-lattices which are not C,-lattices (¢f. Example 5.9)
implies that, in general, the homomorphism f — f* is not an isomorphism.
However, if L is a bounded C -lattice, then f— f* is an isomorphism.
To prove this we require the following lemma.

(7.5) Let L be a distributive lattice, let Q be a separating chain
i L, and let L satisfy (C.1) and (C.2') relative to Q. If ae @ and
if frgeLl with fLa and fA\g=a, then g e M for some maximal
S.-ideal M of L.

Proof. Since L satisfies (C.1) and (C.2'), it is a C-lattice relative
to Q. Since f L «, thereisa >« such that f £05. Let a< B<y<$
in Q and let (k,l,m)e </(f, a,B,v,8). Set I={heL;h<,l}; then
Ie®, Since fFAg=a and fVI=pB>a we have that ge I. If
B e I, then from [ A k < « it follows that 8 A k < a. Then the ine-
qualities SAkZa,mVk =8, m A f< v, together with «a 3 837 335,
imply f < v < 8, a contradiction. Therefore 8 ¢ I, so that Iis a proper
S.-ideal of L with g € I. A simple application of Zorn’s lemma com-
pletes the proof.

THEOREM 7.6. If L is a C-lattice relative to the separating chain
Q, then X, is a compact Q-normal space and the mapping f— f* is
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an isomorphism of Ly onto a characterizing Q-sublattice of C(Xi, Q).

Proof. In view of Theorem 7.4 it will suffice to prove that if f X g
in Ly, then £* < ¢* in C(X,, Q). But if f<Z g, then, since L, is a C-
lattice, there exists an a e Q and there exists an h e L, such that
hANg=aand h A fLa. Obviously we may assume that A < f. Let
a<B<y<din Q with h Lv and let (k, I, m)e <7 (h, a, B, v, 8). Sup-
pose that [ € M, for some M,e W,. Then since h\VI=pB>«a we
have that g <,l, and hence that g e M,. Also if a <7n< B3, then
le M, so that h ¢ M, and consequently f ¢ M, Thus g*(M,) =«
and f*(M,) = . Therefore we need only prove the existence of some
M,e M, with | e M,. Since k Al < «, it will suffice, in view of (7.5),
to show that kX a. Butif k< a«, then kv m =38 and a 395 imply
that m = &; therefore, since m A h < v and v 38, we have h < v,
a contradiction. Thus k X «, as desired.

Clearly if X is compact, then every characterizing @-sublattice of
C(X, K) is bounded. Therefore, combining Theorem 4.3, Theorem 5.12,
and Theorem 7.6, we have the following characterization.

THEOREM 7.7. Let K be a conditionally complete and dense-in-it-
self chain with meither a first nor a last element, let K be endowed
with its interval topology, and let @ be an order-dense subchain of K.
If a lattice L s 1somorphic to a characterizing Q-sublattice of C(X, K)
for some compact space X, then the inverse tmage of Q im L 1s
a separating chain in L relative to which L is a bounded Ci -lattice.
Conversely, if L is a bounded C\-lattice relative to Q, then there
exists an isomorphism of L onto a characterizing Q-sublattice of
C(X, Q) for some topologically wunmique compact Q-normal space X.
Moreover, X can be chosen as the space X, and the isomorphism can
be chosen to be the mapping f— f* so that the image of each € Q 1s
the constant function o in C(X;, Q).

8. Characterizations of the lattice C(X, K). In this section we turn
to the problem of obtaining necessary and sufficient conditions in order
that a bounded C,-lattice L be isomorphic to the entire lattice C(X, K)
for some compact K-normal space X.

We give two solutions to this problem. The first is obtained by
topologizing L and then by employing an appropriate generalization
(Lemma 8.2) of the Stone-Weierstrass theorem [16]. The second is
obtained, without topologizing L, by a method which closely parallels
that introduced by Fan [4] to characterize C(X, R) as a partially or-
dered group.

As usual, let @ be an order-dense subchain of K, and let — o and
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+ c be the extreme elements of K. For each finite subchain o, <---< a,
of @, let @y = —,a,,, = +, and let "= I"(ay, --+, «,) be the set
of all intervals

{')’EK;a’i_1<')’<Cfi+1} (i:l,---,n).
We then set
UnN=UIxI;Iel}.

It is readily verified that the family of all such sets U(I") forms a base
for a uniformity 2 on K. Note that 7 is independent of the order
dense subchain @ of K.

If L is a subset of F(X, K), then we let Z/(L) be the uniformity
of uniform convergence induced on L by <~ [10, p. 226].

DerFINITION 8.1. Let L be a C -lattice relative to the separating
chain @, and let & be a uniformity on L. We shall say that L is
locally complete in the uniformity #~ in case for each a < 3 in @ the
set

L, B) = {feL;a = f= 8}

is complete in .

LEMMA 8.2. Let X be a compact Hausdorfl space and let L be
a characterizing Q-sublattice of C(X, K). Then L = C(X, K) if and
only if L s locally complete in the uniformity 7/(L).

Proof. Since each closed and bounded interval in K is complete in
the uniformity 7, it follows that C(X, K) is locally complete (see e.g.
[10, p. 231]). Conversely, let L be locally complete. Since each
fe C(X, K) is bounded, it will suffice to prove that for each a < 8 in @,

L, B) = {fe OX,K);a = f< B} .

The proof of this pa\rallels that of the Stone-Weierstrass approximation
theorem for lattices of real-valued continuous functions [16, Theorem 1].
Since the modifications required are slight, we omit the details.

Now let L be a bounded C,-lattice relative to the separating chain
Q, and let #/(L) be the family of all sets of the form

{(frg)e L x L; (f*(M"), g*(M ™)) e U for all M e M}

as U ranges over 74 Since f— f* is an isomorphism of L onto a sub-
lattice L* of C(X,, K), it is clear that /(L) is a uniformity on L and

9 In fact, %/ is the uniformity determined by the finite normal coverings of K [18].
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that L and L* are uniformily equivalent.
Our first characterization of the entire lattice C(X, K) is now an im-
mediate consequence of Theorem 7.7, Lemma 8.2, and the above remarks.

THEOREM 8.3. If L is a bounded Ci-lattice relative to the separat-
wng chain Q, and if L is locally complete in the uniformity 7/ (L),
then X; 18 a compact Q-nooﬂmal space and L 1s lattice isomorphic to
C(X,, Q). Conversely, if X is a compact K-normal space, and if @Q
s an order-dense subchain of K, then Q 1s a separating chain in
C(X, K) and, relative to Q, C(X, K) is a bounded C-lattice locally
complete in the uniformity 7/ (C(X, K)).

A special case of this characterization is the following solution of
Birkhoff’s Problem 81.

COROLLARY 8.4. A lattice L 1s isomorphic to the lattice C(X, R)
Jfor some compact Hausdorlf space X if and only if L contains a counta-
ble separating chain Q relative to which L is a bounded C -lattice locally
complete in the uniformaity 7, (L).

Proof. The proof is an easy consequence of the fact that every
compact Hausdorff space is R-normal and the fact that a countable chain
without extreme points is dense-in-itself if and only if it is isomorphic
to the chain of rational numbers [1, p. 31].

The next result is a lattice analogue of Fan’s Lemma 8.1 [4].

LEMMA. 85. If X is a compact space, if L is a characterizing
Q-sublattice of C(X, K), and vf there is an isomorphism ¥ of C(X, K)
onto L mapping Q onto itself, then L = C(X, K).

Proof. Since Q is dense in K and K is conditionally complete, ¥
maps K onto itself, so that L is, in fact, a characterizing K-sublattice
of C(X, K). Thus, by Theorem 5.12, both L and C(X, K) are C,-lattices
relative to K. For each x € X and each a« e K we denote by M,(x)

(respectively, M,(x)) the unique maximal S,-ideal of C(X, K) (respec-
tively, L) associated with z. Now let « € K. Then for each x ¢ X,
Theorem 4.1 implies that

WM (%) = My, (Ox)
for some unique element Ax ¢ X, and, by Theorem 4.3,

O:1x— Ox

is a homeomorphism of X. If also Be K, then ¥ My(x) ~ VM, (x), so
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that, by Theorem 4.1 and (6.15), ¥ My(x) = Mys(@z). Thus M (x) =

My (9x) for every x € X and every ae K. It follows that for each
fe CX, K) and each z € X,

f(@)= Alae K; fe M(z)}
= Alae K; ¥ fe My, (02)}

and hence ¥[f(x)] = (¥ f)(@x). Suppose now that j'e C(X, K) and define
the function g on X by

9(x) = V[ f(Ox)] .
Then clearly g € C(X, K). But for each x e X,
(Fg)(@) = V[g(0~'x)] = V[V '[f(00~'2)]] = flx) .
Thus fe L and we conclude that C(X, K) = L.

DEFINITION 8.6. Let L be a C)-lattice relative to the separating
chain Q. Then a pair (L', A) is an extension of L in case L’ is a lattice
and / is an isomorphism of L into L’ such that L’ is a C -lattice relative
to 4Q. The extension (L', 4) is said to be

(i) bounded in case, relative to 4Q, L' is bounded;

(ii) direct in case for every pair M, N in the set IR(L') of all
maximal S-ideals of L', if M £ N, then M N AL £ N;

(iii) normal in case for every fe L' and every o' < B <+ <& in
AQ, there exist k, [, m € AL such that (k, I, m) e 5(f, o, 8,7, 8).

The above notion of direct extension is patterned after Fan’s notion
of a direct extension of a partially ordered additive group [4, p. 411].

If L is a C -lattice relative to @ and if (L, 4) is an extension of L,
then we shall henceforth make no notational distinction between the
chain @ in L and the chain 4Q in L'.

LemMmA 8.7. If L' is a characterizing Q-sublattice of C(X, K), if
L is a Q-sublattice of L', and if I is the identity mapping of L into
L, then the following statements are equivalent:

(i) L s a characterizing Q-sublattice of C(X, K).

(i) (L', I) is a normal extension of L.

(iii) (L', I) is a direct extension of L.

Proof. (i) — (ii). By Theorem 5.12, I’ is a C,-lattice relative to the
separating chain Q. Thus (L', I) is surely an extension of L. Since L
is characterizing, it is immediate from Lemma 5.6 that (L', I) is a nor-
mal extension of L.

(ii) — (iii). Let g, ve K, let M, be a maximal S,-ideal of L’, and
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let M, be a maximal S,-ideal of L’. By Theorem 4.1, M, = M,.(x) and
M, = M,/(y) for some xz and y in X. Let us suppose that M, Z M.
If =y, then v<pu. Choose ve @ such that v <v<p. Then vye M,NL
but v € M, so that M. NLZ M. If x +y, choose «a, B, v, 8¢ Q such
that a<B<pAv and £V yv<vy<$. Since L' is characterizing, there is
an fe L’ such that f(z) <a and f(y) > 8. Moreover, since (L', I) is a nor-
mal extension of L, there exist k,l,me L with (k,I,m)e S4¥(f,a,B,,d).
Then f(x) < « and f V1= B together imply that I(x) = B; and then
l(x) = B and k Al < « together imply that k(x) < a < p. In a similar
manner we obtain k(y) =8 >v. Thus ke M, N L but &k ¢ M, so that
again M, N L £ M,. The extension (L’, I) is therefore direct.

(iii) — (i). Let x and y be distinct points of X, let f,¢9 ¢ L, and
choose a,Be @ such that a < f(x) and B > g(y). Let M,(x) be the
maximal S,-ideal of L’ associated with x and let My(y) be the maximal
Sg-ideal of L’ associated with y. Then M,(x) £ My(y) so that, since
(L, I) is direct, M, (x) N L & My(y). There is therefore a function ke L
such that h(x) < a and h(y) = B; that is, L is characterizing. The proof
of the lemma is now complete.

LEMMA 8.8, Let L be a bounded C -lattice relative to the separat-
g chan Q, let (L', A) be a bounded extension of L, and denote by 4
the isomorphism f— f* of L’ into C(X,, Q). Then

i) (C(X,, Q), 4) is a bounded direct extension of L', and

(ii) the following assertions are equivalent: (1) 44L is a charac-
terizing Q-sublattice of C(X,, Q), (2) (L', 4) is a normal extension of

L, 3) (L', 4) is a direct extension of L.

Proof. By Theorem 7.7, X, is compact and Q-normal, and 4L’ is
a characterizing Q-sublattive of C(X,, Q). By Theorem 5.12, C(X,, Q)
is a Cj-lattice relative to Q. Thus (C(X,, Q), I) is a bounded extension
of 4L'; by Lemma 8.7 it is also a direct extension. Then it is im-
mediate that (C(X,, Q), 4) is a bounded direct extension of L’. This
establishes (i).

To prove (ii), observe that 4/4L is a @Q-sublattice of the characteriz-
ing @-sublattice 4L’ of C(X,, Q). Moreover, it is clear that (L', 4) is
a normal (direct) extension of L if and only if (4L’, I) is a normal (direct)
extension of 44L. The equivalence of (1), (2), and (3) is therefore an
immediate consequence of Lemma 8.7.

We can now state our second characterization of the lattice C(X, K).

THEOREM 8.9. If L is a bounded C-lattice relative to the separat-
ing chain Q, and if, for each bounded direct extension (L', A) of L, L
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18 1somorphic to L', then X, 1s a compact Q-normal space and L is
lattice isomorphic to C(X;, Q). Conversely, if X is a compact K-normal
space and if @ is an order-dense subchain of K, then Q is a separat-
ing chain in C(X, K) and, relative to Q, C(X, K) is a bounded C-lat-
tice with the property that if (L', A) is a bounded direct extension of
C(X, K), then 4 is an isomorphism of C(X, K) onto L'. Moreover, both
of the preceding statements hold if ‘‘ direct extension’’ 1is replaced by
“normal extension’’.

Proof. Suppose first that L satisfies the conditions of the first
statement of the theorem. If we denote by 4 the isomorphism f— f*
of L into C(X,, Q), then, by Theorem 7.4 and Lemma 8.8(i), X; is
a compact Q-normal space and (C(X,, @), 4) is a bounded direct exten-
sion of L. Therefore, by hypothesis, L is isomorphic to C(X,, Q).

Conversely, suppose that X is a compact K-normal space and that
@ is an order-dense subchain of K. Then, by Theorem 5.12, C(X, K) is
a bounded C,-lattice relative to the separating chain Q. Let (L', 4) be
a bounded direct extension of L = C(X, K) and denote by 4 the isomor-
phism f— f* of L’ into C(X,, Q). Then, by Lemma 8.8 (i), 44L is
a characterizing sublattice of C(X,, Q) so that, by Theorem 4.3, X is
homeomorphic to X,. Then C(X,, Q) is isomorphic to C(X, K) and
hence also to 44L. But then, by Lemma 8.5, 44L = C(X,, Q). It fol-
lows that 4 is an isomorphism of C(X, K) onto L'.

The final statement of the theorem is a consequence of the fact
(Lemma 8.8 (ii)) that a bounded extension is direct if and only if it is
normal. The proof is now complete

The preceding theorem yields a second solution of Birkhoff’s Prob-
lem 81 (¢f. the proof of Corollary 8.4).

COROLLARY 8.10. A lattice L is isomorphic to the lattice C(X, R)
Jor some compact Hoausdorff space X if and only if (i) L contains
a countable separating chain @ relative to which L is a bounded C,-
lattice, and (i) L is tsomorphic to L' for every bounded direct (normal)
extension (L', A) of L.

9. Remarks on earlier characterizations of C(X, R). We now turn
our attention to the case in which K is the real chain R. In this final
section we indicate briefly the relation between our results, particularly
Theorem 7.7, and the known representation theorems for partially or-
dered groups ([15], [4], and [5]) and for translation lattices [9]. Since
there clearly exist characterizing Q-sublattices of C(X, R) which are
neither groups nor translation lattices, Theorem 7.7 is not subsumed by
these earlier results.
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Now let G be a partially ordered commutative group satisfying the
following conditions:

(i) G contains a subgroup @ order-isomorphic to an order-dense sub-
group of the simply ordered group R of real numbers.

(i) @ contains an archimedean element for G (i.e., there is an e e @
such that if fe G, then ne = f for some positive integer n).

(iii) If f,ge G and if nf +9g =0 (n=1,2, .-+), then f=0.

If G is the lattice-ordered group generated by G in the completion
of G (¢f. [5]), then it can be proved directly that G is a bounded C.-
lattice relative to the separating chain @ in G. Consequently, by
Theorem 7.7, the mapping f— f* maps G lattice isomorphically onto
a characterizing Q-sublattice G* of C(Xy, R). It is easily seen that G*
is a lattice-ordered subgroup of C(X7, R) and that the mapping f— f*
preserves the group operations of G. If G is initially a lattice-ordered
group, then G = G; an application of Lemma 8.2 then yields Stone’s
characterization [15]. In general, since the image G* of G in G* is
a partially ordered subgroup of C(X%, R) which separates points in X5, we
obtain Fan’s characterization [4] by making use of a direct extension
argument for partially ordered groups.

In this connection we observe that Fleischer [5] obtains a represen-
tation of a partially ordered group as a point separating group of con-
tinuous real-valued functions on a compact Hausdorff space from condi-
tions (ii) and (iii) alone. This very general result (c¢f. Problem II of
the Introduction) apparently cannot be deduced from Theorem 7.7 since,
for such a group, G need not satisfy (C.2) relative to any subchain; for
example, let G be the simply ordered group of integers.

It is easily seen that the real translates of any element in a trans-
lation lattice [9] form a separating chain in the lattice relative to which
(C.2) is satisfied. However, simple examples of translation lattices can
be found that fail to be characterizing sublattices for any compact
space.” Consequently, translation lattices need not be C-lattices, and
thus our results do not imply Kaplansky’s.

Kaplansky points out that in order to obtain C(X, R) from a sub-
translation lattice an appropriate ¢ stretching axiom’’ is required. Clearly
condition (C.1) relative to some chain of translates provides such an axiom.

REFERENCES

1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, 25, rev. ed.,
New York, 1948.
2. R. L. Blair, Stone’s topology for a binary relation, Duke Math. J., 22 (1955), 271-280.

10 For example, let I be the translation lattice of all real-valued functions on the
discrete space {w,y} such that f(z)< f(y).



364 FRANK W. ANDERSON AND ROBERT L. BLAIR

3. , A mote on lattices of continuous functions. II. (Abstract) Bull. Amer. Math.
Soc., 61 (1955), 565.

4. Ky Fan, Partially ordered additive groups of continuous functions, Ann. of Math., 51
(1950), 409-427.

5. 1. Fleischer, Functional representation of partially ordered groups, Ann. of Math.,
64 (1956), 260-263.

6. L. J. Heider, A characterization of function lattices, Duke Math. J., 23 (1956), 297-
301.

7. S. Kakutani, Concrete representation of abstract (M )-spaces, Ann. of Math., 42 (1941),
994-1024.

8. L. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc., 53 (1947),
617-623.

9. , Lattices of continuous functions 1I, Amer. J. Math., 70 (1948), 626-634.
10. J. L. Kelley, General topology, New York, 1955.

11. M. Krein and S. Krein, On an inner characteristic of the set of all continuous func-
tions defined on a bicompact Hausdor(f' space, C. R. (Doklady) Acad. Sci. URSS, 27 (1940),
427-430.

12. A. G. Pinsker, A lattice characterizalion of function spaces, (In Russian) Uspehi Mat.
Nauk (N. S.), 12 (1957), 226-229.

13. T. Shirota, A gencralization of a thcorem of I. Kaplansky, Osaka Math. J., 4 (1952),
121-132.

14. M. H. Stone, A gencral thcory of spccira, 1, Proc. Nat. Acad. Sci. U.S.A., 26 (1940),
280-283.

15. , A gemeral theory of spectra, 11, Proc. Nat. Acad. Sci. U.S.A., 27 (1941),
83-87.

16. -, The generalized Weierstrass approximation theorem, Math. Mag., 21 (1948),
167-184.

17. A. Tarski, Some motions and methods on the borderline of algebra and metamathe-
matics, Proc. Int. Cong. Math. Cambridge, I (1950), 705-720.

18. J. W. Tukey, Convergence and wriformity in topology, Ann. of Math. Studies, 2
(1940).

UNIVERSITY OF OREGON





