TRANSFORMATIONS ON TENSOR PRODUCT SPACES

MARVIN MARCUS AND B. N. MOYLS

1. Introduction. Let U and V be m- and n-dimensional vector spaces over an algebraically closed field F of characteristic 0. Then $U \otimes V$, the tensor product of U and V, is the dual space of the space of all bilinear functionals mapping the cartesian product of U and V into F. If $x \in U$, $y \in V$ and w is a bilinear functional, then $x \otimes y$ is defined by: $x \otimes y(w) = w(x, y)$. If e_1, \dots, e_m and f_1, \dots, f_n are bases for U and V, respectively, then the $e_i \otimes f_j$, $i = 1, \dots, m$, $j = 1, \dots, n$, form a basis for $U \otimes V$.

Let $M_{m,n}$ denote the vector space of $m \times n$ matrices over F. Then $U \otimes V$ is isomorphic to $M_{m,n}$ under the mapping ψ where $\psi(e_i \otimes f_j) = E_{ij}$, and E_{ij} is the matrix with 1 in the (i,j) position and 0 elsewhere. An element $z \in U \otimes V$ is said to be of rank k if $z = \sum_{i=1}^k x_i \otimes y_i$, where x_1, \dots, x_k are linearly independent and so are y_1, \dots, y_k . If $R_k = \{z \in U \otimes V \mid \text{rank}(z) = k\}$, then $\psi(R_k)$ is the set of matrices of rank k, in $M_{m,n}$. In view of the isomorphism any linear map T of $U \otimes V$ into itself can be considered as a linear map of $M_{m,n}$ into itself.

In [2] and [3], Hua and Jacob obtained the structure of any mapping T that preserves the rank of every matrix in $M_{m,n}$ and whose inverse exists and has this property (coherence invariance). (In [3] Fis replaced by a division ring, and T is shown to be semi-linear by appealing to the fundamental theorem of projective geometry.) In [4] we obtained the structure of T when m = n, T is linear and T preserves rank 1, 2 and n. Specifically, there exist non-singular matrices M and N such that T(A) = MAN for all $A \in M_{nn}$, or T(A) = MA'N for all A, where A' designates the transpose of A. Frobenius (cf. [1], p. 249) obtained this result when T is a a linear map which preserves the determinant of every A. In [5] it was shown that this result can be obtained by requiring only that T be linear and preserve rank n. In the present paper we show that rank 1 suffices (Theorem 1), or rank 2 with the side condition that T maps no matrix of rank 4 or less into 0 (Theorem 2). Thus our hypothesis will be that T is linear and $T(R_1) \subseteq R_1$. We remark that T may be singular and still its kernel may have a zero intersection with R_1 ; e.g., take U = V and $T(x \otimes y) =$ $x \otimes y + y \otimes x$.

2. Rank one preservers. Throughout this section T will be a linear transformation (l.t.) of $U \otimes V$ into $U \otimes V$ such that $T(R_1) \subseteq R_1$. Here

Received March 2, 1959. The work of the first author was sponsored by U.S. National Science Foundation Grant G. 5416.

U and V are m- and n-dimensional vector spaces over F. Let e_1, \dots, e_m and f_1, \dots, f_n be fixed bases for U and V, and set

$$(1) T(e_i \otimes f_j) = u_{ij} \otimes v_{ij}, i = 1, \dots, m; j = 1, \dots, n.$$

Note that no u_{ij} or v_{ij} can be zero. We shall show, in case $m \neq n$ that there exist vectors u_i and v_j such that $T(e_i \otimes f_j) = u_i \otimes v_j$, and hence that the l.t. T is a tensor product of transformations on U and V separately. In case m = n it will be shown that a slight modification of T is a tensor product.

Denote by $L(x_1, \dots, x_t)$ the subspace spanned by the vectors x_1, \dots, x_t , and let $\rho(x_1, \dots, x_t)$ be the dimension of $L(x_1, \dots, x_t)$.

LEMMA 1. Let $x_1, \dots, x_r, w_1, \dots, w_s$ be vectors in U, and let $y_1, \dots, y_r, z_1, \dots, z_s$ be vectors in V. Let

$$\sum_{i=1}^r (x_i \otimes y_i) = \sum_{j=1}^s (w_j \otimes z_j).$$

If $\rho(x_1, \dots, x_r) = r$, then $y_i \in L(z_1, \dots, z_s)$, $i = 1, \dots, r$; and similarly if $\rho(y_1, \dots, y_r) = r$, then $x_i \in L(w_1, \dots, w_s)$, $i = 1, \dots, r$.

Proof. Suppose that $\rho(x_1, \dots, x_r) = r$. Let θ be a linear functional on U such that $\theta(x_1) = 1$, $\theta(x_i) = 0$, $i \neq 1$, and let α be an arbitrary linear functional on V. For $x \in U$, $y \in V$, define

$$g(x, y) = \theta(x)\alpha(y) .$$

Applying (2) to g, we get

$$\alpha(y_1) = \sum_{i=1}^{s} \theta(w_j) \alpha(z_j) = \alpha\left(\sum_{j=1}^{s} \theta(w_j) z_j\right)$$

where each $\theta(w_j)$ is a scalar. Since α is arbitrary, y_1 , and similarly y_2, \dots, y_r , are contained in $L(z_1, \dots, z_s)$. The second part of the lemma is proved in the same way.

LEMMA 2. If $T(R_1) \subseteq R_1$, and T satisfies (1), then for $i = 1, \dots, m$, either

$$(4) \rho(u_{i_1}, \dots, u_{i_n}) = n \quad and \quad \rho(v_{i_1}, \dots, v_{i_n}) = 1,$$

or

(5)
$$\rho(u_{i_1}, \dots, u_{i_n}) = 1 \text{ and } \rho(v_{i_1}, \dots, v_{i_n}) = n$$
.

Similarly, for $j = 1, \dots, n$, either

(6)
$$\rho(u_{1j}, \dots, u_{mj}) = m \quad and \quad \rho(v_{1j}, \dots, v_{mj}) = 1,$$

or

(7)
$$(u_{ij}, \dots, u_{mj}) = 1$$
 and $(v_{1j}, \dots, v_{mj}) = m$.

Proof. Suppose that $u_{i\alpha}$ and $u_{i\beta}$ are independent. Then

$$T(e_i \otimes (f_\alpha + f_\beta)) = (u_{i\alpha} \otimes v_{i\alpha}) + (u_{i\beta} \otimes v_{i\beta})$$

must be a tensor product $u \otimes v$. By Lemma 1, $v_{i\alpha}$, $v_{i\beta} \in L(v)$. Since all $v_{ij} \neq 0$, $L(v_{i\alpha}) = L(v_{i\beta})$. For $\gamma \neq \alpha$, β , $L(v_{i\gamma}) = L(v_{i\alpha})$, since $u_{i\gamma}$ must be independent of at least one of $u_{i\alpha}$, $u_{i\beta}$. We have shown that if $\rho(u_{i1}, \dots, u_{in}) \geq 2$, then $\rho(v_{i1}, \dots, v_{in}) = 1$.

Suppose next that $\rho(u_{i1}, \dots, u_{in}) = 1$, viz., $u_{i\alpha} = c_{\alpha}u_{i1}$, $c_{\alpha} \neq 0$, $\alpha = 1, \dots, n$. If

$$ho(v_{i1},\, \cdots,\, v_{in}) < n$$
 , let $\sum\limits_{lpha=1}^n a_lpha v_{ilpha} = 0$

be a non-trivial dependence relation. Then

$$T\Big(e_iigotimes\Big(\sum\limits_{lpha=1}^nrac{a_lpha}{c_lpha}f_lpha\Big)\Big)=\sum\limits_{lpha=1}^n\Big(c_lpha u_{i_1}igotimesrac{a_lpha}{c_lpha}v_{ilpha}\Big)=u_{i_1}igotimes\Big(\sum\limits_{lpha=1}^na_lpha v_{ilpha}\Big)=0$$
 ,

which is impossible by the nature of T. Hence $\rho(u_{i1}, \dots, u_{in}) = 1$ implies $\rho(v_{i1}, \dots, v_{in}) = n$.

It follows by a similar argument that if $\rho(v_{i_1}, \dots, v_{i_n}) = 1$, then $\rho(u_{i_1}, \dots, u_{i_n}) = n$. Hence either (4) or (5) must hold. The second part of the lemma is proved similarly.

We remark that if m < n (or n < m), then (4) (or (7)) cannot hold.

LEMMA 3. Either (4) and (7) hold for all i, j; or (5) and (6) hold for all i, j.

Proof. We show first that either (4) or (5) holds uniformly in i. Suppose that for some i and k, $1 \le i \le k \le m$, $\rho(u_{i1}, \dots, u_{in}) = n$ while $\rho(u_{k1}, \dots, u_{kn}) = 1$. Then for some α , $1 \le \alpha \le n$, $\rho(u_{i\alpha}, u_{k\alpha}) = 2$. For $\beta \ne \alpha$ consider

$$egin{aligned} \eta &= T[(e_i + e_k) \otimes (cf_{lpha} + f_{eta})] \ &= c(u_{ilpha} \otimes v_{ilpha}) + (u_{ieta} \otimes v_{ieta}) + c(u_{klpha} \otimes v_{klpha}) + (u_{keta} \otimes v_{keta}) \ , \end{aligned}$$

where c is an arbitrary scalar.

By hypothesis and Lemma 2, $v_{i\alpha} = av_{k\alpha}$ and $v_{i\beta} = b_1v_{i\alpha} = bv_{k\alpha}$ for suitable non-zero scalars a and b, while $\rho(v_{k\alpha}, v_{k\beta}) = 2$. Thus $\eta = (acu_{i\alpha} + bu_{i\beta} + cu_{k\alpha}) \otimes v_{k\alpha} + (u_{k\beta} \otimes v_{k\beta})$, and by Lemma 1, $\rho(acu_{i\alpha} + bu_{i\beta} + cu_{k\alpha}, u_{k\beta}) = 1$ for all scalars c. Since $\rho(u_{k\alpha}, u_{k\beta}) = 1$, this implies that $\rho(cu_{i\alpha} + u_{i\beta}, u_{k\beta}) = 1$ for all c. This is impossible, since $\rho(u_{i\alpha}, u_{i\beta}) = 2$. Thus either (4) is true for all i, or (5) is true for all i. A similar argument applies to (6) and (7).

If (4) and (6) hold for all i and j, then there exist non-zero scalars c_{ij} such that $v_{ij} = c_{ij}v_{1i}$, $i = 1, \dots, m$, $j = 1, \dots, n$. For a_j , b scalars, consider

$$Tigg[\Big(\sum\limits_{i=1}^m a_ie_i\Big)igotimes (f_1-bf_2)igg]=\Big(\sum\limits_{i=1}^m a_ic_{i1}u_{i1}-b\sum\limits_{i=1}^m a_ic_{i2}u_{i2}\Big)igotimes v_{11}$$
 .

Let z_1, \dots, z_m and w_1, \dots, w_m be the m-column vectors which are respectively the representations of u_{11}, \dots, u_{m1} and u_{12}, \dots, u_{m2} with respect to the basis e_1, \dots, e_m . Let C be the m-square matrix whose columns are $c_{12}z_1, \dots, c_{m1}z_m$ and let W be the m-square matrix whose columns are $c_{12}w_1, \dots, c_{m2}w_m$. Then with respect to the basis e_1, \dots, e_m the vector $\sum_{i=1}^m a_i c_{i1} u_{i1} - b \sum_{i=1}^m a_i c_{i2} u_{i2}$ has the representation (C-bW)a where a is the column m-tuple (a_1, \dots, a_m) . Now C and W are non-singular since $\rho(u_{11}, \dots, u_{m1}) = \rho(u_{12}, \dots, u_{m2}) = m$, so choose b to be an eigenvalue of $W^{-1}C$ and choose a to be the corresponding eigenvector. Then (C-bW)a=0 and hence there exist scalars a_1, \dots, a_m not all a_1, \dots, a_m and a_2, \dots, a_m such that

$$T\Big(\sum\limits_{i=1}^{m}a_{i}e_{i}igotimes(f_{\scriptscriptstyle 1}-bf_{\scriptscriptstyle 2})\Big)=0$$
 ,

a contradiction since $T(R_1) \subseteq R_1$.

Hence (4) and (6) cannot hold for all i and j. Similarly both (5) and (7) cannot hold for all i and j. This completes the proof of the lemma.

In view of the remark preceding this lemma, (5) and (6) must hold when $m \neq n$.

THEOREM 1. Let U and V be m- and n-dimensional vector spaces respectively. Let T be a linear transformation on $U \otimes V$ which maps elements of rank one into elements of rank one. Let T_1 be the 1.t. of $V \otimes U$ into $U \otimes V$ which maps $y \otimes x$ onto $x \otimes y$. If m = n, let φ be any non-singular 1.t. of U onto V. Then if $m \neq n$, there exist non-singular 1.t.'s A and B on U and V, respectively, such that $T = A \otimes B$. If m = n, there exist non-singular A and B such that either $T = A \otimes B$ or $T = T_1(\varphi A \otimes \varphi^{-1}B)$.

Proof. By (1) and Lemma 3, $T(e_i \otimes f_j) = u_{ij} \otimes v_{ij}$, $i = 1, \dots, m$, $j = 1, \dots, n$, where either (5) and (6) hold or (4) and (7) hold. Suppose first that the former is the case; in particular, $\rho(u_{i1}, \dots, u_{in}) = 1$ for $i = 1, \dots, m$ and $\rho(v_{1j}, \dots, v_{mj}) = 1$ for $j = 1, \dots, n$. Then there exist non-zero scalars s_{ij} , t_{ij} such that $u_{ij} = s_{ij}u_{i1}$ and $v_{ij} = t_{ij}v_{1j}$. Thus

$$(8) T(e_i \otimes f_i) = c_{i,i} u_i \otimes v_i,$$

where $u_i = u_{ii}$, $v_j = v_{ij}$, and $c_{ij} = s_{ij}t_{ij}$. For $i = 2, \dots, n$,

$$Tigg[(e_1+e_i)igotimesig(rac{\sum\limits_{j=1}^nf_j}{\sum\limits_{j=1}^nc_{1j}v_j}+u_iigotimesrac{\sum\limits_{j=1}^nc_{ij}v_j}{\sum\limits_{j=1}^nc_{ij}v_j}$$

must be a direct product $x \otimes w$. By (6) and Lemma 1, $\sum_{j=1}^{n} c_{ij} v_j = d_i \sum_{j=1}^{n} c_{ij} v_j$ for some constant d_i . By (5), $c_{ij} = d_i c_{ij}$. Hence

$$(9) T(e_i \otimes f_i) = x_i \otimes y_i,$$

where $x_i = d_i u_i$ and $y_j = c_{ij} v_j$. Since the $\{x_i\}$ and $\{y_j\}$ are each linearly independent sets, there non-singular linear transformations A and B such that $x_i = Ae_i$ and $y_j = Bf_j$. Then $T = A \otimes B$.

When m = n, (4) and (7) may hold; in particular,

$$\rho(v_{i_1}, \dots, v_{i_n}) = 1$$
 and $\rho(u_{i_j}, \dots, u_{i_n}) = 1$ for $i, j = 1, \dots, n$.

As in the preceding case, there exist linearly independent sets x_1, \dots, x_n and y_1, \dots, y_n such that

$$(10) T(e_i \otimes f_j) = x_j \otimes y_i.$$

There exist non-singular transformations A and B of U and V, respectively, such that $Ae_i = \varphi^{-1}y_i$ and $Bf_j = \varphi x_j$, $i, j = 1, \dots, n$. Thus $T_1^{-1}T(e_i \otimes f_j) = \varphi Ae_i \otimes \varphi^{-1}Bf_j$. Q.E.D.

In matrix language we have the following.

COROLLARY. Let T be a l.t. on the space M_{nn} of n-square matrices. If the set of rank one matrices is invariant under T, then there exist non-singular matrices A and B such that either T(X) = AXB for all $X \in M_{nn}$ or T(X) = AX'B for all $X \in M_{nn}$.

3. Rank two preservers. In this section T will be a l.t. of $U \otimes V$ such that $T(R_2) \subseteq R_2$. We shall show that under certain conditions $T(R_1) \subseteq R_1$.

LEMMA 4. If W is a subspace of $U \otimes V$ such that, for some integer $r, 1 \leq r \leq \min(m, n)$,

(11)
$$\dim W \geq mn - r \max(m, n) + 1,$$

then $W \cap \bigcup_{j=1}^r R_j \neq \phi$.

Proof. Suppose that $m = \max{(m, n)}$. The products $e_i \otimes f_j$, i = 1, ..., m, j = 1, ..., r, are linearly independent and span a space W_1 of dimension mr. Furthermore, $W_1 \subseteq \bigcup_{j=1}^r R_j$. Then $\dim{(W_1 \cap W)} = \dim{W_1} + \dim{W} - \dim{(W_1 \cup W)} \ge mr + (mn - rm + 1) - mn = 1$. The result follows, since $W_1 \cap W \subseteq \bigcup_{j=1}^r R_j \cap W$.

LEMMA 5. If $T(R_2) \subseteq T(R_2) \subseteq R_2$, then $T(R_1) \subseteq R_1 \cup R_2$.

Proof. Suppose $x_1 \otimes y_1 \in R_1$, and choose $x_2 \otimes y_2 \in R_1$ such that $\rho(x_1, x_2) = \rho(y_1, y_2) = 2$. Then $\alpha = sT(x_1 \otimes y_1) + tT(x_2 \otimes y_2) \in R_2$ for all non-zero scalars s, t. Now suppose that $T(x_1 \otimes y_1) = \sum_{j=1}^p u_j \otimes v_j$, where $\rho(u_1, \dots, u_p) = \rho(v_1, \dots, v_p) = p$, and that $T(x_2 \otimes y_2) = \sum_{j=1}^q z_j \otimes w_j$, where $\rho(z_1, \dots, z_q) = \rho(w_1, \dots, w_q) = q$. Let u_{p+1}, \dots, u_m be a completion of u_1, \dots, u_p to a basis for U. It follows that

$$\sum_{j=1}^{q} z_j \otimes w_j = \sum_{j=1}^{m} u_j \otimes h_j$$

for some vectors $h_j \in V$, $j = 1, \dots, m$. Then

$$lpha = \sum\limits_{j=1}^p u_j \otimes sv_j + \sum\limits_{j=1}^p u_j \otimes th_j + \sum\limits_{j=p+1}^m u_j \otimes th_j \ = \sum\limits_{j=1}^p u_j \otimes (sv_j + th_j) + \sum\limits_{j=p+1}^m u_j \otimes th_j \ .$$

Since $\alpha \in R_2$, it follows by Lemma 1 that

$$\rho(sv_1 + th_1, \dots, sv_n + th_n) \leq 2$$
 for $st \neq 0$.

The vectors $sv_1 + th_1, \dots, sv_p + th_p$ are linearly independent when s = 1 and t = 0. By continuity, they remain independent for small values of t. Hence $p \leq 2$ and $T(x_1 \otimes y_1) \in R_1 \cup R_2$.

THEOREM 2. If $T(R_2) \subseteq R_2$ and $0 \notin T(\bigcup_{j=1}^4 R_j)$, then $T(R_1) \subseteq R_1$.

Proof. Suppose $x_1 \otimes y_1 \in R_1$ and $T(x_1 \otimes y_1) \notin R_1$. By Lemma 5, $T(x_1 \otimes y_1) \in R_2$, since $0 \notin T(R_1)$. Thus $T(x_1 \otimes y_1) = (u_1 \otimes v_1) + (u_2 \otimes v_2)$, where $\rho(u_1, u_2) = \rho(v_1, v_2) = 2$. Let x_1, \dots, x_m and y_1, \dots, y_n be bases for U and V respectively. Then for $st \neq 0$

(12)
$$sT(x_1 \otimes y_1) + tT(x_i \otimes y_j) \in R_1 \cup R_2$$
 for $i = 1, \dots, m, j = 1, \dots, n$.

At this point it seems simpler to regard the images $T(x_i \otimes y_j)$ as elements of M_{mn} . It is clear that there is no loss in generality in taking $T(x_1 \otimes y_1) = E_{11} + E_{22}$.

Let i and j be fixed for this discussion, and let $A = T(x_i \otimes y_j)$. Let a_1, \dots, a_n be the m-dimensional vectors which are the columns of A, and let ε_k be the unit vector with 1 in the kth position. It follows from (12) that

(13)
$$\rho(s\varepsilon_1 + ta_1, s\varepsilon_2 + ta_2, ta_3, \dots, ta_n) = 2$$

for $st \neq 0$. The Grassmann products

$$(14) (s\varepsilon_1 + ta_1) \wedge (s\varepsilon_2 + ta_2) \wedge ta_k, 3 \leq k \leq n$$

must be zero for $st \neq 0$. In the expansion of (14) the coefficient of s^2t is 0; that is, $\varepsilon_1 \wedge \varepsilon_2 \wedge a_k = 0$.

Thus the matrix A has non-zero entries only in the first two rows and columns. It follows immediately that the dimension of the range of $T \leq 2(m+n) - 4$. Hence the dimension of the kernel of $T \geq mn - 2(m+n) + 4 > mn - 4 \max(m,n) + 1$.

By Lemma 4, there exists an element of $\bigcup_{j=1}^4$ whose image is zero. This contradicts the hypothesis; hence $T(R_1) \subseteq R_1$.

We see then that the form of T satisfying Theorem 2 is given in the conclusions of Theorem 1.

REMARK. We feel that the hypothesis $0 \notin T(\bigcup_{j=1}^4 R_j)$ of Theorem 2 should not be necessary, but we have not been able to prove the theorem without it. More generally, we conjecture that $T(R_k) \subseteq R_k$ for some fixed k, $1 \le k \le n$, should suffice to prove that T is essentially a tensor product.

REFERENCES

- 1. E. B. Dynkin, *Maximal subgroups of the classical groups*, A.M.S. Translations, Series 2, **6** (1957), 245-378. (Original: Trudy Moskov. Mat. Obsc. **1** (1952), 39-166.)
- 2. L. K. Hua, A theorem on matrices and its application to Grassmann space, Science Reports of the National Tsing Hua University, Ser. A, 5 (1948), 150-181.
- 3. H. G. Jacob, Coherence invariant mappings on Kronecker products, Amer. J. Math. 77 (1955), 177-189.
- 4. Marvin Marcus and B. N. Moyls, *Linear transformations on algebras of matrices*, Can. J. Math. **11** (1959) 61-66.
- 5. Marvin Marcus and R. Purves, Linear transformations on algebras of matrices: The invariance of the elementary symmetric functions, Can. J. Math. 11 (1959), 383-396.

University of British Columbia