INTRINSIC OPERATORS IN THREE-SPACE

VICTOR L. SHAPIRO

1. Introduction. In Euclidean three-space there are three im-
portant classical intrinsic operators, namely the intrinsic curl, the in-
trinsic divergence, and the intrinsic (or generalized) Laplacian. Usually
they are given in terms of differential operators, but the occasion arises
sometimes when they cannot be so defined. In particular if « is the
Newtonian potential due to a continuous distribution, then in general u
is only a function in class C!, and consequently the usual Laplacian of
u, the usual curl of grad u, and the usual divergence of grad u cannot
be defined. Nevertheless, as it is easy to show, the intrinsic curl of
grad u is equal to zero, the intrinsic (or generalized) Laplacian of u
equals the intrinsic divergence of grad u, and furthermore Poisson’s
equation holds. The question arises whether the converse is true. The
answer to questions of this nature is the subject matter of this paper.
In particular we shall establish the following result (with the precise
definitions given in the next section):

THEOREM 1. Let D be a domain in Euclidean three-space and let
v be a continuous vector field defined in D. Then a necessary and
suflicient condition that v be locally in D the gradient of a potential
of a distribution with continuous density is that the intrinsic curl of
v be zero in D and the intrinsic divergence of v be continuous in D.

2. Definitions and notation. We shall use the following vectorial
notation: x = (%), %, @), ax + By = (ax, -+ BY,, X, + BY,, oy + BYs), (X,Y) =
the usual scalar product, x x y = the usual cross product, and |z| =
(z, )2

Let v(x) = [v(%), vy(x), vi(x)] be a continuous vector field defined in
the neighborhood of the point %,, Then we define the upper intrinsic
curl of v at x, to be the vector, curl *v(x,) = [wi(x,), w;(x,), wi(x,)] where

)(v, dx), 7 =1, 2,3, with Cy(x,, ) the cir-

cumference of the circle of radius » and center x, in the plane through
x, normal to the x;,-axis where C,(x,, 7) is oriented in the counterclock-
wise direction when seen from the side in which the x;-axis points. In
a similar manner using lim inf, we define the lower intrinsic curl of v
at x, curl,v(x). If curl®*v(x,) = curl,v(x,) is finite, we call this
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common value the intrinsic curl of v at z, and designate it by curl v(x,).
This definition is essentially the intrinsic definition of the curl as given
in [4, p. T1].

Next, we define the intrinsic divergence. Let v(x) be a continuous
vector field defined in a neighborhood of the point x,. Then with S(x,, )
the spherical surface with center x, and radius r, we define the upper
intrinsic divergence of v at x, as follows

div* o(x,) = limsupr_,03(4rcr3)‘lg ( )(v, n)dS
S (mg, 7

where n is the outward pointing unit normal on S(x, ) and dS is the
natural surface area element on S(x,, 7). Similarly we define the lower
intrinsic divergence, div, v(x,), using lim inf. If div,v(z,) = div*v(x,) is
finite, we call this common value the intrinsic divergence of v at x,
and designate it by divv(z,) (see [9]).

If w(x) is a continuous function defined in a neighborhood of the
point x,, then the upper intrinsic (or generalized) Laplacian of u at the
point x,, Lapu(x,), is usually defined as

Lap* u(x,) = limsupwo[(élnrz)‘lg udS — u(xo)]ﬁr“2 .

S(zy,7)
Similarly we define Lap, u(x,) using lin inf. If Lap*wu(x,) = Lap,u(w,) is
finite, we call this common value the intrinsic (or generalized) Laplacian
of u at x, and designate it by Lapu(x,).

It is clear that if »(x) is in class C' and u(x) is in class C?, then
curlv(zx), dive(x), and Lapu(x) exist and equal the usual curl, divergence,
and Laplacian respectively, defined interms of the partial derivatives.

If f(x) is a function defined in a neighborhood of the point x, and
if f(x) is in L* in Sy(w,, 7) for some r > 0 where S, r) is the open
solid sphere with center x, and radius », we shall designate by A*f(x,)
the following upper limit:

A*f(x,) = limsupr_,o(47rr3)“l3gs( - flx)dx .
1 Ty,T.
Similarly, we shall designate by A, f(x,) the corresponding value obtained
by using lim inf. As is well-known, for almost all  in Sy(x,, 7), A, f(x) =
A*f(x).

Given (x) a continuous vector field defined in a domain D, we shall
say that v(z) is locally in D the gradient of a potential of a distribution
with bounded density if for each point x, in D there exists an S(x,, 7)
contained in D and two functions f(x) and h(z) defined in S,(%,, r) with
f(x) bounded in S(x, r) and i(x) harmonic in S(x, r) such that

(1) u(x) = —(4n)—1§ oy FO Nz =y 17y 4 ) for @ in S, 1),

S1
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and v(x) = gradu(x) for x in S/(x, 7). It is understood that f(x) is
bounded in S(x,, ) but need not be bounded in D.

It is well-known that if w(x) is defined by (1), then wu(x) is in class
C' in Sy(x,, t), and furthermore Lapu(x) = f(x) (see [7]) at every point
where A*f(x) = A,f(x). We shall show that curl gradu(z) = 0, div*
gradu(z) = A*f(x), and div, gradu(x) = A, f(x).

E will designate the closure of the set E.

3. Statement of main results. We shall prove the theorems stated
below.

THEOREM 2. Let D be a bounded domain in Euclidean three-space,
and let v(x) be a continuous vector field defined in D. Then a neces-
sary and sufficient condition that v(x) be locally in D the gradient of
a potential of a distribution with bounded density is that

(i) curl,v(x) and curl*wv(x) be finite-valued in D.

(il) curl,v(x) = curl*v(x) = 0 almost everywhere in D.

(iii) div v(x) and div*o(x) be locally bounded in D.

In the next theorem, the definitions of regular curves and regular
surfaces are those given in [4, Chapter 4].

THEOREM 3. Let D be a bounded domain in Fuclidean three-space,
and let v(x) be a continuous vector field defined in D. Suppose that

(i) curl*v(x) and curl, v(x) are finite valued tn D.

(ii) there exists a continuous wvector-field w(x) such that w(x) =
curl, v(x) = curl®v(x) almost everywhere in D.
Then curlv(x) exists everywhere in D and 1s equal to w(x). Further-
more Stokes’ theorem with respect to v and curl v holds for every open
two-sided regular surface contained in the interior of D, that is

(2) So(”’ da) = Ss(curl v, m)dS

where C 1s the regular curve which is the boundary of S oriented im
the counter-clockwise sense when seen from the side of S towards which
n points.

The sufficiency conditions of Theorems 1 and 2 follow as corollaries
of Theorem 5 to be stated in §5. As a further corollary of Theorem 5,
we obtain the following extension of a theorem of Beckenbach’s [1,
Theorem 1] (i.e. we remove the uniformity conditions stated in his
theorem).

THEOREM 4. Let v(x) be a continuous vector field defined in a bound-
ed domain D of Euclidean three-space. Then a sufficient condition
that v(xz) be a Newtonian vector field in D is that
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(i) curlv(x) =0 wn D

(ii) divo(x) =0 in D.

The curl of a vector field which is only assumed continuous in
a domain can be defined in a different manner than that given above,
namely by using spherical surfaces and the cross product. We shall
consider this definition and the analogues of Theorem 1, 2, 3, and 4 in
the concluding section of this paper.

4. Proof of Theorem 3. Since we need the result of Theorem 3
in order to establish Theorems 1, 2, and 4, we shall prove the former
theorem first. In order to do this, we need the following lemma:

LEMMA 1. Let v(x) = [v,(x), vi(x), v(x)] be a continuous vector field
defined and continuous in a meighborhood of the point x, and let Mx)
be a non-negative function in class C* in a mneighborhood of the point
x,. Let v'(x) = Mx)v(x), that is vi(x) = Mx)vy(x), 5 =1,2,3. Then

(a) curl*v'(z,) = Mz,) curl*v(x,) + grad\(z,) x v(x,)

(b) curl,v'(x,) = Mx,) eurl, v(x,) + gradMx,) x v(x,)
where Mx,) curl* v(x,) = \Mx,) curl, v(x,) = 0 in case \(x,) = 0.

To prove the lemma, it is sufficient to prove (a) for (b) will follow
on considering —wv(x). To prove (a), we have to show with w*(x,) =
curl*v(x,) that

M )wi (2,) + ”J(xo)xzt(wo) — V(TN j(xo)

= lim sup,éo(nrz)‘lg )x(x)vi(x)dxi + Mz)v (x)dx,

I 1}0 r
where (4, 7, k) is a cyclic permutation of (1, 2, 3) and Mz)wi(x,) = 0 in
case M2,) = 0. But this follows immediately from [9, Lemma 8].

To prove Theorem 3, it is sufficient to establish

(3) Sg(v, dx) = Ss(w, n)dS

for every open two-sided regular surface S contained in the interior of
D. For once (3) is established, it holds in the particular case when S
is a disc. Consequently the assumed continuity of w in D and (3)
implies that

1immo(m2)-1j (©,do) = w,@) i=123.

04(zy

Therefore curl v exists everywhere in D and is equal to w, and conse-
quently (3) is equivalent (2).

We shall now proceed to establish (3). In order to do this, we first
notice that with no loss of generality (since we are going to use Fourier
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series to prove (3)) we can assume that the closure of our domain D is
contained in the interior of the three-dimensional torus T, = {x, —7 <
x;=mwj=1,2,8}. Now let S be a given open two-sided regular sur-
face contained in the interior of D. Since S itself is a closed point set,

between S and D we can put two domains D’ and D” with the following
property :

ScDcDcD'cD'cDcDcCT,.

Letting M«) be a localizing function which is non-negative and in
class C~ on T, and which takes the value one on D’ and the value zero
on T, — D", we set v'(x) = Mx)v(x) and w'(x) = Mx)w(x) + grad\(x) x
v(x) for 2 in D and 2'(x) = w'(x) =0 for  in T, — D. Since 2'(x) =
v(x) and w'(x) = w(x) for 2 on S, (3) will be established once we can
show that

(4) S W', dx) = S (w', n)dS .
(4 N
In order to establish (4), we first observe from Lemma 1 and (i) and

(ii) of Theorem 3 that

(5) curl*v'(z) and curl,?'(x) are finite-valued in T}
(6) curl*v'(z) = curl, v'(x) = w'(x) almost everywhere in T..

Next we designate the multiple Fourier series of v and w) respec-
tively by

(7) vi(w) ~ Sahe
=123
wi(e) ~ bl
where m represents an integral lattice point in three-space.
The essential step in proving (4) is to show that
(8) b2 = i(mga), — myah)

where («, 3, v) is a cyclic permutation of (1, 2, 3).
In order to do this we fix x, and observe that

(9) vi(x) ~ ZZafnﬁmy(xw)ei(mpxﬁmyzy) for § =B,
mg My

where

(10) “%my(%) — (477;2)—181: S:e‘i("’ﬁ”ﬁ‘”"‘v"v)v}(x)dxﬁdxy .

Now by (5),
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(11) lim suprao(mﬂ)-lgo . T)v;;(xm Yer Yv)AYp + VY(Tay Yp, Yv)AYy

0‘41

is finite-valued in T, with a similar statement holding for lim inf, and
by (6),

a2 limea) | e v U0 + e v ¥,

aI'

= W%, T, ©y) for almost every (xg, ) if x, lies in
(—m, ] — E, where E, is a set of linear measure zero.
Consequently it follows from (10), (11), (12), a modified version of
[9, Lemma 8], and [9, Theorem 2] that for m,; and m, any two integers
and %, in (—=x, 7] — E, that
(13) iM% g (00) — My ()]

k4 n
= (4n2)‘1g S e~ i (mpTptmyTy ! (X, L, Ty)AXed Xy
-t J~x

Letting m, be any integer, multiplying both sides of (13) by
(27)'e~"™s"s, and then integrating over (—m, 7], we conclude from (10),
the fact that E, is of linear measure zero, and (7) that

i(meal, — myab) = bl ,

which is (8).
(4) follows now fairly easily. We introduce for ¢ > 0, the vector
fields v'(z, t) and w'(x, t) where

(14) Vi@, t) = alettme-imit
7=1,2,3.

w)(x, t) = Zbj,etmm-Imt
Then, since v'(x, t) and w'(x, t) are vector fields in class C~ on 7, and

since we can differentiate under the summation signs in (14), we con-
clude from (8) that curlv'(zx, t) = w'(x, t). Consequently,

(15) Sc(v'(oc, 1), da) = Ss(w’(x, 1), n)dS for t > 0.

But as is well-known [2], v'(x,t) —¢'(x) and w'(x,t) — w'(x) as t—0

uniformly for x in 7,. Therefore from the definition of a regular curve,

it follows that gc(v'(w, t), dx) — S (v', dx), and from the definition of a re-
c

gular surface, it follows that S (w'(x, t), n)dS — X (w’, n)dS. We conclude
S
from (15) that a

Sa(v’, da) = L(w', n)dS
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which is precisely (4), and the proof of Theorem 8 is complete.

5. Proof of Theorem 1, 2, and 4. The necessary conditions of
Theorems 1 and 2 follow immediately from the following lemma (for
an analogous two-dimensional result, see [3]), which we shall prove:

LEMMA 2. Let u(x) = —(47r)‘lgs( )f(y)loc — y|~'dy where f(x) 1s
1(Z0 70

bounded wm S|(xy, 1)) with 7, > 0. Then for x in Sz, 7,

(a) curlgradu(x) =0

(b) A, f(x) = div, gradu(x) and A*f(x) = div* gradu(x)

(¢) div, gradu(x) < Lap, u(x) < Lap™® w(x) < div* grad u(x)

To prove the lemma, it is clearly sufficient to prove it in the case
x = 2, and furthermore with no loss of generality, we can assume =, is
the origin.

Setting v(x) = gradu(x), we observe that

(16) o@ = x| e -l -yl G123,

1(0,

and v,(x) is a continuous function. Observing that
S (grad|x — y | dw) = 0
01(0,7‘)

for ¥y not on C,0,7) 5 =1,2,8, we conclude from (16) and Fubini’s
theorem that S )(v, dx) =0 for 7 =1,2,3. Consequently (a) of the

C (0,7
lemma is established.

Observing the —g )(gradlx —y|,n)dS =4 if y is in S0, r)

0,r
and = 0 if ¥ is not in S,(0, ), we obtain from (16) and Fubini’s theorem
that for 0 < r < 7,

() Ssm(v, n)dS = g | Sy .

87(
Dividing both sides of (17) by 4z#*/3 and then taking lim inf,., of both
sides and next lim sup,_,, gives us precisely part (b) of the lemma.

(c) follows from (b), the boundedness of f, and [5].

Theorem 4 and the sufficiency conditions of Theorems 1 and 2 follow
from the following more general theorem:

THEOREM 5. Let D be a bounded domain in Euclidean three-space,
and let v(x) be a continuous vector field defined in D. Suppose that
(i) curl,v(x) and curl*wv(x) are finite-valued in D
(i) curl,v(x) = eurl*v(x) = 0 almost everywhere in D
(iii) divy,wv(x) and div*e(z) are finite-valued in D
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(iv) there exists a function f(x) such that f(x) is in L' on every
closed subdomain of D and such that div,v(x) = f(x) for =
wm D.

Then (a) divou(x) exists almost everywhere in D

(b) divo(x) ts ©n L* on every closed subdomain of D

(c) for every closed sphere S(x, r,) contained in D, there exists
a function w(x) in class C* in Si(x, 7,) such that for = in
Si(2,, 7o), v(x) = gradu(x) and furthermore

u(x) = — (471')‘ISS ) )divv(y) |z —y|~'dy + h(x) a.e. in Sy(x,, 1)
where h(x) is ha’;"ﬂ?L’O?niC m S(%y, 7).

In order to prove Theorem 5, we first need the following lemma
(see [8, p. 381)):

LEMMA 3. Let u(x) be in class C* in Sy(x,, 7). Then div, grad w(z,) <
Lap, u(x,) < Lap*u(x,) < div* grad u(zx,)

With no loss in generality, we assume that z, is the origin. Then
by the mean value theorem

£(4z)‘1gﬂgznu(t sin fcos @, tsin §sin @, tcon 6)sin 0ddep — 11,(0)]/«‘,“’6‘1
0Jo
= (4ﬂ)'1gﬂguub('rsin fcosp, rsin sing, rcos 6) sin 0dode|r31
0J0

where 0 < r» < t. We conclude that

0<r<t

sup [(47?/'2) S . udS - u(O)]/r26"1

< sup (477:7'3)'13g [gradu, n]dS .
0<r<t 80,7

Consequently from their very definitions, Lap*u(0) < div* grad #(0). Simi-
larly we show that div, grad«(0) < Lap,w(0), and the proof to the lemma
is complete.

It follows immediately from the three-dimensional analogue of [9,
Theorem 2] that (a) and (b) of Theorem 5 hold. To obtain (¢) of Theorem
5, we observe that there exists a positive € such S,(x,, 7, + ¢) € D. Let
x be in Sz, 7, + €), and let P(x) be the line segment connecting &,

with 2 and directed to x. Then we define u(x) = S (v dy), and ob-

serve, since by Theorem 38 curlv = 0 everywhere 1n Sl(aco, 7, + €) and
Stokes’ theorem with respect to v and curlv holds in this domain, that
u(x) is in class C* in Sy(x,, 7, + ¢) and furthermore that v(x) = gradu(x).
Consequently by Lemma 3 and (iii) of the theorem

(18) Lap,u(x) and Lap*u(x) are finite-valued in S,(x,, v, + ¢) ,
and by (a) and (b) of the theorem and Lemma 3
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(19) Lapu(x) = dive(x) almost everywhere in S(x,, 7, + €) .

Therefore by (b) of the theorem, (18), (19), and the three-dimensional
analogue of [6, Theorem 1], it follows that for almost all x in S,(x,, 7,)

ue) = ~(m)y | dive@)le — y1"dy + (o)

1LZp: 7o
where A(x) is harmonic in S(z,, 7,). But this is precisely (c) of Theorem
5, and the proof to the theorem is complete.

6. The spherical intrinsic curl. Let v(x) be a continuous vector field
defined in a neighborhood of the point x,. Then as mentioned earlier,
the upper and lower intrinsic curl of v at x, can be defined by means of
the cross product and spherical surfaces. In short, we define the upper
spherical intrinsic curl to be the component-wise upper limit, curld v(x,) =

lim suprﬁ0(4m“3)'135 ) (nxv)dS. Similarly we define the lower spherical
S

intrinsic curl, curl*sz)o(’%o), using lim inf, ,. In case curlfv(x,) = curl,v(x,)
is finite, we say the spherical intrinsic curl of v exists at the point =z,
and we designate this common value by curlsv(zx,).

We shall prove the following theorems:

THEOREM 6. Theorems 1, 2, 3, 4, and 5 continue to hold if in each
of these theorems curl*v, curl,v, and curl v are replaced by curliv,
curl,sv, and curlyv respectively.

THEOREM 7. Let D be a bounded domain in Euclidean three-space,
and let v(x) be a continuous vector field defined in D. Then

(a) if curlgv(x) exists and is continuous in D, then curlv(x) exists

everywhere in D and equals curlgv(x).

(b) if curlv(x) ewists and is continuous in D, then curlgv(x) exists

everywhere in D and equals curlwv(x).

To prove Theorem 6, it follows from the proofs of Theorems 1, 2,
4, and 5 that it is sufficient just to prove Theorem 3 and Lemma 2(a)
when curl*v, curl,v, and curlv are replaced respectively by curliwv,
curl,sv, and curlgv.

The analogue of Lemma 2(a) follows immediately from Fubini’s
theorem and the fact that S n x grad|x — y|~'dS = 0 if y is not on
S(xy, 7). S

To prove the new version of Theorem 3, we designate by o’ the
unit vector in the direction of the x,-axis and set v/ = v x p’ for j =
1, 2, 3. Then it follows from the definition of spherical intrinsic curl
and intrinsic divergence that the jth component of curl}v is div*v’ with
a similar remark holding for curl,;v. Consequently by (i) and (ii) of
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the new version of Theorem 3 and by the three-dimensional analogue
of [9, Theorem 2], we obtain that for S(w,, 7) contained in D,

(20) S (v, m)dS = S w,(x)de j=1,23.
NEINRD) 81(zg,7)

But (20) implies that curlsv(x) exists everywhere in D and equals w(x),

giving the first part of the theorem.

The last part follows in a manner similar to the original version of
Theorem 3, and it suffices to give a sketch of the proof. We first
establish the analogue of Lemma 1 for the spherical intrinsic curl.
Next with D contained in the interior of 7, and S contained in D, we
introduce the periodic vector fields v'(z) = Mx)v(x) and w'(x) = Mx)w(x) +
grad M(x) x v(x) where () is a non-negative localizing function in class
C= which takes the value one in a neighborhood of S and the value
zero outside another neighborhood of S for points in T,. Then with
v'(x, t) and w'(x, t) as in Theorem 3, it follows using the three dimen-
sional analogues of the results in [9] that curl?'(x, t) = w'(x, t). But, as
before, this implies that S (v, dzx) = S (w, n)dS, which fact completes the
proof of the theorem. ’ ’

Theorem 7(a) follows immediately from Theorem 6.

To prove Theorem 7(b), we assume that D is contained in the in-
terior of T}, and we set w(x) = curl v(x). Then with S(x,, 3r,) contained
in D and Mx) a non-negative localizing funection of class C~ which takes
the value one in S(x,, ;) and the value zero in T, — S|(%,, 27,), we in-
troduce, as before, the periodic vector fields v'(x) = Ma)v(x), w'(x) =
Mx)w(x) + grad Mz) x v(x), v'(x, t), and w'(x,t). Exactly as in Theorem
3, we obtain that curle'(x, t) = w'(x,t). But then on setting v"(x) =
v'(x) x p’ and v'(x, t) = v'(z,t) x p’ for j =1,2,3, we obtain that

g (v(z, 1), n)dS = S w'(x, tydx for » >0,
NEI%Y) 8, (zg,7)
and consequently that
"(x), n)dS = "(x)dx .
SS(zd.T)(,U (x) In) S Ssl(xo,r)wj(x) “

This last fact, however, implies that curlgv(z,) = w(z,), and therefore
completes the proof to Theorem 7(b).
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