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A SPHERE BUNDLE
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l Introduction. This paper is concerned with the problem of
determining the cohomology ring of an orientable fibre space whose
fibere is a sphere, in terms of the cohomology ring of the base space
and invariants of the fibre space.

When the fibering sphere is of even dimension k — 1, an invariant
P in the (2k — 2)-dimensional cohomology group of the base space is
defined, which is closely related to one of the Pontrjagin characteristic
classes if the fibre space is a fibre bundle. If the (2k — 2)-dimensional
cohomology group of the base space B has no elements of order two,
then two (k — l)-sphere spaces over B with the same Stiefel-Whitney
classes Wk and Wfc_! and the same invariant P have isomorphic integral
cohomology rings.

In the other case, when k is even, if H2Jΰ~2(B, Z) has no two-
torsion, then two (k — l)-sphere spaces over B with the same Stiefel-
Whitney classes Wk, Wk-19 and TΓΛ_2 have isomorphic integral cohomology
rings.

If H2fc~2(B, Z) has elements of order two the situation seems to be
more complicated and no results are obtained. Also, the problem of
determining the cohomology ring with mod 2 coefficients is not touched
upon here.

The method is based upon the algebraic mapping cylinder of the
map x-+x'}?s, where w is Thorn's class, and thus parallels Thorn's
construction of the Gysin sequence using the mapping cylinder.

In conclusion, I wish to thank Professor W. S. Massey for his
generous advice and encouragement in the preparation of this paper,
which contains the essential parts of a dissertation submitted to Brown
University.

2. Notation and terminology* We define a fibre space as an ordered
quadruple (E, p, B, F) such that Ey B, and F are topological spaces, p : E—>B
is a continuous map, and such that the following condition holds: For
each x e By there is a neighborhood U of x and a homeomorphism φ
mapping U x F onto p~\U) such that (pφ)(y, z) — y for each y e U and
z e F. We call E the total space, F the fibre, and B the base space.

By a fibre bundle is meant a fibre space with a structural group,
as defined in Steenrod's book [8]. A fibre bundle whose fibre is an
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w-sphere and whose group is the group of all (n + 1) x (n + 1) real
orthogonal matrices of determinant + 1 (denoted by SO(n + 1)) will be
called an ^-sphere bundle. An w-sphere space is a fibre space whose
fibre is an ^-sphere.

We assume that all w-sphere spaces with which we are concerned
satisfy the following orientability condition: If S™ denotes the fibre
over the point x e B, then the local system of groups defined by
Hn(Sχ), for x e B, is a simple system.

We also assume that the base space of any fibre space or fibre
bundle we consider is compact, and we will use Cech-Alexander-Spanier
cohomology with compact supports. Unless otherwise indicated, all
cohomology groups are with integer coefficients.

In [11], R. Thorn showed that the Gysin sequence of a (k — 1)-
sphere space (E, p, B, S*"1) may be obtained in the following manner :
There is associated to the given (k — l)-sphere space another fibre
space (A, p0, By F) whose fibre F is a fc-cell, for which we may suppose
E c A. (A is the mapping cylinder [10] of p : E—*B). Thorn showed
that there is an element ^/ e Hk(A — E) — H*(A, E) such that the
homomorphism Θ : H^A) -> H%A - E) defined by

(2.1) θ(x) =

(the cup product) is an isomorphism onto. In addition pf : Hq(B) —> HQ(A)
is an isomorphism onto. In fact, there is a cross section s:B—>A
where s(x) is the center point of the fibre over x, and s* and p£ are
inverse to each other. We thus obtain the following commutative
diagram of exact sequences, where all the vertical arrows are isomorphisms
onto:

> H«(A - E) ^—> H*{A) > Hq(E) — H^\A - E) > . . .
t t., t., t
\θ \ιd. \%d. \θ

H*(A) > H*(E)

jpo* W hid.

I

£+ H"(E)
Figure 1

Here the homomorphisms λ, μ, v, and ψ are defined by λ = j*θ
μ = p* - 1λp*; v = ^" xδ*; and ψ = p*" 1^; the top horizontal sequence is
the cohomology sequence of the pair (A, E), and the bottom sequence
is the Gysin sequence. Thus according to the results of Thorn, the
Gysin sequence of (E, p, B, S16'1) is isomorphic to the cohomology
sequence of the pair (A, E).
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In addition, if we let

and Wh = pt'ι{wk),

then Wk is the kth Stiefel-Whitney class (the characteristic class)

and μ(x) = xWk for α; e

Mv) = 2/w* for 2/ 6 JH

Define wt by

(2.2) 0(w4) = S\{&)

where S j : iJft(A — JB7) —> £Γ*+*(A - 2?) denotes the Steenrod squaring

operation (see [9], or [3], expose 14).* Then also the Stiefel-Whitney

classes Wt are given by

Thus Wi e H\B, Z) for i odd and W% e #*(£, Z2) for % even and less
than k. Wk is always an integral cohomology class. In addition,
2Wt = 0 for ΐ odd. For more details, the reader is again referred to
the paper of Thorn [11].

We will regard C*(A9 E) as a subgroup of C*(A). It is actually
a two-sided ideal in C*(A), with respect to both the cup product and
Steenrod's cup-i products [9]. Since C*(£r) ^ C*(A)/C*(A, S ) (we are
using Alexander-Cech cohomology), we identify these two cochain rings.
Note that the map j * of Figure 1 is then induced by the inclusion
C*(A, E) c C*(A).

The notation introduced here will remain constant, for example, A
will always be the mapping cylinder of p : E —> B, ψf will always be
the cohomology class introduced by Thorn, etc.

Another important property of the Stiefel-Whitney classes is the
following: The Bockstein homomorphism maps the even dimensional
ones onto the odd dimensional ones (see [8], p. 195).

Finally, the map v of Figure 1 satisfies the following equations:
If x € Hq(A) and y e HP(E), then

v[m*(x) y] = ( - l ) g £ (vy)

and v[y m*(a?)] = ( — l)kQ{vy) x .

This is Lemma 1 of [7].

3 The algebraic mapping cylinder of θ. If {E, p, By S^"1) is a sphere
space, then using p : H*(B) -> H*(E), H*(E) is a module over H*(B)
with the definition x*y = (p*x)y for x e H*(B) and y e H*(E). The

* Here, for i even, we let θ operate on H*(Λ, Z2) in the obvious way.
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following is an unpublished result of A. Shapiro: If (E, p, B, Sfc~1) and
(£", pf

y B, S10'1) are (k — l)-sphere spaces over the same base space B
with the same characteristic class TFΛ, then H*{E) and H*{E') are
isomorphic as iϊ*(jB)-modules. According to W. S. Massey, this may be
proved in the following manner.

Let A be the mapping cylinder of p: E —> B and let U e C*(B) be
such that p\U e ^/ e Hk(A — E). Let M be the algebraic mapping
cylinder (see [5], page 159, Exercise D) of the map x-^xU for
x e C*(JB), that is

Mp = CP(B) x Cp'k+1(B),

and 8(xf y) = (8x + yU, - δy) for (x, y) e M.

It is easily seen that (M, δ) is a differential group. In the diagram of
exact sequences

where i(ίc) = (x, 0) and j(ίc, y) — ?/, the left square commutes and the
right square anti-commutes. We obtain the exact sequence

?-+ H*(M) - ^ > Hp~k+1(B) ~^->

where μ is the map induced by x—*xU, in other words, μ is the map
μ of Figure 1.

Now define η : Mp -> CP(A)IC*(A, E) = CP(JS7) by letting 37(0?, y) be the
equivalence class of pi (x) in CP(A)/CP(.A, E). η commutes with δ and
thus induces η* : HP(M) —* HP{E). We then have the diagram

. . . > H«-\B) - ί U H%B) — H\M) - ^ H*-*+\B) > •••

I id. \id. h?* (X) *̂

1 i i

It is easily verified that all the squares commute except the square
marked " 0 " , which anti-commutes. By the five-lemma, Ύ]* is an iso-
morphism onto.

We now make M into a module over C*(J5) by the definition

x(v, w) = (α?v,(— l)pcι?^)

for α? e CP(B) and (ι?, w) e M. It is easily verified that 8{x(v,w)} =
(δx)(v,w) + (-l)pxδ(v,w) and thus H*{M) is an #%B)-module. For
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x e H*(B) and y e iϊ*(M), we have Ύ)*{xy) = (p*a00?*2/)> that is, η*
preserves the module product. Consequently H*(M) and H*(E) are iso-
morphic as iJ*(i?)-modules.

Now suppose U' is any other representative for Wk. Then the
maps x—>xU and x —>xUf are chain homotopic, and it is easily seen
that both algebraic mapping cylinders have isomorphic cohomology as
iϊ*(i?)-modules. Consequently, both H*(E) and H*(E') are isomorphic
as iί*(ί?)-modules to £Γ*(M), where M is the algebraic mapping cylinder
obtained from any representative for Wk.

We remark that it is misleading to say that "H*(E) depends only
upon H*(B) and the characteristic class Wk." It is possible to give
examples of polyhedra Bx and B2 such that their integral cohomology
rings are isomorphic, and then construct 1-sphere bundles (E19 plf Bλ S

1)
and (E2, p2, B2 S

1) such that the characteristic classes of the bundles
correspond under the isomorphism, yet H*(Elf Z) and H*(E2, Z) are not
isomorphic. The reason is that H*(Blf Z2) and H*(B2, Z2) are non-
isomorphic, hence the mod two Gysin sequences are non-isomorphic,
and H*(ElfZ2) and H*(Elf Z2) and H*(E2, Z2) do not have the some
additive structure.

The theorems that follow concerning the cohomology ring of the
total space E will be obtained by introducing a multiplication in the
algebraic mapping cylinder and proving that under certain circumstances
the map rf (or rather, a similar map) is a ring homomorphism. For
simlicity, we will work with the cochains of A instead of B.

4 Adjusted triples and the multiplication in the mapping cylinder.
We wish to define a bilinear function (product) from Mp x Mq into
Mp+q which obeys the familiar coboundary formula

δ(α β) - (8a) β + ( - iya . (8/3)

for a e Mp and β e Mq. The problem may be simplified by observing
that if (x, y) and (v, w) are elements of M, we require that

(x, y) (v, w) = [(x, 0) + (0, y)] [(v, 0) + (0, w)]

= (x, 0)(ι;, w) + (0, y)(v, 0) + (0, y)(0, w).

Thus we divide the problem into three simpler ones for each of these
products we require that the coboundary formula holds. Furthermore,
we know what the first product should be, for we want to preserve
the module structure. Thus we want (x, 0)(v, w) = (xv, (— T)pxw) for
(x,o) e Mp. By a careful study of the last two products, we arrive at
the following definitions.

DEFINITION 4.1. An adjusted triple (U, W, N) for the sphere
space (E, p, B, S10'1) is a triple of coohains of A for which:
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( i ) U 6 ^ e Hk(A - E),
(ii) W is a cochain representing wΊc-ι,
(iii) 8N = *7 wxϊ7 - T7ί7, Ne C2k~\A, E),

(iv) 8w = \° i f k ίs e v e n

\-2U if k is odd.

DEFINITION 4.2. Let (U, W,N) be adjusted and let M be the
algebraic mapping cylinder of the map x—>xU. For (x,y) e Mp and
(v, w) e Mq, we define

(x, y) (v, w) =

(xv + ( - iy^y{U^xv) + ( - l)p+kq+k+1y[(wU) ^2U] +

( - lYxw + ( - l)kqyv + ( - l)k^k+1^y(w ^JJ) + ( - l ^

We will now prove two propositions which will justify the above
definitions.

LEMMA 4.3. For any sphere space (E, p, B, S*'1), there exists an
adjusted triple (U, W, N).

THEOREM 4.4. The product of Definition 4.2 is a bilinear function
from Mp x Mq to Mp+q for which δ[(x, y){v, w)] = [δ(x, y)](v, w) +
[ ( - l)p(x, y)]δ(v, w). Consequently a product HP{M) x Hq(M) -> Hp+q(M)
is induced. In addition, the additive isomorphism η* : HP(M) —• HP(E)
induced by η : Mp —> CP(A)ICP(A, E) where Ύ](x, y) is the equivalence
class of x in CP(A)/CP(A, E), preserves products.

We prove Lemma 4.3 first. Suppose k is even. Let W be any
cocycle representing w^^ and let U be any cocycle representing
^/ € Hk(A - E). By equation (2.2), U^XU and WU represent the
same element of H2k'\A — E). Thus there is a cochain N in C*(A, E)
for which 8N = U'^XU - WU.

Now suppose that k is odd. It is known that in this case, if
Δ:H*-1(A,Z2)-+IP(A,Z) is the Bockstein homomorphism, then Δ(wfc_2) =
wk — —wk. Let ί ί e ^ e Hk(A — E). If W1 is any integral cochain
representing wk-19 then there is a cochain R e C*(A) for which 8Wι=
-2U+8R, whence (SW^U = 2U2 + (8R)U. From (2.2) we see that
U^U= W1U+8N1 + 2Q for some ΛΓ\Q e C*(A, JE7). Taking the
coboundary, we get -2C72 = ( δ ΐ ^ t / + δ(2Q) and so δ(2Q) = δ(-RU),
that is 2Q + ^ί7is a cocycle of C*( l̂, E). Since the map<9 of (2.1)
is an isomorphism, there is a cocycle X of C*(A) and a cochain
S e C*(A, # ) for which 2Q + RU = XU + δS. Consequently f ^ t / =
(W1 + X — R)U + 8(Nλ + B). By taking cohomology classes, we see
that W1 + X - R represents wk-lf and (U, W1 + X - R, N1 + Ξ) is
adjusted. This completes the proof of Lemma 4.3.
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To prove Theorem 4.4, we note first that the product is clearly
bilinear, since the cup product and the cup-ϊ products are. To prove
the coboundary formula, we compute

δ[(x, y)(v, w)1 = (8(xv) + (-l)
+ (-ΐ)»+k< <I+»B(ywN) + {-lyxwU + (-ifoyvU + {-ly+

and

[δ(x, y)Jv, w) + ί(-iy(x, y)Wv, w) = (δ* + yU, -Sy)(v, w)
+ (-l)v(x, y)(Sv + wU, -Sw)

= ((8x + yU)v + (-ly+^i-SyXU^v) + (-iy^"^(-8y)[(wU)
(-iy*\8x + yU)w + (-iy>(-Sy)v

wU) + {-iy+q+ιy(U^lhv + wU])

Thus the difference of the first components is

- yϋv

Sv + wU)) + (-
+ (-iy«y(δw)N.

We now use the formula

(4.5) Sfa-,?) = (-ly^-'u^-t^v + {-ly^v—^u + (δίt)wtί>

+ (-1)%—^

for «. a p-cochain and v a g-cochain (see [9]), and a formula due to G.
Hirsch [6],

(4.6) (uv)-^,w = u{y ~ΊW) + (

where v and w are g- and r-cochains respectively. Thus

Also,
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N) + (~l)kq+1y{(8w)N

u- WU)} .

Consequently the difference of the first components is seen to reduce to

Since

+ ((δw; C/)-2C/} ,

this difference becomes

which is zero by the formula of G. Hirsch.
On the other hand, the difference of the second components of the

two expressions is

(-l)pyUw

But

iU + (~l)qwU

and

δ(ywW) = (δy)(wW) + (-iy+k+1y[(Sw) . W+ (-iy+k+1w(8W)] .

Thus this difference reduces to

ywll+ (-l)k+1yw8W] = 0 ,

since δT7= 0 for fc even and δW = -2U for k odd.
Thus the cochain formula holds and a product is induced on the

cohomology level. Since C*(A, E) is an ideal in C*(Λ), and since U and
iV are in C*(A, S), we see immediately from the definitions of η and
the product that η* preserves products. This completes the proof of
Theorem 4.4.
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We remark that the product of Definition 4.2 is not associative,
though, of course, the induced product on the cohomology level is.

5 The invariant P. We now define, when k is odd, an invariant
P' of the (k—l)-sphere space (E, p, B, S70'1), which is an element of
H2]C~2(A, Z), and its image P = pf-\P') e H2Jc~2(B, Z). P ' and P will be
called the P'-invariant and the P-invariant, respectively, of the sphere
space.

Let (U, W, N) be an adjusted triple. A straightforward com-
putation, using equation (4.5), shows that W2 + W^Ί(S W) — AN — U^2U
is a (2k — 2)-cocycle. We define P ' to be its cohomology class in
H2k~2(A, Z), and P = pf-\P').

THEOREM 5.1. Let (E, p, B, Sk~λ) be a sphere space for which k is
odd, and let (U, W, N) and (£/', W',N') be adjusted triples for this
sphere space. Then W2+ W^1(8W)-iN-U^2Uand W'2+ W'^tfW')-
4iV'— U'^JJ' represent the same element of H2k~2(A), and consequently
P' is independent of the choice of nice triple made in its definition.

This theorem, which states that P is an invariant of the sphere
space, is proved with the help of the following lemma.

LEMMA 5.2. Let k be odd, and let (U, W, N) be an adjusted
triple. Then (Uf, W',Nr) is an adjusted triple if, and only if, there
exist βeCk-\A, E), yeCk~2(A), ψeCk-2(A) a cocycle mod 2, and pe
C*k~2(A, E) a cocycle, for which

U' =U+Sβ,

W = W - 2/3 + 8(φ + 7) ,

and

Nr = N + β^JJ' - U^J3 -(φ + Ύ)U' + β2 - Wβ + p .

We first prove that if (U, W,N) and (17', W, N') are adjusted,
then there exist β, γ, φ, and p with the stated properties. Since ί7and
U' both represent ^/, there exists β e Ck-\A, E) for which U' = U + Sβ.
Now δW = -2U' = -2(U + 8/3) = δW - δ(2β), or W - W + 2β is a
cocycle. Let a' = W — W+2β. Taking cohomology mod 2 in A,
(denoted by brackets) we see that 0 = \W' - W] = [2/5 - α'] = [α'].
Thus there exist yeCk'2(A) and aeCh~\A) for which a' = δ(y) + 2a,
and δa = 0. Then W = W + 2(a - β) + δy. Now

δ(N' -N)= U'^JJ' - U^JJ + WU - W'U'

= (δβ)^U + U^(δβ) + (δβ)^(δβ) - 2(α -β)U

~δ(yU) - W(δβ) - 2(a - β)δβ - δ(yδβ) .



1200 D. G. MALM

Using equation (4.5), we have

2βU - 2Uβ .

Consequently

B(N' -N) = B(β^U - U^β) - B(Wβ) -f- (Sβ^iSβ) - 2aU

-B(yU) - 2a(8β) - S(γ8/3) + 2βSβ .

But since (8/3)^(8/3) = 803^(8/3)) - βBβ + (8β)β, we have

B(N' -N) = 8{β^,U - TJ~β - Wβ - jU + /92 - j8β + β

-2aU'

- yU' - Wβ + /S2} - 2aU' ,

which states that 2aU' is a coboundary of C*(A, E), since N', β, U', U,
and N are in C*(A, E). Since θ of (2.1) is an isomorphism, this means
that there is φeC*-"(A) such that 2a = Bφ, and -2aU' = -B(φU').
We then have

B(N' - N) = Siβ^U' - U~J3 - jU' -Wβ

This gives the stated result immediately.
Now suppose (U, W, N) is adjusted and β, γ, φ, and p have the

stated properties. Then clearly U' represents ψs and W represents
«;„-,. Also 8 W = BW- 28β = -2U - 28β = -2U'. Finally,

SN' = U^U - WU+ Biβ^U') - BiU^β) - B(φ + y)U' + βBβ

+ (Sβ)β - WBβ + 2Uβ

= U^JJ - WU' - 8(φ + f)U' + (δ/SJwjE/ ' + βϋ' - U'β

+ U^Bβ -~Uβ + βU+ βBβ + (8/9)/? + 2Uβ

= U'^U' - WU' - B(φ + i)U' + 2βU'

= U'~ JJ' - W'U' .

Consequently (Ur, W', N') is adjusted. This completes the proof of
Lemma 5.2.

We now prove Theorem 5.1. Let (U, W, N) and (Ur, W',N') be
adjusted triples related by β, γ, φ, and p as in Lemma 5.2. Let

a = W* + W^(BW) -4N- U^U

and

a' = W'2 + W'—^BW') - AN' - U'^U' .

Then

a' -a= Wn- W2 + W'^JiδW) - W^Ί(8W) + 4(N - N')
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Since U^2U and Ur^-2U
r both represent wft_2^', we may let 8z =

U^JJ - U'^2U
r, for some zeC*(A,E). Then it is easily verified,

using Lemma 5.2 and equation (4.5), that

a' - a = - ± p + 8{z - (<p + γ)-1(2C/') + W\Ψ + γ)

-{φ + 7)δ(φ + 7) + (φ

Thus, taking cohomology in H*(A), we have [a' — α] = [—4^]. But
is a cocycle of A — E and thus for some XeH*(A) we have [p] =
where the cohomology class of p is here taken in H*{A — E). Con-
sequently, now taking cohomology classes in H*(A), we have [—4/?] =
—A(Xwk) which is zero since 2wk — 0. This completes the proof of
Theorem 5.1.

We now turn to some properties of P. We shall prove the follow-
ing theorem:

THEOREM 5.3. Let k be odd, and let {E, p, B, Sfc"\ SO(k)) be a (fc-1)-
sphere bundle, with B a finite polyhedron. If H2k~2(B, Z) has no
elements of order two, then P = P2fc-2, the Pontrjagin class in dimension
2k-2.

The hypothesis that the fibre space admit SO(k) as structural group
is needed in order that the Pontrjagin class be defined.

The proof of this theorem requires several lemmas and the use of
the universal Gysin sequence.

We recall [8] that given any topological group G, there exists a
universal principal G-bundle (EG, p, BQ, G, G) which has the following
property:

Given a polyhedron B, any principal G-bundle over B is isomorphic
to the bundle induced by some m a p / : S - > 5 β . BG is called the classi-
fying space for G.

Suppose now that Go is a closed subgroup of G. The following
lemma is proved by H. Cartan in [3], expose 7.

LEMMA 5.4. If (E, p, B, G, G) is a principal G-bundle, and π: E/Go ->
E\G — B is the natural projection, then (EjG0, π, B, G/Go, G) is a fibre
bundle which is associated with (E, p, B, G, G), where G operates on G/GQ

in the natural way.
It is known that if (EG, p, BG, G, G) is a universal principal G-bundle,

and Go is a closed subgroup of G, then in the associated fibre bundle
{EG\GQ, π, B, G\GQ, G) given by Lemma 5.4, the total space EoIG0 is of
the same homotopy type as the classifying space BQQ. For a proof, see
[7], Lemma 6. Taking G = SO(k), Go = SO(k - 1), we have G/Go = Sk'\

We will call (BS0{k_Ό, π, Bsoa), Sk~\ SO(k)) the universal (k - 1)-
sphere bundle. It has the following pleasant property: Any bundle
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(E, p, B, Sfc~\ SO(k)) is isomorphic to the induced bundle f~\BSo{Ίc-i)j π,
Bsow S*'1, SO(k)) for some map f:B—*BSOw This follows from the
fact that the operation of taking induced bundles and of taking associated
bundles commute. This is easily proved if one uses the definition of
"induced bundle" am} "associated bundle" in terms of the coordinate
transformations ([8]).

LEMMA 5.5. Let (£", p\ B', Sk-\ SO(k)) be a (k - l)-sphere bundle,
with P-invariant βr, and let (E, p, B, S*~\ SO(k)) be the bundle induced
by f:B-+ B', with P-invariant β. Then f*(β') = β.

Proof. Let F:E—>E' be the map of the total spaces correspond-
ing to / , so that the following diagram is commutative:

F
E > E'

\v \v>

B -^-> B'

This diagram may be imbedded in a commutative diagram

E -iU E'

B JU B'

where A and A! are the mapping cylinders of p and pf respectively,
and i and V are inclusion maps. A is a quotient space of (E x I) U B,
where I is the closed unit interval, and similarly for Af. Letting square
brackets denote equivalence classes in the quotient spaces, ^~ is defined
by

^~[(x, t)] = [(Fx, t)] for x e E, t e l ,

and

= [/δ] for beB.

Also i(e) — [(β, 0)] for ee E. It is easily verified that j^~ is a continuous
function and the diagram commutes. Let ^ ~ * : C*(A')—*C*(A) be the
cochain homomorphism induced by j^~ .

Passing to the cochain level we have the commutative diagram
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(E) J^- C*(E')

C*(A')

'J* p ' l\ |

C*(B)< C*{B )
Figure 2

where pQ:A—>B and p[: A! —> Bf are the projections.
Now let (U', W, N') be an adjusted triple for (Ef, p\ B\ S*-1). Let

U=J*r*(U'), W=jr\W), and N=JT*(N'). Clearly jT~#(C*(A', E'))c
C*(A, E). Since the Stiefel-Whitney classes and Thorn's class ^/ are
preserved by / (or ^~), we see that (U, W, N) is an adjusted triple
for (.£7, p, 5). A representative cocycle for the P'-invariant of (£", p', B')
is Wn + W'^δW - 4iV' - U'^>2U', under .^" # this goes into W2 +
W ^ΊSW — &N — U^"2U, a representative cocycle for the P'-invariant of
(E, p>B). Consequently f*(βf) — β, in view of the commutativity of
Figure 2.

The following two lemmas together imply Theorem 5.3.

LEMMA 5.6. Let k be odd, and (E, p, B, Sk-\ SO(k)) a (k — l)-sphere
bundle, with B a finite polyhedron. Using the rationale or the integers
mod n, n odd, as coefficients for cohornology, P = P2k-^ the Pontrjagin
class in dimension 2k — 2 with rational or mod n coefficients.

LEMMA 5.7. Let G be a finitely generated abelian group with no
elements of order two. Let aeG be such that for each odd integer n
there is an aeG for which a = na. Then a = 0.

We omit the proof of Lemma 5.7, which is quite simple.

Proof of Lemma 5.6. In view of Lemma 5.5, it suffices to prove
Lemma 5.6 for the universal (k — l)-sphere bundle (B8(Kk-1)f π, Bso(k),
Sk'\ SO(k)).

Since the base space B of our bundle is a finite polyhedron, we
need only use an ^-universal bundle for sufficiently large n. For this
bundle, the base space may be chosen to be compact (see [8], Section
19), and we may use Alexander-Spanier cohomology with compact
supports.

Let Wk be the characteristic class of this bundle, thus Wk e Hk(BS0(k^),
and let Wk^(k — l)eHk'\BS0Ck^) be the universal Euler-Poincare class
(for the cohomology of the classifying spaces see the article by A. Borel
[1] for a review of the results we need, see the article by W. S.
Massey [7]). Since k is odd, 2Wk = 0 and Wk = 0.

Choose (£7, W> N) adjusted for this sphere bundle and let M be the
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algebraic mapping cylinder associated with this adjusted triple, with a
multiplication defined as in §4. We then have the following commuta-
tive diagram of exact sequences, where all the vertical arrows are
isomorphisms onto (the square marked " (g)" anticommutes). The
notation is that used previously.

0 — H*(A) — H*(M) — H«-k+\A) -ί-> 0

lid. L* ® lid.

0 _L* H«(A) — JΓ*(JW-o) — ffβ"*+1(A) — 0

Fig. 3.

In what follows, an integer w is to be taken as wα> or wo/ if the
coefficients are the rationale or the integers mod an odd integer respec-
tively. Here, ω is the unit of C*(A, rationale), ωΫ is the unit of
C*(A, Z2m+1), and n is n reduced mod 2m + 1.

We note that (W, 2) is a cocycle of Mk~ι and compute that (W9 2)2=
(W2 - (δ T Γ ) ~ i ^ + 4.t^w2U - AN, 0). Since (δ T P ) ^ TF = δ( W^x W) -

we have

(W, 2)2 = (Z + 5C7— 2U - 8 ( ^ 1 7 ) , 0)

where Z = TF2 + PF^^S PP) — 4JV — U-^JJ is a representative cocycle
for the invariant P' e H2k~\A). Since U is a coboundary, hU^JJ m and

ΐ*(P') = [(PΓ, 2)2] 6 ff»-a(Af) ,

where the square brackets denote cohomology classes. Thus m*(P') =
ft*i*)(P')=?*[( W, 2)^*[( PF, 2)]-[PF] 2 6 iP-XZW-υ), and (TΓ* O ̂ " ^ 0 =
[PF]2, or π*(P) = [PF]2. We now need the following lemmas.

LEMMA 5.8. With integral coefficients, ψ{Wk-.x(k — 1)) is twice a
generator of H°(BsoCk:>).

LEMMA 5.9. With integral coefficients, τr*(P2fc_2) = (Wk^(k — I))2.
For proofs, see [7], Lemmas 7 and 8.
Thus, using the rationals or the integers mod an odd integer for

coefficients, we have π*(P2fc_2) = {Wh-λ(k — I))2. Now TΓ* is an isomorphism
and we complete the proof that P=P2k-2 by showing that {Wk-X{k—I))2=

[PP7.
By Lemma 5.8, we may choose e = ± 1 so that v{eW1c-1{k — 1)) =

-2eH°(A). But v([WJ) = -j*[(PF, 2)] = - 2 . By exactness there is a
ί/e Jff*(A) such that eWk^(k - 1) = [W] + m*(y). Multiplying by [W]
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and eWk-xik — 1) respectively, we get

εW^k - 1)[W] = [WY + m*(y)[W]

and

(Wk^(k - I))2 = εWt-AJc - 1)[W] + m*(y)εWk^(k - 1) .

Together these give us

- (Wk^(k - l)f = -m*(y)([W\ + εW^k - 1)) .

We now apply v to this equation, remembering that [WY and Wk-ι(k —
are in image m* = kernel v. Then

0 = -yv([W] + eWt-άk - 1)) = Ay .

Thus y = 0 and (TΓ^A; - I))2 -
It is possible to prove the following theorem, which immediately

implies Lemma 5.6.
If k is odd, and (E, p, B, Sk~1

t SO(k)) is a (k — l)-sphere bundle
with Wk = 0 and B a polyhedron, then P — P2k-2, the Pontrjagin class
in dimension 2k — 2.

This is a direct consequence of Theorem IV of [7]. It is only
necessary to prove that P is Massey's invariant 4α + β2, which can be
done by a computation in the mapping cylinder.

According to W. T. Wu [12], for a (k — l)-sphere bundle, if ^ 2

denotes the Pontrjagin squaring operation, then

reduced mod 4. If (U, W, N) is adjusted for the sphere bundle,
W2 + W^Ί(δW) represents ^2(^ f c-i) a n d U^2U represents w^^w^.
Consequently,

P = P2ic-2 reduced mod 4 .

Let (?£_! denote the group of all homeomorphisms of S*™1, and BGCJC^O

the classifying space for Gk-λ. It would be of interest to know whether
the invariant P comes from a cohomology class in H2lc~2(BG ).

6* The main theorem for k odd* In this section we assume that
k is odd and (E, p, B, S*'1) is a (k — l)-sphere space. We consider the
effect of dropping the conditions that N and U be in C*(A, E), where
(U, W, N) is an adjusted triple for (E, p, B, S*"1). A check of the proof
of Theorem 4.4 shows that the product of Definition 4.2 still induces
a product in the mapping cylinder. However, in general rj* no longer
preserves products. To retrieve (in part) this property of rf we add a
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requirement that U, W, and N be connected with the invariant P\
Before stating the main theorem we require several lemmas.

LEMMA 6.1. Let Ue_wkeH*(A), Ze P'eH2Jc-2(A), and let W be
any integral cochain representing w^ for which SW = — 2U. Then
there exist NeC2k-2(A) and QeC2k~\A) for which

4JV + SQ = W2 + W^(S W)- Z - U^2U .

Proof. Let (£/', W, N') be adjusted, and let Z' = W'2 + W'^a(8W)
— 4JV' — U'^JJ, a representative cocycle for P\ Then there are
cochains a, β, and γ for which U = Uf + Sβ, W = W + Sy - 2β, and
Z = Z' + δα. Let

N= Nf - W'β + β^JJ' + β2 - U'^β

and

Q = -γw^P' ) - 2 1 ^ ^ - 2(δγ)w^ - a

A straightforward computation of 4iV + SQ completes the proof.
We now prove a similar lemma for the cochains of B instead of A.

The fibre space (A, pQ, B, ά-cell) has a cross section s : B —• A. On the
cochain level we have

C*(S) ί=b C*(A)
0

with s* o pi the identity.

LEMMA 6.2. Let Ue WkeHk(B), ZePeH2k~\B), and let Wbe any
integral cochain representing W1c-1 for which SW — —2U. Then there
exist NeC2k'2(B) and QeC2k-\B) such that

4JV + SQ = W2 + W-Ί(δW) - Z - U^2U .

Proof. PoU,ptW, and p\Z satisfy the conditions of Lemma 6.1.
Let JV' and Qf be the cochains of A given by Lemma 6.1, and N =
Q - s*Q'. Then

4JV + SQ = s*(4iV' + δQ') - (sψQW)2

-Z- U^2U.

We remark that since 4SN = 4,(11^,11.- WU) we have SN =
^ - T î7. Also, if JV, Q and JV', Q' satisfy Lemma 6.2 or Lemma
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6.1, then N — N' is a cocycle and 4(JV — Nf) is a coboundary, for
4(N - N') = 8(Q' - Q).

LEMMA 6.3. If (Uf, W, Nf) is adjusted, and if (U, W, N) is as in
Lemma 6.1, there exist cochains β,j, and a cocycle TeC2k~2(A) such
that 4Γ is a coboundary, U = U' + δβ, W = W + δγ - 2β,

and N=N' - W'β + β^U' + β2 - U'^λβ - (δy)β

<γU' + T.

This follows directly from the proof of Lemma 6.1 and the above remark.
Now let U, W, and N be any cochains of B which satisfy Lemma

6.2, and let M be the algebraic mapping cylinder of the map x—*xU,
with a product given by Definition 4.2. We then have a product in
H*(M). For the remainder of this section, we will use square brackets
to denote the natural map C*(A) -> C*(A)IC*(A, E) - C*(E). The main
theorem follows.

THEOREM 6.4. There exist η: Mp —> CP(E) an allowable homo-
morphism and a cocycle TeC2]c~2(B) such that 4T is a coboundary
which have the property that if (x, y) and (v, w) are p and q-cocycles,
respectively, of M, then

(6.5) η{(x, y)(v, w)} - φ, y)η{v, w) - [(-l)*+β+1j%wΓ)] + δX

for some cochain X of E.

Proof. The homomorphism rj is defined as follows : Choose (£/', W,
N') adjusted. We apply Lemma 6.3 to p\U, p\ W, ptN to obtain β e Ck~\A)
for which ptU= U' + δβ. Define η(x, y) = [ptx + p\{y) β] for (x, y) e M.
Then

δη(x, y) = \δplx + {δpl(y)}β +

- [ptδx + p%δy)β + p\{y)(pW - U')} ,

while

yδ(χ,y) ==7}(δx + yU, -By)

(vlv){vW) + Pl(-δy)β].

Since —δy = δy and Uf e C*(A, E), η o 8 = δ o η and η is allowable.
Let Γ = η{(x, y)(v, w)} — η(x, y)η{v, w), where (a?, y) and (v, w) are

p and g-cocycles respectively of M. Then

Γ = [(-ly^pKyM
w N) + {-l)vp\{yv)β

w W)β - (ply)β(Φ) - (ply)β(plw)β] .
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We now replace ptU by Uf + δβ. Note that all terms involving Uf

drop out, for C*(A, E) is an ideal. For simplicity, we write x' — pt(x),
etc. Then

Γ = [(-1ΓVPM + (
+ (-ly^ψw'pKN) + (-l)py'v'β

+ (-l)p+q+1y'w'pl(W)β + (-l)p+1y'βvr + (-Ϊ)p+q+1y'βw'β] .

Now

Since δv = -w?7, δ(pjt ) = ~p\wpW = -w'U' - w'hβ. Thus

and

Γ - [(-lϊ^Yί/Sw^δ/S)} + (-l)"+V{(wf

(-l)p+q+1y'βwrβ] + coboundaries ,

for yf is a cocycle and ( — l)p+qyrδ(β^1v
f) a coboundary. It is easily

checked that

(-I)p+q+1y'βw'β - (-l)Vδ
+ (-1)P+V{(δ/SJw^}^ + ( - l ^ ^ V ^ .

From Lemma 6.3 we have pt(W) = W + δγ — 2/3. From these we get

r = K-iy+wίβ^Ίi

+ (-iy+*+yw'(W + δγ - 2β)β + (-ly

+ (-ϊ)p+1y'{(δβ)^ΊW'}β + (~iy+q+1yfw'β2] + coboundaries .

Since

we have

r = [(-ly+'y'tf^Ίiβ)}

+ (-iy+«+yw'pl(N) + (-iy+q+1y'w'(W + δy)β

+ ( — iy+*y'w'β2 + (-I)p+Iyfδ{wf^1β}β] + coboundaries .

Now
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and thus

Γ = (-l)*+*+y {(w'δβ)^J3} + (-iy+(1+1y'w'(W' + δy)β

+ (-l)p+ψw'β2 + {-iy+1y'δ{w'^>β}β

+ ( - i r g + W { - W'β + β2 - (Sy)β + β^Ί(δβ) +

+ coboundaries, where we have used Lemma 6.3 on pl(N) .

Thus

r = i(-iy^+γ{(

+ (-ly+t+ψw'iβ^-Ίδβ) + (-iy+Q+1y'w'T] + coboundaries .

But

(-ly+ySlw'^^β - {-iy+1y'8{(w'^J3)fi} + (-ly^y'iw'^

and so

r = κ~iy^ψ {{w'S

+ (-ly+t+yw'iβ^Ίδβ) + (-ly+'+yw'T] + coboundaries

- [(-ly^ψ{(w'δβ^fi + (w'^J3)8β + w'tf^δβ)

+ (-iy+q+1y'w'T] + coboundaries .

By Hirsch's formula 4.6,

Γ = [(-ly+^y'w'iβ^δβ + (δβ)^J3} + (~iy+q+1yfw'T]
+ coboundaries .

Since δ(/9w^) = β^δβ +

Γ = [(-l)s+«+1j/VΓ] + coboundaries .

In view of the fact that pj o s# is homotopic to the identity, we
have

Γ = [(- l^+^^d/ws Γ)] + coboundaries

as asserted. This completes the proof of Theorem 6.4.

REMARK 6.6. The following diagram commutes except for the
square marked " ® " which anti-commutes.

-̂> H%B) - ^ > H*(E) - ^ > i ϊ g - f c

ΐίd. ΐίd. ]y* ® ΐΐd.

Thus by the five-lemma, Ύ]* is one-to-one and onto.
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Proof. Let xf exeH*(B). Then (xr, 0) represents i*(α?) and
represents η*i*(x). It also represents p*(x). For the other square, let
{x, y)ezeH*(M). Then y represents j*(z), and [pjx + (ply)β] represents
η*(z). Referring to Figure 1, ψ = p * - 1 ^ * . . Now δ{pS(αj) + (^)/8} =
Pt(~yU) + vl{y)δβ = — (PSI/) Ef' Thus 0H*)O) is represented by —y.

From equation 6.5 we see that if H2ΪC~2(B) has no elements of order
two, rf : Hq{M) —> Hq(E) is a ring isomorphism.

THEOREM 6.7. Let (E, p, B, S*'1) and (£", p\ B, S*-1) 6e

(orientable) (k — l)-sphere spaces over the same (compact) base space
with k odd. Suppose H2Ίc~2(B, Z) has no elements of order two. Then
if the sphere spaces have the same P-invariant and the same Stiefel-
Whitney classes Wk and Wk-ly their integral cohomology rings are
isomorphic.

To prove this, we observe that both cohomology rings are isomorphic
to the cohomology of the mapping cylinder M of Theorem 6.4.

If the rationals or the integers modw, n odd, are used as coefficients
for cohomology, then η* is always a ring isomorphism since H2k~2(B)
will have no elements of order two. Consequently the cohomology ring
with these coefficients of a sphere space is always given by Theorem
6.4.

7 The case k even. In this section we suppose (E, p, B, S*'1) is
a (k — l)-sphere space, with k even. Suppose VeC^2(A) is any integral
cochain representing wfc_2. Then for some W, 8V = — 2W and W
represents Ww Let Uewk. Then VU and U^2U both represent
WJC-ZWK and so VU + U^2U is a coboundary mod 2, i.e., there exist N
and Q cochains of A for which

2N+SQ= VU+ U^2U .

From this it follows that 8N = U^-JJ - WU. If also 2N' + δQ' =
VU + U^-2U, then JV — N' is a cocycle and 2(ΛΓ — N') a coboundary.

LEMMA 7.1. Let (U, W, N) be adjusted for the sphere space
(E, py By S*-1) and let V be an integral cochain representing wfc_2 for
which SV == —2W. Then there exist a cocycle Ye Cfc~2(A) and a cochain
Xe C2k-2(A, E) for which

VU + U^2U -2N= 2YU +SX .

Proof. We first remark that it is possible to find such (U, W> N)
and V. One chooses V to be any integral cochain representing wfc_2 and
defines W by 8V = —2W. Then W represents w^x. Choose Ue^re
H*(A - E), and Ne C2U-\A, E) .such that SN - ϋ^JJ - WU. Now let
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b = VU + U^2U - 2N. Then 6 e C2fc~2(A, E) and it is easly seen that
b is a cocycle. For some x,ye C*(A, E), U^JJ — VU + 2x + 8y since
ί7^2C/and Fί/both represent wk^/ mod 2. Thus b = 2(Fί7+ a? - N) + δy.
Since 6 is a cocycle, FΪ7 + a? — JV is a cocycle of C*(A, E). The map 0
of (2.1) is an isomorphism, consequently there is a cocycle YeCk~2(A)
and a cochain Z e C2fc~2(A, E) such that Ft/ + x - N = YU + δZ. Then
b = 2YU + δ(2Z + y).

The following crucial lemma may be interpreted as giving a standard
form for the cochains N described in the opening paragraphs of this
section.

LEMMA 7.2. Suppose U is any representative cocycle for wh, V is
any cochain representing wk-2, δ F — — 2W, so W represents wk-lf

NeC2k~2(A), QeC™~\A), and 2N + δQ = VU + U^2U. Suppose also
that ([/', W',N') is adjusted, V represents wk-2, and δV = -2W.
Let X and Y be chosen by Lemma 7.1 so that V'U' + U'^JJ' - 2Nr =
2YU' + δX. Then there exist β, a, γ, and T, cochains of A of degrees
k — 1, k — 2, k — 3, ami 2k — 2 respectively so that T is a cocycle, 2T
is a coboundary, U = U' + δβ, W = W + δa, V = V + δy - 2a, and

N - N' - aδβ - aUf + (δβ)^2U
r + β^λ(δβ) + β2 + W'β+yU' + T .

Proof. The existence of a, β, and γ so that the first three equa-
tions are satisfied is trivial. To prove the lemma it is only necessary
to verify that

2(JV' - aδβ - aU' + (δβ)^2U
f + β^δβ) + β2 + W'β + YU') + δQ'

for some cochain Qr. We choose

Q' = ΎU' + V'β + yδβ + (δβ)^U' + β^2(δβ) + β^β + X.

The computation is omitted since it is straightforward.
For the next theorem, we return to the cochains of the base space

B. We suppose Ue Wke Hk(B), V is a cochain representing Wk-2e
Hk-\B, Z2), and δV =- -2W. Then W represents W^eH^B). We
obtain N and Q in C*(B) for which 2N + δQ = VU + U^2U. Let M
be the algebraic mapping cylinder of the map#—>xU ΐoτ xeC*(B),
with a product given by Definition 4.2. This product satisfies the
coboundary formula and induces a product in iJ*(ikf). We will use
square brackets to denote the natural map C*(A) —> C%A)/C*(A, E).

THEOREM 7.3. There exists an allowable homomorphism η: Mp —>
CP(E) and a cocycle TeC21ΰ'2(B) for which 2Γ is a coboundary with the
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following property: If (x, y) and (v, w) are p and q-cocycles, respec-
tively f of M, then

(7.4) η{(x, y)(v, w)} - φ, y)η{v, w) = [(-l)ppt(y w Γ)] + δZ

for some cochain Z of E.

REMARK 7.5. The following diagram commutes except for the
square marked "(g)" which anti-commutes:

\ ) ί U H%B) -£-> H%M) —^U H*-\

ltd. \id. U * ® lid.

(B) £ ^ E ^ H(

Consequently, by the five-lemma, 27* is one-to-one and onto.
To prove Theorem 7.3, we first choose {Ur

f W, N') adjusted and
obtain Xand Ffrom Lemma 7.1. Then apply Lemma 7.2 to obtain a, β, 7,
and T for which p\U = U' + 8β, p\W = W + δa, p\V = V + δγ - 2α,
and

'=N'-aδβ-

Define, for (x, y) in M,

η{x, y) =

Then η is allowable, i.e., δη — ηδ.
The remainder of the proof is omitted, as it is a tedious computa-

tion similar to the proof of Theorem 6.4. The proof that the diagram
of Remark 7.5 commutes has been given in the proof of Remark 6.6.

From equation (7.4) it follows that if H2k~2(B) has no elements of
order two, rf is a ring isomorphism.

THEOREM 7.6. Suppose (E, p, B, S*-1) and (£", p', B, S16"1) are two
(orientable) (k — l)-sphere spaces over the same compact base space with
k even. Suppose H21c~\B, Z) has no elements of order two. Then if
the sphere spaces have the same Stiefel-Whitney classes Wk, Wk^.19and
Wk-2, their integral cohomology rings are isomorphic.

This follows because both cohomology rings must be isomorphic to
the cohomology ring H*(M).

The following theorem generalizes a result of R. Thorn ([4], expose
17, Theoreme 3).

THEOREM 7.7. Suppose (E, p, B, Sfc~x) is a (k — l)-sphere space, for
k even. Using the rational numbers or the integers mod n, n odd, as



CONCERNING THE COHOMOLOGY RING OF A SPHERE BUNDLE 1213

coefficients for cohomology, the cohomology of the base space and the
characteristic class Wk determine the cohomology ring of the total
space E.

Proof. WIC-1 = 0 since 2Wk-1 = 0. Let U be any representative
cocycle for Wk e Hk{B), and let M be the algebraic mapping cylinder of
x —*xU, for xeC*(B). We introduce a multiplication in M by choosing
W = 0 and N = i(U^2U) or, specifically, the multiplication is defined
by

(x, y)(v, w) - (xv + (-ly^yiU^v) + (-l)p+1y{(wU)^2U}

+ (~l)pywi(U^2U)y {-lyxw + yv + ( - l ^

for (as, 2/) e Mp and (v, w) e Mq. Since H{U^2U) = U^-JJ, this multiplica-
tion induces a multiplication in iΓ*(M).

Let [/' e ̂  e ίP(A - £7). Then for some /3 e C*~\A), p\U= U'+8β.
Define η:Mp->Cp(E) by >?(#, i/) = [p\x + (i#)/S]. Then 97 is allowable
and induces if : HP(M) —> HP(E). Let (a?, #) and (v, w) be p and 9-
cocycles, respectively, of M and let Γ = η{(x, y)(v, w)} — η(x, y)η(v, w).
Then, letting xr = p\x, etc., as before, we have

r = κ-i)*+

+ (-\yy'βvf + (-I)p+q+1y'βw'β] .

Exactly as in the proof of Theorem 6.4, reduce this to

Γ - [(-l)*+W(/3~iδ£) + (-l)Vw

+ coboundaries .

Since (δ£)wa(δ£) - δ(/3-2δ^) + M « « +

r = [(-ly+y

+ coboundaries ,

and so Γ is a coboundary since

2/32 =

Thus η* preserves products. 37* is shown to be one-to-one and onto
exactly as in the proof of Remark 6.6.

In conclusion, we would like to point out that the remarks at the
end of Chapter 3 apply also to Theorems 6.7 and 7.6. The question of
what one needs to know about H*(B) in addition to the product structure
(and various characteristic classes) to determine H*(E) seems to be
rather complicated (see [7], Part 1, and [4], expose 17). Certainly
various higher order operations are needed.
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