TRANSFORMATIONS ON TENSOR PRODUCT SPACES

MARVIN MARcCUS AND B. N. MoyLs

1. Introduction. Let U and V be m- and n-dimensional vector
spaces over an algebraically closed field F' of characteristic 0. Then
U V, the tensor product of U and V, is the dual space of the space
of all bilinear functionals mapping the cartesian product of U and V
into F. If x e U, y € V and w is a bilinear functional, then 2 ® ¥ is
defined by: =@ y(w) = w(x,y). If e, +--,e, and f,, -+, f,, are bases
for U and V, respectively, then thee, @ f;, 1 =1, <+, m, =1, -+, n,
form a basis for UR V.

Let M,,, denote the vector space of m x n matrices over F. Then
U V is isomorphic to M, , under the mapping +» where (e, R f,) =
E,, and E,, is the matrix with 1 in the (4, j) position and 0 elsewhere.
An element z € U® V is said to be of rank k if 2z = >\, ® ¥;, where
2, +++, %, are linearly independent and so are ¥, «--,%,. If R, =
{z € UQ V|rank (z) = k}, then (R;) is the set of matrices of rank £,
in M,,,. In view of the isomorphism any linear map 7' of U® V into
itself can be considered as a linear map of M, , into itself.

In [2] and [3], Hua and Jacob obtained the structure of any map-
ping T that preserves the rank of every matrix in M, , and whose
inverse exists and has this property (coherence invariance). (In [3] F
is replaced by a division ring, and T is shown to be semi-linear by
appealing to the fundamental theorem of projective geometry.) In [4]
we obtained the structure of T when m = n, T is linear and T preserves
rank 1, 2 and n. Specifically, there exist non-singular matrices M and
N such that T(A) = MAN for all A e M,,, or T(A) = MA'N for all A,
where A’ designates the transpose of A. Frobenius (cf. [1], p. 249)
obtained this result when 7' is a a linear map which preserves the
determinant of every A. In [5] it was shown that this result can be
obtained by requiring only that 7 be linear and preserve rank =. In
the present paper we show that rank 1 suffices (Theorem 1), or rank 2
with the side condition that 7' maps no matrix of rank 4 or less into
0 (Theorem 2). Thus our hypothesis will be that 7 is linear and
T(R) € R,. We remark that T may be singular and still its kernel
may have a zero intersection with R,; e.g., take U=V and T(x Q y) =
rQ@Y+yQw.

2. Rank one preservers. Throughout this section T will be a linear
transformation (I.t.) of U® V into U® V such that T (R, < R,. Here
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U and V are m- and n-dimensional vector spaces over F. Let ¢, «--,
e, aud f, «--, f, be fixed bases for U and V, and set

(1) T(e; RSy = Uiy Q vy, 1=1,cce,m; g=1,--+,m.

Note that no u;, or v;, can be zero. We shall show, in case m +# n that
there exist vectors w; and v, such that T'(e; ® f,) = u; ® v,, and hence
that the l.t. T is a tensor produet of transformations on U and V
separately. In case m = n it will be shown that a slight modification
of T is a tensor product.

Denote by L(x,, ---, x,) the subspace spanned by the vectors z,, - -,
x,, and let po(x,, ---, ;) be the dimension of L(x, ---, x,).

LEMMA 1. Let 2, ---, x,, W, -+, w, be vectors in U, and let y,,
ce, Yy %y o0, 2 be vectors in V. Let

(2) L@@y =3 w,Q%).

If o(x,, +++,2) =1, then y, € L(z,, +++,2,), 1 =1, «++, 7; and similarly
of Oy <+, 4) =71, then x; € L(w,, <++, w), 1 =1, =<, 7.

Proof. Suppose that o(x,, ---,x,) = r. Let 6 be a linear functional
on U such that 6(x,) =1, 6(x;) =0, © +1, and let a be an arbitrary
linear functional on V. For z ¢ U, y € V, define

(3) 9(x, y) = O(z)aly) .
Applying (2) to g, we get
ay) = 30w )a(z) = af 3,000,)2,)

where each 6(w;) is a scalar. Since « is arbitrary, y,, and similarly
Yy **+, Y,, are contained in L(z, ---,2,). The second part of the lemma
is proved in the same way.

LEMMA 2. If T(R) C R,, and T satisfies (1), then for i =1, «--,
m, etther

(4) O(Uyy =+, Ue) = and PV, <=+, v,) =1,
or
(5) lo(uiv ety um) =1 and P(vm e, Uin) ="n.

Similarly, for j =1, -+, m, either

(6) lo(uljv ccey umj) =m a%d 40(7)11, *cy vmj) =1 )

or
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(7) (uljr"'yumj):1 a/ﬂd (vljy"'yvmj):m-

Proof. Suppose that u,, and u,, are independent. Then

T(e; @ (fu + f5) = (Uhia @ Via) + (Uig & Vip)

must be a tensor product v @ v. By Lemma 1, v, v,z € L(v). Since
all v;; # 0, L(vy,) = L(vig). For v + «, B, L(vyy) = L(v,,), since u,;, must
be independent of at least one of w,, u;;. We have shown that if
Oy # ooy Uyy) = 2, then O(vyy, ==+, v;,) = 1.

Suppose next that ©O(u;, «--, Uy) = 1, Viz., Uy = CuUy, €, # 0, @ =
1,eee,m. If

ﬂ(v“, M ?)in) <mn, let Zn: AuViy = 0
=1

be a non-trivial dependence relation. Then

T<ei X <0§1 (zm fw>> = ;(Cmun X EL’UW&) = Uy &Q (Z‘ﬂ“”“) =0,
which is impossible by the nature of 7. Hence po(u,, ++-, u;,) =1 im-
plies p(vg,, +++, V) = 7.

It follows by a similar argument that if p(v;, -+, v;,) = 1, then
Oy, *++, Uy,) = n. Hence either (4) or (5) must hold. The second part
of the lemma is proved similarly.

We remark that if m <n (or n < m), then (4) (or (7)) cannot hold.

LEMMA 3. FEither (4) and (7) hold for all %, 7; or (5) and (6) hold
Sor all 1, 7.

Proof. We show first that either (4) or (5) holds uniformly in <.
Suppose that for some ¢ and %, 1 <1 <k <m, o(uy, «+-, U,) = 1 while
O(Uyy, »++, Uy) = 1. Then for some a, 1 < a < n, (U, ) = 2. For
B #+ « consider

n =T + ex) Q (¢fa + fo)]
= c(Uig Q Vi) + (Uip Q@ Vip) + C(Upa @ Vio) + (Urg Q Vig) »

where ¢ is an arbitrary scalar.

By hypothesis and Lemma 2, v,, = av, and v, = bv,, = bv,, for
suitable non-zero scalars a and b, while 0(v.,, Vi) = 2. Thus 7 = (acu;, +
buig + CUga) @ Viw + (Ug @ Vi), and by Lemma 1, p(acuy, + bu, +
CUiay Uzg) = 1 for all scalars c¢. Since P(Uy,, Uzg) = 1, this implies that
O(cUsy + Wig, Uzg) = 1 for all ¢. This is impossible, since 0(u;,, i) = 2.
Thus either (4) is true for all 7, or (5) is true for all <. A similar
argument applies to (6) and (7).
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If (4) and (6) hold for all ¢ and j, then there exist non-zero scalars
¢;; such that v»; =¢;v,, 1 =1,+--,m, j=1.---,n. For a,, b scalars,
consider

T[( ;2: aiei> R (fi — bfz)] = (im% ACuthy — b S‘; aicizun) R vy -

Let 2z, +++,2, and w, «-+, w, be the m-column vectors which are re-
spectively the representations of u,, « -, U, and u,, «+-, U4,, With respect
to the basis ¢, -++,e,. Let C be the m-square matrix whose columns
are €2, ***, Cm?n, and let W be the m-square matrix whose columns
are €W, **+, CmsWy,. Then with respect to the basis e, ---, ¢, the vector
SV AUy — b ST a.c,,u, has the representation (C — bW)a where a is
the column m-tuple (a,, +--, a,). Now C and W are non-singular since
Oy, o0y Upyy) = P(Uggy +* ¢, Upy) = M, 80 choose b to be an eigenvalue
of W-C and choose a to be the corresponding eigenvector. Then
(C—bW)a =0 and hence there exist scalars a,, -+, a,, not all 0 and b
such that

T(g‘;aiei@(ﬁ— bf2)> ~0,

a contradiction since T(R,) € R..

Hence (4) and (6) cannot hold for all 4 and j. Similarly both (5)
and (7) cannot hold for all 4 and 7. This completes the proof of the
lemma.

In view of the remark preceding this lemma, (5) and (6) must hold
when m #* n.

THEOREM 1. Let U and V be m- and n-dimensional vector spaces
respectively. Let T be a linear transformation on U V which maps
elements of rank one into elements of rank one. Let T, be the 1.t. of
VU into URQV which maps y Qx onto x Qy. If m =n, let ¢ be
any mon-singular L.t. of U onto V. Then if m + m, there exist non-
singular 1.t.’s A and B on U and V, respectively, such that T =
AQ B. If m = n, there exist non-singular A and B such that either
T=AQRQBor T=T(pAQ ¢'B).

Proof. By (1) and Lemma 3, T(e,Qf) = uU; Q@ vy, 1 =1, 4+, m,
j=1, -+, m, where either (5) and (6) hold or (4) and (7) hold. Suppose
first that the former is the case; in particular, p(u;, -+, u;,) =1 for
t=1,<-,m and O(vy, +++,v,;) =1 for j =1, -+, n. Then there exist
non-zero secalars s;;, t;, such that w,; = s;;u;, and v,; = ¢;;,,. Thus

(8) T, Qf) =cus @y,

where u; = U;y, v; = vy, and ¢;; = 8;t;;. For 4 =2, -+, 1,
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T[(el +e) & (gf;)] = Q élclﬂ’f + % ® ;_‘.: CisVs

must be a direct product x @ w. By (6) and Lemma 1, >7_c,v, =
d; >)j-.¢,v, for some constant d;,. By (5), ¢;; = d;c;;. Hence

(9) T, Rf) =29,

where 2, = d,u; and y, = ¢,;v;,. Since the {x;} and {y,} are each linearly
independent sets, there non-singular linear transformations A and B
such that x, = Ae, and y, = Bf,. Then T= A Q B.

When m = n, (4) and (7) may hold; in particular,

OWiry »oo, V) =1 and p(uyy, +oo, Uyy) =1 for 4,5 =1, n.

As in the preceding case, there exist linearly independent sets «x,, ---,
x, and y,, -+, ¥, such that

(10) T(e; Q) =2 QY -

There exist non-singular transformations A and B of U and V, re-
spectively, such that Ae, = ¢~'y;, and Bf, = ¢x,, %, =1, -++,n. Thus

T7'T(e, K f;) = pAe, @ ¢ 'Bf,. Q.E.D.
In matrix language we have the following.

COROLLARY. Let T be a 1.t. on the space M,, of n-square matrices.
If the set of ramk one matrices is tnvariant under T, then there exist
non-singular matrices A and B such that either T(X) = AXB for all
X e M, or T(X)=AX'B for all X € M,,.

3. Rank two preservers. In this section T will be a I.t. of UK V
such that T(R,) £ R,, We shall show that under certain conditions
T(R) € R..

LEMMA 4. If W is a subspace of UQ V such that, for some integer
r, 1 < r < min (m, n),
(11) dim W > mn — rmax(m,n) + 1,
then W N U)- R, # ¢.

Proof. Suppose that m = max (m, n). The products ¢;Q f;, ¢ =1,
eee,m, j =1, -+, 7, are linearly independent and span a space W, of
dimension mr. Furthermore, W, < U;.,R,, Then dim(W,n W)=
dim W, + dim W — dim (W, U W) > mr + (mn — rm + 1) —mn = 1. The
result follows, since W, N W < Uj-.E, N W.

LemMA 5. If T(R,) € T(R) S R,, then T(R) S R, U R..
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Proof. Suppose z, X ¥y, € B, and choose 2, ¥, € R, such that
0%y, ) = (Y, ¥») = 2. Then a = sT(x, Qy) + tT(x. R ¥y,) € R, for all
non-zero scalars s, t. Now suppose that T'(z; @ ¥,) = >.7-.4; & v,, where
lo(ulr M) up) = 10(7717 ) 'vp) =D and that T(x2® y2) = Z;lej ® Wy, where
02y, =++, 2) = p(w,, ==+, w,) = q. Let 4y, »++, %, be a completion of
Uy, +++, U, to a basis for U. It follows that

Zz,@w, 2u1®h,

for some vectors h; e V, =1, -+, m. Then

»

a = u;Q sv, + Zu1®th1+ 2 u1®th

J=1

jg 3 @ (sv; + thy) + Z u;@thj

3

Since a e R,, it follows by Lemma 1 that
o(sv, + thy, ++e, 80, + th,) <2 for st+0.

The vectors sv, -+ th,, =+-, sv, + th, are linearly independent when s =1
and t = 0. By continuity, they remain independent for small values of
t. Hence p<2and T(x,®¥%) € R, U R,.

THEOREM 2. If T(R,) € R, and 0 ¢ T(U’-.R,), then T(R) C R..

Proof. Suppose 2, Xy, € R, and T, Rv,) ¢ R,. By Lemma 5,
T(x,®v) € R, since 0 ¢ T(R). Thus T(, Q%) = (1, Q 7)) + (U, @ v3),
where o(u,, w,) = o(v,, v,) = 2. Let x;, «++, 2, and y, «--,y, be bases
for U and V respectively. Then for st =+ 0

(12) ST, Qy) +tT(x; @y;) € B, U R,
for i=1,cc0,m, j=1,--,m.

At this point it seems simpler to regard the images T'(x; Q y;) as ele-
ments of M,,. It is clear that there is no loss in generality in taking
T(xl ® yl) = Eu + Ezr

Let 7 and j be fixed for this discussion, and let 4 = T(x; R y,).
Let a,, -+-, a, be the m-dimensional vectors which are the columns of
A, and let ¢, be the unit vector with 1 in the kth position. It follows
from (12) that

(13) o(se; + tay, s&, + ta,, ta,, <+, ta,) =2
for st = 0. The Grassmann products

(14) (se; +ta) A (sex +ta)) Ata,, 3<k<n
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must be zero for st = 0. In the expansion of (14) the coefficient of
s’ is 0; that is, ¢, A g, A a, = 0.

Thus the matrix A has non-zero entries only in the first two rows
and columns. It follows immediately that the dimension of the range
of T<2(m + n) — 4. Hence the dimension of the kernel of 7> mn —
2(m + n) + 4 > mn — 4 max (m, n) + 1.

By Lemma 4, there exists an element of |Jj-; whose image is zero.
This contradicts the hypothesis; hence T'(R, C R,.

We see then that the form of T satisfying Theorem 2 is given in
the conclusions of Theorem 1.

REMARK. We feel that the hypothesis 0 ¢ T'(UUJ}-.R,) of Theorem
2 should not be necessary, but we have not been able to prove the
theorem without it. More generally, we conjecture that T(R,) < R,
for some fixed %k, 1 < k < n, should suffice to prove that 7' is essentially
a tensor product.
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