CONCERNING THE COHOMOLOGY RING OF
A SPHERE BUNDLE

D. G MALM

1. Introduction. This paper is concerned with the problem of
determining the cohomology ring of an orientable fibre space whose
fibere is a sphere, in terms of the cohomology ring of the base space
and invariants of the fibre space.

When the fibering sphere is of even dimension &t — 1, an invariant
P in the (2k — 2)-dimensional cohomology group of the base space is
defined, which is closely related to one of the Pontrjagin characteristic
classes if the fibre space is a fibre bundle. If the (2t — 2)-dimensional
cohomology group of the base space B has no elements of order two,
then two (k — 1)-sphere spaces over B with the same Stiefel-Whitney
classes W, and W,_, and the same invariant P have isomorphic integral
cohomology rings.

In the other case, when k is even, if H*"*(B,Z) has no two-
torsion, then two (k& — 1)-sphere spaces over B with the same Stiefel-
Whitney classes W, W,_,, and W,_, have isomorphic integral cohomology
rings.

If H*-%B, Z) has elements of order two the situation seems to be
more complicated and no results are obtained. Also, the problem of
determining the cohomology ring with mod 2 coefficients is not touched
upon here.

The method is based upon the algebraic mapping cylinder of the
map «— xv/, where ¢, is Thom’s class, and thus parallels Thom’s
construction of the Gysin sequence using the mapping cylinder.

In conclusion, I wish to thank Professor W. S. Massey for his
generous advice and encouragement in the preparation of this paper,
which contains the essential parts of a dissertation submitted to Brown
University.

2. Notation and terminology. We define a fibre space as an ordered
quadruple (¥, p, B, F') such that E, B, and F are topological spaces, p: E—B
is a continuous map, and such that the following condition holds: For
each x € B, there is a neighborhood U of x and a homeomorphism ¢
mapping U x F onto p~%(U) such that (pp)(y, 2) =y for each y € U and
z € F. We call E the total space, F' the fibre, and B the base space.

By a fibre bundle is meant a fibre space with a structural group,
as defined in Steenrod’s book [8]. A fibre bundle whose fibre is an
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n-sphere and whose group is the group of all (n + 1) x (v + 1) real
orthogonal matrices of determinant +1 (denoted by SO(n + 1)) will be
called an n-sphere bundle. An m-sphere space is a fibre space whose
fibre is an m-sphere.

We assume that all n-sphere spaces with which we are concerned
satisfy the following orientability condition: If S? denotes the fibre
over the point x € B, then the local system of groups defined by
H*(S?), for x € B, is a simple system.

We also assume that the base space of any fibre space or fibre
bundle we consider is compact, and we will use Cech-Alexander-Spanier
cohomology with compact supports. Unless otherwise indicated, all
cohomology groups are with integer coefficients.

In [11], R. Thom showed that the Gysin sequence of a (k — 1)-
sphere space (F, p, B, S®*~') may be obtained in the following manner :
There is associated to the given (k — 1)-sphere space another fibre
space (A, p,, B, F') whose fibre F' is a k-cell, for which we may suppose
F C A. (A is the mapping cylinder [10] of p: F — B). Thom showed
that there is an element % € H¥(A — E) = H*A, E) such that the
homomorphism 6 : H**(A) — HY(A — E) defined by

2.1) o) = vz

(the cup product) is an isomorphism onto. In addition pF : HY(B) — H*(A)
is an isomorphism onto. In fact, there is a cross section s: B— A4
where s(x) is the center point of the fibre over x, and s* and p; are
inverse to each other. We thus obtain the following commutative
diagram of exact sequences, where all the vertical arrows are isomorphisms
onto:

. — Hi(A — B) 25 Ha) 25 myE) -2 B4 — By — -
Ie Tid. T«Jd. Io

c—— HMA) o H(A) S H(E) s HR4) — -
A S

s HB) o H(B) L H(E) Y He(B) — -
Figure 1

Here the homomorphisms X, ¢, v, and + are defined by X = j*6¢;
U= pFAps; v = 07'8%; and 4 = pf'y; the top horizontal sequence is
the cohomology sequence of the pair (4, E), and the bottom sequence
is the Gysin sequence. Thus according to the results of Thom, the
Gysin sequence of (K, p, B, S*-') is isomorphic to the cohomology
sequence of the pair (4, E).
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In addition, if we let
wy, = JN(Z)
and ch = p;k-l(wlc) )

then W, is the kth Stiefel-Whitney class (the characteristic class)
and wx) =W, for x e H*B),
My) = yw, for y e H*(A).
Define w, by
(2.2) 0(w;) = Si(7)

where S::H*A — FE)— H**(A — FE) denotes the Steenrod squaring
operation (see [9], or [3], exposé 14).* Then also the Stiefel-Whitney
classes W, are given by

W, = pi(w,) .

Thus W, e H{(B, Z) for ¢ odd and W, e HY(B, Z,) for i even and less
than k. W, is always an integral cohomology class. In addition,
2W, =0 for ¢ odd. For more details, the reader is again referred to
the paper of Thom [11].

We will regard C*(4, F) as a subgroup of C*(4). It is actually
a two-sided ideal in C*(A), with respect to both the cup product and
Steenrod’s cup-7 products [9]. Since C*(E) =~ C*(A)/C*(A, E) (we are
using Alexander-Cech cohomology), we identify these two cochain rings.
Note that the map j* of Figure 1 is then induced by the inclusion
C*(A, E) c C*(A).

The notation introduced here will remain constant, for example, A
will always be the mapping cylinder of p:E — B, 2 will always be
the cohomology class introduced by Thom, ete.

Another important property of the Stiefel-Whitney classes is the
following : The Bockstein homomorphism maps the even dimensional
ones onto the odd dimensional ones (see [8], p. 195).

Finally, the map v of Figure 1 satisfies the following equations:
If x € H(A) and y € H”(E), then

vm*(x) - y] = (=1)@ - (vy)
and vy - m*(@)] = (—1)*(vy) - = .
This is Lemma 1 of [7].
3. The algebraic mapping cylinder of 6. If (E, p, B, S*-') is a sphere

space, then using p: H*(B) — H*(E), H*(E) is a module over H*(B)
with the definition x - y = (p*x)y for x € H*(B) and y € H*(E). The

* Here, for ¢ even, we let ¢ operate on H*(A4, Z,) in the obvious way.
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following is an unpublished result of A. Shapiro: If (%, p, B, S*-!) and
(&', p', B, S¥°') are (k — 1)-sphere spaces over the same base space B
with the same characteristic class W,, then H*(EZ) and H*(E") are
isomorphic as H*(B)-modules. According to W. S. Massey, this may be
proved in the following manner.

Let A be the mapping cylinder of p: £ — B and let U € C*(B) be
such that piU € 2 € H¥(A — E). Let M be the algebraic mapping
cylinder (see [5], page 159, Exercise D) of the map x—a2U for
x € C*(B), that is

M? = C*(B) x C***¥B),

M =3, M,
and dx, y) = (bx + yU, — dy) for (x,y) € M.
It is easily seen that (M, 8) is a differential group. In the diagram of
exact sequences

0 —> C(B) —— M» -1 CreyB) — 0

b I

0 — C(B) —— M+ L, Crs(B) — 0

where i(z) = (x,0) and j(x,y) =y, the left square commutes and the
right square anti-commutes. We obtain the exact sequence

» o* J* ®
eee — H™5B) - HYB) > H*M) > H*(B) -1 ...,

where £ is the map induced by x — xU, in other words, ¢ is the map
¢ of Figure 1.

Now define 7 : M? — C?(A)/C?(A, E)= C?(E) by letting 7(x, y) be the
equivalence class of pf (x) in C?(A)/C*(A, E). » commutes with § and
thus induces 7»* : H*(M) — H*(E). We then have the diagram

I i* J*
ceo —> HHB) — HYB) — HY(M) > H-*(B) — -

lid. lid. l?p* ® lid.
«ee — H*¥B) -£5 HYB) P, HYE) 4, He%+YB) — «..

It is easily verified that all the squares commute except the square
marked ‘& ’’, which anti-commutes. By the five-lemma, 7* is an iso-
morphism onto.

We now make M into a module over C*(B) by the definition

2(v, w) = (xv,(— 1)?2w)

for x € C?(B) and (v,w) € M. It is easily verified that &{x(v,w)}=
(®x)(v, w) + (— 1)?28(v, w) and thus H*(M) is an H*(B)-module. For
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x € HB) and y € H*(M), we have 7*(xy) = (p*x)(y*y), that is, n*
preserves the module product. Consequently H’*(M) and H*(E) are iso-
morphic as H*(B)-modules.

Now suppose U’ is any other representative for W,. Then the
maps ¢ — «U and « — xU’ are chain homotopic, and it is easily seen
that both algebraic mapping cylinders have isomorphic cohomology as
H*(B)-modules. Consequently, both H*(E) and H*(E') are isomorphic
as H*(B)-modules to H*(M), where M is the algebraic mapping cylinder
obtained from any representative for W,.

We remark that it is misleading to say that ‘“‘H™(E) depends only
upon H*(B) and the characteristic class W,.”” It is possible to give
examples of polyhedra B, and B, such that their integral cohomology
rings are isomorphic, and then construct 1-sphere bundles (E,, p,, B, S
and (E,, p,, B, S") such that the characteristic classes of the bundles
correspond under the isomorphism, yet H*(E,, Z) and H*(E,, Z) are not
isomorphic. The reason is that H*(B, Z,) and H™*(B,, Z,) are non-
isomorphic, hence the mod two Gysin sequences are non-isomorphic,
and H*(E, Z,) and H*(E, Z,) and H*(E,, Z,) do not have the some
additive structure.

The theorems that follow concerning the cohomology ring of the
total space E will be obtained by introducing a multiplication in the
algebraic mapping cylinder and proving that under certain circumstances
the map »* (or rather, a similar map) is a ring homomorphism. For
simlicity, we will work with the cochains of A instead of B.

4. Adjusted triples and the multiplication in the mapping cylinder.
We wish to define a bilinear function (product) from M” x M? into
M7+* which obeys the familiar coboundary formula

da - B) = (8a) - B + (— 1)’ - (38)

for « € M? and B € M? The problem may be simplified by observing
that if (x,¥) and (v, w) are elements of M, we require that

=, y) + (v, w) = [(x, 0) + (0, »)1[(v, 0) + (0, w)]
= (z, 0)(v, w) + (0, ¥)(v, 0) + (0, ¥)(0, w).

Thus we divide the problem into three simpler ones; for each of these
products we require that the coboundary formula holds. Furthermore,
we know what the first product should be, for we want to preserve
the module structure. Thus we want (z, 0)(v, w) = (v, (— 1)?2w) for
(x,0) € M*. By a careful study of the last two products, we arrive at
the following definitions.

DEFINITION 4.1. An adjusted triple (U, W, N) for the sphere
space (E, p, B, S*7Y) is a triple of coohains of A for which :
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(i) Uez e H(A— E),
(ii) W s a cochain representing w,-, ,
(iii) 6N=U-—U— WU, N-e C*%A, E),
(iv) ow = 0 if k is even

—2U if k is odd.

DEFINITION 4.2. Let (U, W,N) be adjusted and let M be the
algebraic mapping cylinder of the map x — xU. For (x,y) € M? and
(v, w) € M* we define

(@, )+ (v, w) =
(@v + (= 1)**%Y(U —w) + (— Lrrebsty[(wl) —, U] + (—1)***@*DywN,
(— Draew + (— Dfyw + (— 1)F+EDay(w —,U) + (— 1)+ EDyw W) .

We will now prove two propositions which will justify the above
definitions.

LEMMA 4.3. For any sphere space (E, p, B, S*7), there exists an
adjusted triple (U, W, N).

THEOREM 4.4. The product of Definition 4.2 is a bilinear function
from MP x M* to M** for which O[(x,y)(v, w)] = [&(z, ¥)l(v, w)+
[(— 1)*(x, ¥)18(v, w). Consequently a product H*(M) x H(M)— H"*(M)
is induced. In addition, the additive isomorphism n* : H(M) — H*(E')
induced by 7n:M* — C?(A)|C"(A, E) where n(x,y) is the equivalence
class of x in C?(A)/C*(A, E), preserves products.

We prove Lemma 4.3 first. Suppose %k is even. Let W be any
cocycle representing w,_, and let U be any cocycle representing
% € H*"(A — E). By equation (2.2), U—,U and WU represent the
same element of H*-YA — E). Thus there is a cochain N in C*(4, E)
for which 6N = U -, U — WU.

Now suppose that k& is odd. It is known that in this case, if
A:H*YA,Z,)— H*A,Z) is the Bockstein homomorphism, then A(w;._,) =
w, = —w;. Let Ue 2y e H(A — E). If W' is any integral cochain
representing w,_,, then there is a cochain R ¢ C*(4) for which 6W'=
—2U + 6R, whence WHU = 2U° + (8R)U. From (2.2) we see that
U—,U= W'U + 8N* 4+ 2Q for some N,Q e C*(A, E). Taking the
coboundary, we get —2U?= (8W")U + 6(2Q) and so &(2Q) = é(—RU),
that is 2Q 4+ RU is a cocycle of C*(A4, E). Since the mapd of (2.1)
is an isomorphism, there is a cocycle X of C*(4) and a cochain
E e C*(4, E) for which 2Q + RU = XU + 8E. Consequently U—,U =
(W*+ X — R)U + 8(N' + E). By taking cohomology classes, we see
that W'+ X — R represents w;.,, and (U, W'+ X — R, N*'+ E) is
adjusted. This completes the proof of Lemma 4.3.
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To prove Theorem 4.4, we note first that the product is clearly
bilinear, since the cup product and the cup-i¢ products are. To prove
the coboundary formula, we compute

dl(x, y)(v, w)] = (3(xv) + (=1)"*S[y(U=0)] + (=1)"* 8 {y[(wU)—. U]}
+ (=1)?+¥ @O (ywN) + (—1)Pawl + (—1)fiyp U + (— 1)s+EDay (e, U)U
+ (~1F DU, — {(~1)3(w) + (~18w)
+ (=1 D18[y(w—,U)] 4 (= 1)+ ED1d(yw W)} )

and

[3(2, (v, w) + [(=1)*(x, ¥)18(v, w) = (B + yU, —dy)(v, w)
+ (=1)*(z, y)(Sv + wU, —dw)

=0z + yU) + (=1 (=dy)(U—w) + (=1 (= dy)[(wlU)—.U]
+ (=D (= syywN, (=176 + yUw + (—1)*(=dy)v
(=1 D=8y, U) + (=D SO —dyyw W)
+(=1D?(@(dv + wl) + (=1)"*""y(U=[v + wU])

+ (__1)p+k(q+1)+lc+ly[(_(Bw)U)v2U] + (_1)p+k(0)y(_8w)N’

(=1)Pa(—dw) + (—1)*@*Vy(v + wl) + (1) ED@Dy((—dw)—U)
+ (=)@ Dy(—dw) W) .

Thus the difference of the first components is
(=17 8[y(U—=)] + (—=1)*** 185 {y[(wU)—, UL} + (—1)"***D5(ywN)
+ (=1 yoU + (—1)+ED(w— U)U + (—1)*+EDiyw WU — yUv
+ (=17 (@YY (U—w) +(—1)* " 5 (Sy)[(w U )=, U]+ (—1)**+F @D (Sy)wN
+ (=D)Y(U= (v + wU)) + (=)= y[(dw - U)=,U]
+ (=1)"y(w)N .

We now use the formula

(4.5)  d(u—w) = (=1 " "u—; 0 + (= 1)P P —u + (Su)—v
+ (—1)Pu~ v

for w a p-cochain and v a ¢-cochain (see [9]), and a formula due to G.
Hirsch [6],

(4.6) (uv)y—w = w(v—w) + (—1)*D(g—w)v
where v and w are ¢- and »-cochains respectively. Thus

(=1)?*938[y(U—w)] = (—1)"**(sy)(U~—v)
F (= 1)@y (= 1)U (80) 4 (— 1)+ Up + (—1)k+a+rapUY}

Also,
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(=1)r+*@g(ywN) = (=1 D(@y)(wN) + (—1)“*'y {(dw)N
+ (= 1)»* (U~ U — WU)} .

Consequently the difference of the first components is seen to reduce to

(=1)r+ra i {y[(wU)—=, UL} + (= 1) Dy (w— U)U
+ (=1 Ey)[(wU ) —.U] + (= 1)y(U—,(w0))
+ (=D gy [(dw - Uy, U] + (=1 yw(U=U) .
Since
(=1)rrrere s fy[(wU)=,UT} = (=1 2(8y)[(wU)—,U]
+ (=D {(=1)""* (wU )= U + (=1)1*+1+* @D U (wU)
+ ((dw - U)=,U} ,

this difference becomes

(=DM Dy, UYU + (= 1)y U—,U)
+ (=DrrarEy[(wU)—U] ,
which is zero by the formula of G. Hirsch.
On the other hand, the difference of the second components of the
two expressions is
(—1)Fr 01§y (w—, U)] 4 (= 1)+ E05(yw W) + (= 1)y Uw
+ (=1 E DSy (w—,U) + (—1)F+E+D9(Sy)yw W
+ (_1)p+k(q+1)+1wa _|_ (___1)p+k+(k+1)(q+l)y[(8w)vlU]
+ (_1)p+k+(lc+1)(q+1)y(8w)W .
But
S[y(w—U)] = (dy)(w—,U) + (—=1)****y[(dw)—U + (—1)'wlU
_I__ (_1)q+1+(q+k+1)lch] ,

and
SywW) = dy)(wW) + (—=1)****y[(dw) « W + (=) w(@EW)] .
Thus this difference reduces to

(_1)p+k(q+1)+l,wa+ (“1)p+quWU+ (_1)p+k(q+1)+1yw(8W)
= (=1)***[(=1)**'ywU + ywU + (=1)*'yws W] =0,

since SW =0 for k even and §W = —2U for k odd.

Thus the cochain formula holds and a product is induced on the
cohomology level. Since C*(A4, E) is an ideal in C*(A), and since U and
N are in C*(4, E), we see immediately from the definitions of 7 and
the product that »* preserves products. This completes the proof of
Theorem 4.4. '
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We remark that the product of Definition 4.2 is not associative,
though, of course, the induced product on the cohomology level is.

5. The invariant P. We now define, when %k is odd, an invariant
P’ of the (k—1)-sphere space (F, p, B, S*"'), which is an element of
H**A, Z), and its image P = p;~'(P')e H* % B, Z). P’ and P will be
called the P’-invariant and the P-invariant, respectively, of the sphere
space.

Let (U, W, N) be an adjusted triple. A straightforward com-
putation, using equation (4.5), shows that W? + W— (8 W) — 4N —U-,U
is a (2k — 2)-cocycle. We define P’ to be its cohomology class in
H*"*A, Z), and P = p;-'(P’).

THEOREM 5.1. Let (E, p, B, S*') be a sphere space for which k 1s
odd, and let (U, W, N) and (U’, W', N') be adjusted triples for this
sphere space. Then Wi+ W~ (8W)—4AN—U—-,U and W+ W'—,(8W")—
AN'—U'<, U’ represent the same element of H*™ *(A), and consequently
P’ is independent of the choice of mnice triple made in its definition.

This theorem, which states that P is an invariant of the sphere
space, is proved with the help of the following lemma.

LEMMA 5.2. Let k be odd, and let (U, W,N) be an adjusted
triple. Then (U', W', N') is an adjusted triple if, and only if, there
exist Be C* (A, E), veC**A), e C**A) a cocycle mod2, and pe
C*®-%A, E) a cocycle, for which

U =U+ 38,
W =W-—28+38¢+v),

and
N'=N+BU ~U=B—(p+NU' + 8~ WB+p.

We first prove that if (U, W, N) and (U’, W', N') are adjusted,
then there exist 3, v, @, and p with the stated properties. Since U and
U’ both represent &, there exists B3 e C**(A, E) for which U’ = U + 33.
Now W' = —2U' = —2(U + 88) = 8W — 8(2B), or W' — W + 283 is a
cocycle. Let o = W' — W 4 28. Taking cohomology mod 2 in A,
(denoted by brackets) we see that 0 =[W' — W] =[28 — a'] = [a].
Thus there exist ve C**A) and ae C**(A) for which «' = §(v) + 2a,
and e = 0. Then W' = W+ 2(a — 8) + éy. Now

SN'— N)=U~-U - U=U+ WU - WU
= (88)—U + U—(8) + (38)—(3B) — 2(a — AU
—8(vU) — W(3B) — 2 — B)5B — &(73p) .
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Using equation (4.5), we have
3(B—U — U—pB) = (/8,8)le + U—(88) + 28U — 2U83 .

Consequently
SN'"— N) = 8B—U — U=B) — 8(WB) + (88)—(88) — 2aU
—8(yU) — 2a(88) — 8(v8B) + 2888 .

But since (38)—1(88) = 8(8—(88)) — BB + (38)B, we have

dN'— N) =6{B—U—U—B— WB — U + 82 — v + B—1(58)}
— 2aU’
=8{B—U" — U—B — U — WB + £} — 2aU’,
which states that 2aU’ is a coboundary of C*(A, E), since N', 8, U’, U,
and N are in C*(4, E). Since 6 of (2.1) is an isomorphism, this means
that there is ¢ € C*"*(4) such that 2a = 8@, and —2aU’ = —§(pU").
We then have

B(N' — N) = B(Bva' - lele — U — WB + 182) .

This gives the stated result immediately.

Now suppose (U, W, N) is adjusted and 8,7, @, and p have the
stated properties. Then clearly U’ represents 2 and W' represents
We-r. Also SW' = 8W — 288 = —2U — 268 = —2U"’. Finally,

8N’ = U—U — WU + 8(B—.U") — §(U—=B) — &(p + »U’ + BB

+ (888 — WéB + 2URB
=U-U—- WU - 8(p +v)U' + (88)—U" + BU' — U'B
+ U—88 — UB + BU + BB + (8B)B + 2UR
=U'—U" — WU' — 8(p + v)U' + 28U’
=U-U - wWu'.
Consequently (U’, W', N’) is adjusted. This completes the proof of
Lemma 5.2.

We now prove Theorem 5.1. Let (U, W, N) and (U’, W', N’) be
adjusted triples related by 8, v, #, and p as in Lemma 5.2. Let
a= W+ W— (6W) — 4N — U-,U

and

o =W?*+ W— (SW')— AN’ — U'-,U’ .
Then

a'—a=W"— W+ W—,8W') — W (W) 4+ 4N — N")

+ U-,U - U'~-,U",
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Since U—,U and U’'—,U’ both represent w,_,Z/, we may let &z =
U-,U—- U'-,U’, for some ze C*(A, E). Then it is eagily verified,
using Lemma 5.2 and equation (4.5), that

o —a=—40+{z — (p + N—:(2U") + W'(p + )
—(@p+Np +7) + (p +NW' — W—(28)} .

Thus, taking cohomology in H*(A), we have [a' —a] =[—4p]. But p
is a cocycle of A — E and thus for some X e H*(A) we have [p] = X%
where the cohomology class of o is here taken in H*(A — E). Con-
sequently, now taking cohomology classes in H*(A), we have [—4p] =
—4(Xw,) which is zero since 2w, = 0. This completes the proof of
Theorem 5.1.

We now turn to some properties of P. We shall prove the follow-
ing theorem:

THEOREM 5.3. Let k be odd, and let (K, p, B, S*-*, SO(k)) be a (k—1)-
sphere bundle, with B a finite polyhedron. If H* *B,Z) has no
elements of order two, then P = P,,_,, the Pontrjagin class in dimension
2k — 2.

The hypothesis that the fibre space admit SO(k) as structural group
is needed in order that the Pontrjagin class be defined.

The proof of this theorem requires several lemmas and the use of
the universal Gysin sequence.

We recall [8] that given any topological group G, there exists a
universal principal G-bundle (E,, p, By, G, G) which has the following
property :

Given a polyhedron B, any principal G-bundle over B is isomorphic
to the bundle induced by some mapf:B— B;. B, is called the classi-
fying space for G.

Suppose now that G, is a closed subgroup of G. The following
lemma is proved by H. Cartan in [3], expose 7.

LemMA 5.4. If (E, p, B, G, G) is a principal G-bundle, and 7 : E|G, —
E|/G = B is the natural projection, then (E|G, w, B, G|G,, G) is a fibre
bundle which is associated with (E, p, B, G, G), where G operates on G|G,
i the natural way.

It is known that if (Ey, p, Bs, G, G) is a universal principal G-bundle,
and G, is a closed subgroup of G, then in the associated fibre bundle
(E4/Gy, 7, B, G|G,y, G) given by Lemma 5.4, the total space E,/G, is of
the same homotopy type as the classifying space Bg,. For a proof, see
[7], Lemma 6. Taking G = SO(k), G, = SO(k — 1), we have G/G, = S**.

We will call (Byoi—1 T Bsoayy S7% SO(k)) the universal (k — 1)-
sphere bundle, It has the following pleasant property: Any bundle
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(E, p, B, S¥*, SO(k)) is isomorphic to the induced bundle f-*(Bsow-1) 7,
Bysoy, S¥71, SO(k)) for some map f:B— Bsox- This follows from the
fact that the operation of taking induced bundles and of taking associated
bundles commute. This is easily proved if one uses the definition of
““induced bundle’’ and ‘‘associated bundle’’ in terms of the coordinate
transformations ([8]).

LEmMA 5.5. Let (E', o', B', S*-%, SO(k)) be a (k — 1)-sphere bundle,
with P-invariant 5, and let (E, p, B, S¥=', SO(k)) be the bundle induced
by f: B— B, with P-invariant 8. Then f*(5') = B.

Proof. Let F':E— E’ be the map of the total spaces correspond-
ing to f, so that the following diagram is commutative:

B X, g

bl

B, p

This diagram may be imbedded in a commutative diagram
a2 a

B2 B

N
B —I—> B’
where A and A’ are the mapping eylinders of p and p' respectively,
and ¢ and ¢ are inclusion maps. A is a quotient space of (£ x I) U B,
where I is the closed unit interval, and similarly for A’. Letting square
brackets denote equivalence classes in the quotient spaces, .# is defined
by

Z (=, t)] = [(Fx, t)] for xe K, tel,
and
Z [b] = [fb] for be B.

Also i(e) = [(e, 0)] for ec E. It is easily verified that & is a continuous
function and the diagram commutes. Let & #:C*(4’)— C*(A) be the
cochain homomorphism induced by & .

Passing to the cochain level we have the commutative diagram
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C*(A) 7t CH(A')
AN i,/ I
N\ i auw
Pt C*(E) «—— C*(E&') |»}
/ AN
/P ft PN |
C*(B) C*(B")
Figure 2

where p,: A— B and p): A’ — B’ are the projections.

Now let (U’, W', N') be an adjusted triple for (&', p’, B’, S*-'). Let
U=74%U0"), W=_7%W’), and N=_% ¥N"). Clearly &# ¥C*(4’, E"))C
C*(A, E). Since the Stiefel-Whitney classes and Thom’s class 2/ are
preserved by f (or & ), we see that (U, W, N) is an adjusted triple
for (E, p, B). A representative cocycle for the P’-invariant of (&', p’, B’)
is W24 Wi— W' —4AN' — U'=,U’, under .7 * this goes into W?* +
W—38W — 4N — U—,U, a representative cocycle for the P’-invariant of
(&, p, B). Consequently f*(8) =8, in view of the commutativity of
Figure 2.

The following two lemmas together imply Theorem 5.3.

LEMMA 5.6. Let k be odd, and (E, p, B, S*-*, SO(k)) a (k — 1)-sphere
bundle, with B a finite polyhedron. Using the rationals or the integers
mod n, n odd, as coefficients for cohomology, P = P,._,, the Pontrjagin
class in dimension 2k — 2 with rational or mod n coeffictents.

LEMMA 5.7. Let G be a finitely generated abelian group with mno
elements of order two. Let aeG be such that for each odd integer n
there is an aeG for which a = na. Then a = 0.

We omit the proof of Lemma 5.7, which is quite simple.

Proof of Lemma 5.6. In view of Lemma 5.5, it suffices to prove
Lemma 5.6 for the universal (k — 1)-sphere bundle (Bgow-1), @5 Bsok)s
S®-1 SO(k)).

Since the base space B of our bundle is a finite polyhedron, we
need only use an n-universal bundle for sufficiently large n. For this
bundle, the base space may be chosen to be compact (see [8], Section
19), and we may use Alexander-Spanier cohomology with compact
supports.

Let W, be the characteristic class of this bundle, thus W, € H*(Bgox,),
and let W,_(k — 1)e H*"(Bs,_p) be the universal Euler-Poincaré class
(for the cohomology of the classifying spaces see the article by A. Borel
[1]; for a review of the results we need, see the article by W. S.
Massey [7]). Since k is odd, 2W, =0 and W, = 0.

Choose (U, W, N) adjusted for this sphere bundle and let M be the
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algebraic mapping cylinder associated with this adjusted triple, with a
multiplication defined as in §4. We then have the following commuta-
tive diagram of exact sequences, where all the vertical arrows are
isomorphisms onto (the square marked ‘“@’’ anticommutes). The
notation is that used previously.

. )
025 B4 —SH(My 2L Hew) Ao

lid. 17;* ® lz’d.

A m* A

0> HY(A) —— H*(Bso-1) — H**(A) 250

o, e I+
¥ ¢ 1
0 -5 HY(Bsow) — H(Bsow-1) — H**(Bsoay) —— 0
Fig. 3.

In what follows, an integer m is to be taken as nw or nw’ if the
coefficients are the rationals or the integers mod an odd integer respec-
tively. Here, @ is the unit of C*(A, rationals), ®’ is the unit of
C*A, Zyn+1), and 7 is n reduced mod 2m + 1.

We note that (W, 2) is a coeycle of M*~* and compute that (W, 2)’=
(W? — W)W + 4U~,U — 4N, 0). Since (SW)— W = (W W) —
W—(8W), we have

(W, 28 = (Z + 5U<,U — 8(W—, W), 0)

where Z = W* + W, (6 W) — 4N — U~,U is a representative cocycle
for the invariant P’'e H*~*(A). Since U is a coboundary, 5U—,U is and

(P) = (W, 2y'] e H**(M) ,

where the square brackets denote cohomology classes. Thus m*(P') =
(WP )= UW, 2)Ip* (W, 2)]=[WT € H*(Bsox-1y), and (z* o 7" ) (P") =
[WT, or #*(P) =[W}. We now need the following lemmas.

LEMMA 5.8. With integral coefficients, yo(W_,(k — 1)) is twice a
generator of H'(Bsow)-

LEMMA 5.9. With integral coefficients, mw*(Py—z) = (Wy_(k — 1))

For proofs, see [7], Lemmas 7 and 8.

Thus, using the rationals or the integers mod an odd integer for
coefficients, we have 7*(P,,_,) = (W,-.(k — 1))2. Now r* is an isomorphism
and we complete the proof that P=P,., by showing that (W,_,(k—1))*=
[WT.

By Lemma 5.8, we may choose ¢ = +1 so that v(EeW,_(k — 1)) =
—2e H(A). But v([W]) = —5*[(W, 2)] = —2. By exactness there is a
y € H*(A) such that eW,_(k — 1) = [W] + m*(y). Multiplying by [W]
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and ¢W,_,(k — 1) respectively, we get

Wik — DIW] = [W] + m*(y)[ W]
and

(Wies(b — 1)) = e Wik — DIW] + m*(y)e Wy—i(k — 1) .
Together these give us

[WF — (Wees(k — 1)) = —=m* @) W] + eWi(ke — 1)) .

We now apply v to this equation, remembering that [ W]* and W, _,(k—1))
are in image m™ = kernely. Then

0=—y([W]l+eWi(k—1) =4y.

Thus y = 0 and (W,_(k — 1)) = [W].

It is possible to prove the following theorem, which immediately
implies Lemma 5.6.

If k vs odd, and (E,p, B, S**, SO(k)) is a (kK — 1)-sphere bundle
with W, =0 and B a polyhedron, then P = P,,_,, the Pontrjagin class
wn dimension 2k — 2.

This is a direct consequence of Theorem IV of [7]. It is only
necessary to prove that P is Massey’s invariant 4« - 3%, which can be
done by a computation in the mapping cylinder.

According to W. T. Wu [12], for a (k — 1)-sphere bundle, if <°?
denotes the Pontrjagin squaring operation, then

sz—z = ‘72( ch-—l) - WK—2WIC ’

reduced mod4. If (U, W, N) is adjusted for the sphere bundle,
W? 4+ W—,(8W) represents % (w,_.,) and U—,U represents w_,w,.
Consequently,

P = P,,_, reduced mod 4 .

Let G-, denote the group of all homeomorphisms of S*~!, and By,
the classifying space for G,_,. It would be of interest to know whether
the invariant P comes from a cohomology class in H 2"“2(BGIC_1).

6. The main theorem for k odd. In this section we assume that
k is odd and (F, p, B, S*') is a (k — 1)-sphere space. We consider the
effect of dropping the conditions that N and U be in C*(A4, E), where
(U, W, N) is an adjusted triple for (E, p, B, S*~*). A check of the proof
of Theorem 4.4 shows that the product of Definition 4.2 still induces
a product in the mapping cylinder. However, in general 7* no longer
preserves products. To retrieve (in part) this property of »* we add a
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requirement that U, W, and N be connected with the invariant P’.
Before stating the main theorem we require several lemmas.

LEmMMA 6.1. Let Uew,c H¥(A), ZeP'e H**A), and let W be
any integral cochain representing w,_, for which §W = —2U. Then
there exist N e C**(A) and Qe C*-%(A) for which

AN +8Q = W* + W (8 W) — Z — U=,U .

Proof. Let (U', W', N') be adjusted, and let Z'=W" + W' — (W)
— 4N’ — U'~,U, a representative cocycle for P’. Then there are
cochains «, B, and v for which U=U'+ 88, W= W' + oy — 28, and
Z =27"+ éa. Let

N=N —WpB+ LU + B — U'—B — (878 + B—(8B) — vU’
and

Q = —7r—U") —2W'— B — 2(07)—B — a + U'—,8 — B=,U’

+ BB)=B + B=B + YW’ + W'y + (8v)r .
A straightforward computation of 4N + 6@ completes the proof.
We now prove a similar lemma for the cochains of B instead of A.

The fibre space (A, p,, B, k-cell) has a cross section s: B— A. On the
cochain level we have

s¥
C*(B) = C*(4)
7}

with s*o pf the identity.

LEMMA 6.2. Let Ue W,e H¥B), Ze€ Pe H*¥B), and let W be any
integral cochain representing W,_, for which SW = —2U. Then there
exist Ne C*%B) and Qe C*~%B) such that

AN +8Q = W2 + W (W) — Z — U=,U .

Proof. ptU, ptW, and piZ satisfy the conditions of Lemma 6.1.
Let N’ and @' be the cochains of A given by Lemma 6.1, and N = s*N’,
Q = s'Q'. Then

AN + 6Q = s*(4N' + Q") = (s*pi W)*
+ S((PEW)—,(3pt W) — s'piZ
— sH{@IU)—(pfU)} = W* + W— (W) — Z — U-,U .

We remark that since 46N = 4(U—,U— WU) we have SN =

U-,U— WU. Also, if N,Q and N’, Q' satisfy Lemma 6.2 or Lemma



CONCERNING THE COHOMOLOGY RING OF A SPHERE BUNDLE 1207

6.1, then N — N’ is a cocycle and 4(N— N’) is a coboundary, for
4N — N')=38Q" — Q).

LEmMmA 6.3. If (U', W', N') is adjusted, and if (U, W, N) is as in
Lemma 6.1, there exist cochains 83,7, and a cocycle Te C**A) such
that 4T is a coboundary, U= U’ + 88, W= W' + &y — 28,
and N=N—-Wpg+p=U"+ 5 —U~—p— (78

+ B—(8B8) — U + T
This follows directly from the proof of Lemma 6.1 and the above remark.

Now let U, W, and N be any cochains of B which satisfy Lemma
6.2, and let M be the algebraic mapping cylinder of the map x — xU,
with a product given by Definition 4.2. We then have a product in
H*(M). For the remainder of this section, we will use square brackets
to denote the natural map C*(A) — C*(A4)/C*(A, E) = C*(E). The main
theorem follows.

THEOREM 6.4. There exist n:M?— C?(E) an allowable homo-
morphism and a cocycle Te C**B) such that 4T is a coboundary
which have the property that if (x,y) and (v, w) are p and g-cocycles,
respectively, of M, then
6.5)  n{@, ), w)} — 7@, Y, w) = [(—=1)"***'pilywT)] + 8X

for some cochain X of L.

Proof. The homomorphism 7 is defined as follows: Choose (U’, W',
N') adjusted. We apply Lemma 6.3 to piU, pi W, piN to obtain 8 e C*~'(A4)
for which p{U=U’'+88. Define 7(x, y) = [pfx + pi(y) - B] for (x, y) e M.
Then
on(x, y) = [8ple + {pi¥)} B + Piy)(SA)]
= [piox + pi(Sy)B + pi(¥)(wtU — U1,
while
108(x, y) = 9dx + yU, —8y)
= [pidx + (piy)(PEU) + pi(—dy)B] .
Since —oy = &y and U’'e C*(A, E), 708 =807 and 7 is allowable.
Let I' = n{(x, y)(v, w)} — Yz, y)n(v, w), where (x,y) and (v, w) are
p and g-cocycles respectively of M. Then
I = [(—=1)"*iy)(ptU~plv) + (—1)"*ply {(pi(wU ))—ptU}
+ (=D 'pf(y w N) + (—=1)"pi(y v)B
+ (= 1)+ (piy) {(phw)—(p§U )} B
+ (=1)*+pily w W)B — (piy)B(piv) — (pfy)BIw)A] -
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We now replace piU by U’ + 88. Note that all terms involving U’
drop out, for C*(4, E) is an ideal. For simplicity, we write z' = pf(x),
etc. Then
I' = [(—=1)"9'((88)—1v") + (—1)"*%' {(w'88)—+(36)}

+ (=7 yY ' w'pi(N) + (—1)"y'v'B + (—1)" 'y (w'—.68)8

+ (=) Y wpi(W)B + (—1)Py'BY" + (—1)"* 1+ y'Bw'B] .
Now

§(B—1v") = (8B)—1¥" + B—(8V") + (—1)™'Bv" + (1)’ .
Since 8v = —wU, 8(ptv) = —ptwptU = —w'U’ — w'dB. Thus

(=D {(88)—v'} = (=) Y'8(B— ') + (—1)"* ' (B—w'U’)
+ (=) Y {B—(w'88)} + (—1)"y'Bv' + (—1)"'y'v'B
and
I = [(=1)" 9y {B—(w'dB)} + (—1)"* %y {(w'88)—(58)}

+ (=1 Y w'pi(N) + (= 1)y (w'—.86)B

+ (—=1)rrariy ' pi(W)HB + (—1)"***'y’'Bw'B] + coboundaries ,
for y' is a cocycle and (—1)"*%'8(B8—v') a coboundary. It is easily
checked that

(=1)r+*y'Bw'S = (—=1)y's {B—w')B
+ (=1 {(3B)—w'} B + (1) yw's .

From Lemma 6.3 we have p{(W) = W’ + 8y — 28. From these we get

I' = [(=1)" 9" {B—(w'8B) + (—1)"* Y {(w'68)—3B)}
+ (=P Y w'pi(N) + (—1)" 9 y"(w'—.08)8
+ (=Y w (W' + &y — 28)B8 + (—1)"y's {B—w'} B
+ (=) Yy {(8B)—w'} B + (—1)** " 'y'w'S*] + coboundaries .
Since
(=Y {(8B)y—w'} B + (= 1) 'y {w'—,66} B
+ (—D)y8{B—w'}B = (—1)*y's{w'—5}8,
we have
I = [(—1)y {B—(w'8B)} + (—1)"* %y {(w'8B8)—.05}
+ (_1)p+q+lyrwrpg(N) + (_1)p+q+lylwl( Wr + 87)6
+ (= Drry'w' 3 + (—1)7*y'8 {w'—,8} B] + coboundaries .

Now

(=17 oy' {(w'dB) =308} = (—1)"*"y'8 {(w'dB)—.5}
+ (=Y {(w'eB)—.B} + (=1 y {B—(w'dB) ,
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and thus

I' = (=1)r ey {(w'dB)—B} + (—1)** " y'w' (W' + &7)8
+ (=P y'w'B + (1) y's {w'—,8} B
+ (=1 ey w' {— W'B + 82 — (87)8 + B—(88) + T}]
+ coboundaries, where we have used Lemma 6.3 on p}(N).

Thus

I' = [(=1)»* 2y {(w'88)—B} + (—1)"*y's{w'—5}8
+ (=1)rrariy'y'(B—88) + (—1)?**'y'w'T] + coboundaries .

But
(—=1)ry'8{w"— B} B = (—1)"*y'd{(w'—B)B} + (—1)"* 'y (w'—,B)53 ,
and so

I' = [(—=1)*y {(w'dB)—.B} + (—1)P* "y (w'—18)8
+ (—1)?*e+y'w'(B—188) + (—1)?**'y'w'T] + coboundaries
= [(—1)?*+y {(w'3B)—.B + (W' —.B)0B + w'(B—150)
+ (—1)**'y'w'T] + coboundaries .

By Hirseh’s formula 4.6,

I' = [(—1)+y'w {8—188 + (88)—B8} + (—1)"***y'w'T]
-+ coboundaries .

Since 8(8—.8) = B—188 + (88)—.8,
I' = [(—1)**1*'y'w'T] + coboundaries .

In view of the fact that pfos* is homotopic to the identity, we
have

I' = [(—=1)***'p¥(yw s*T')] + coboundaries

as asserted. This completes the proof of Theorem 6.4.

"REMARK 6.6. The following diagram commutes except for the
square marked ““ Q’’ which anti-commutes.

+e s HoH(B) L H(B) - HYE) Y H-(B) — ...

Iid. Irzd. Iﬂ* @i Iid.

ver s HoH(B) -1 HY(B) —— HY(M) 1> Ho-*+(B) — ...

Thus by the five-lemma, n* is one-to-one and onto.
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Proof. Let x'exe H*(B). Then (z', 0) represents ¢*(x) and [pix']
represents n*¢*(x). It also represents p*(x). For the other square, let
(z,y)eze H*(M). Then y represents j*(z), and [pix + (piy)B] represents
»*(z). Referring to Figure 1, « = pi~'0-8*%. Now 3{pi(x) + (pty)B} =
pi(—yU) + ()38 = —(piy) - U'. Thus (y*)(2) is represented by —y.

From equation 6.5 we see that if H*-*B) has no elements of order
two, n*: H(M) — HYE) is a ring isomorphism.

THEOREM 6.7. Let (E,p, B,S**') and (E',p', B,S**") be two
(orientable) (k — 1)-sphere spaces over the same (compact) base space
with k odd. Suppose H®**B,Z) has no elements of order two. Then
if the sphere spaces have the same P-invariant and the same Stiefel-
Whitney classes W, aud W,_,, their integral cohomology rings are
isomorphic.

To prove this, we observe that both cohomology rings are isomorphic
to the cohomology of the mapping cylinder M of Theorem 6.4.

If the rationals or the integers mod n, n odd, are used as coefficients
for cohomology, then »* is always a ring isomorphism since H*-*B)
will have no elements of order two. Consequently the cohomology ring
with these coefficients of a sphere space is always given by Theorem
6.4.

7. The case k even. In this section we suppose (E, p, B, S*-?!) is
a (k — 1)-sphere space, with k even. Suppose Ve C**(4) is any integral
cochain representing w,.,. Then for some W,8V = —2W and W
represents w,_,. Let Uew,. Then VU and U-,U both represent
Wy, and so VU + U=,U is a coboundary mod 2, i.e., there exist N
and @ cochains of A for which

2N +6Q =VU+ U-,U.

From this it follows that SN = U—,U — WU. If also 2N’ -+ 6Q' =
VU + U-,U, then N — N’ is a cocycle and 2(N — N’) a coboundary.

LEemMA 7.1. Let (U, W, N) be adjusted for the sphere space
(E, p, B, S¥ ") and let V be an integral cochain representing w,., for
which 8V = —2W. Then there exist a cocycle Y € C*~*(A) and a cochain
XeC*®*A, E) for which

VU + U<,U — 2N = 2YU + 86X .

Proof. We first remark that it is possible to find such (U, W, N)
and V. One chooses V' to be any integral cochain representing w;., and
defines W by 6V = —2W. Then W represents w;_,. Choose Ue 7/ €
H*A — E), and Ne C*-%A, E).such that 6N = U—,U — WU. Now let
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b=VU+ U-,U— 2N. Then be C* %A, E) and it is easly seen that
b is a cocycle. For some xz,ye C*(A4, E), U=,U = VU + 2x + &y since
U—,U and VU both represent w;_,7 mod 2. Thus b =2(VU + x — N)+dy.
Since b is a cocycle, VU + © — N is a cocycle of C*(A4, E). The map 6
of (2.1) is an isomorphism, consequently there is a cocycle Y e C**(4)
and a cochain Ze C*-*A, F)such that VU + x — N = YU + 6Z. Then
b=2YU + 8(2Z + y).

The following crucial lemma may be interpreted as giving a standard
form for the cochains N described in the opening paragraphs of this
section.

LEMMA 7.2. Suppose U is any representative cocycle for wy, V is
any cochain representing Wy, OV = —2W, so W represents w,_,,
NeC**A4), Qe C*3*A), and 2N + 6Q = VU + U-,U. Suppose also
that (U, W', N') is adjusted, V' represents w,_,, and 8V' = —2W'.
Let X and Y be chosen by Lemma 7.1 so that V'U' 4+ U'~,U" — 2N' =
2YU’ 4 8X. Then there exist B, a,v, and T, cochains of A of degrees
k—1, k—2, k— 3, and 2k — 2 respectively so that T is a cocycle, 2T
18 a coboundary, U=U"+8B, W= W' +8a, V=V'+ &y — 2a, and

N=N'—aéB —alU’ + (68)—,U" + B—(8) + B*+ WB+yU' + T.

Proof. The existence of a, 3, and v so that the first three equa-
tions are satisfied is trivial. To prove the lemma it is only necessary
to verify that

2(N' — adp — aU'" + (8B)—,U" + B—,(38) + B+ W'B + YU') + &Q’
= VU + U=,U

for some cochain Q'. We choose
Q =vU"+ V'B 4+ 7B + (88)—=:U" + B—48B) + B—8 + X .

The computation is omitted since it is straightforward.

For the next theorem, we return to the cochains of the base space
B. We suppose Ue W,e H¥B), V is a cochain representing W,_,e
H*-¥B, Z,), and 8V = —2W. Then W represents W, ,e H*-'(B). We
obtain N and @ in C*(B) for which 2N + 6Q = VU + U-,U. Let M
be the algebraic mapping ecylinder of the mapx — xU for x e C*(B),
with a product given by Definition 4.2. This product satisfies the
coboundary formula and induces a product in H*(M). We will use
square brackets to denote the natural map C*(4) — C*(4)/C*(4, E).

THEOREM 7.3. There exists an allowable homomorphism 7): M? —
C?(E) and a cocycle T € C*-*B) for which 2T is a coboundary with the
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following property: If (x,y) and (v, w) are p and g-cocycles, respec-
tively, of M, then

(74 {9 w)} — 9@, Y, w) = (-1)"pilywT)] + 82

for some cochain Z of E.

REMARK 7.5. The following diagram commutes except for the
square marked ‘@ ’’ which anti-commutes :

oo — H¥B) 5 HYB) -2 Ho(M) -2 Ho#(B) —s ...
id. id. 7 & id.
*
coe s HEHB) L BYB) s H(E) L HF(B) —s .

Consequently, by the five-lemma, %* is one-to-one and onto.

To prove Theorem 7.3, we first choose (U’, W', N') adjusted and
obtain X and Y from Lemma 7.1. Then apply Lemma 7.2 to obtain a, 8, 7,
and T for which piU = U’ + 88, piW = W' + éa, iV = V' + 8y — 2a,
and

PEIN = N'—adB — aU'+(88)—,U'+B—.(6B)+ 3+ W'B+YU'+T.
Define, for (x,y) in M,

(x, y) = [plr + (pty)B] -

Then 7 is allowable, t.e., &n = 13.

The remainder of the proof is omitted, as it is a tedious computa-
tion similar to the proof of Theorem 6.4. The proof that the diagram
of Remark 7.5 commutes has been given in the proof of Remark 6.6.

From equation (7.4) it follows that if H**-*B) has no elements of
order two, »* is a ring isomorphism. .

THEOREM 7.6. Suppose (E, p, B, S*-') and (E', p’, B, S*-) are two
(orientable) (k — 1)-sphere spaces over the same compact base space with
k even. Suppose H* B, Z) has no elements of order two. Then if
the sphere spaces have the same Stiefel-Whitney classes W,, Wi, and
W-s, their integral cohomology rings are isomorphic.

This follows because both cohomology rings must be isomorphic to
the cohomology ring H*(M).

The following theorem generalizes a result of R. Thom ([4], exposé
17, Théoreme 3).

THEOREM 7.7. Suppose (E, p, B, S*-*) is a (k — 1)-sphere space, for
k even. Using the rational numbers or the integers mod m, n odd, as
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coefficients for cohomology, the cohomology of the base space and the
characteristic class W, determine the cohomology ring of the total
space K.

Proof. W,_,=0 since 2W,_, =0. Let U be any representative
cocycle for W, e H¥B), and let M be the algebraic mapping cylinder of
x — aU, for x € C*(B). We introduce a multiplication in M by choosing

W=0 and N = §(U-,U) or, specifically, the multiplication is defined
by

(@, Y, w) = (@v + (=1)"*Y(U—) + (=1)**'y{(wl)-,U}
+ (=1)?ywi(U=,U), (—1)*2w + yv + (=1)y(w—.U))

for (x, y) € M® and (v, w) € M?. Since 81(U~,U) = U—,U, this multiplica-
tion induces a multiplication in H*(M).

Let U'ezs e H(A — E). Then for some Be C*(A), piU=U"+38p3.
Define 7 : M?» — C?(E) by 7(x, y) = [ptx + (pfy)B]. Then 7 is allowable
and induces 7*: H*(M)— H*(E). Let (x,y) and (v, w) be p and g-
cocycles, respectively, of M and let I' = n{(x, y)(v, w)} — 7(x, y)(v, w).
Then, letting z' = pix, ete., as before, we have

I = [(=1)* %" {(piU)—"} + (=1)"*y" {(w'ptU)—,p{U}
+ (=)' w3 {(ptU)—ptU} + (= 1)+ y"v'B + (—=1)*'y'(w'—,p}U)B
+ (=1)?y'Bv + (=) y'Bw'B] .
Exactly as in the proof of Theorem 6.4, reduce this to

I' = [(—1)**'w'(B—.88) + (—1)*y'w'3 {(§8)—.88} + (—1)2*y'w'B%
-+ coboundaries .

Since (88)—(88) = 8(B—:88) + B~—1(88) + (88)—8,

I' = [(=1)?*'y'w'3(B—88) + (—1)*yw's(88—.B) + (—1)"*'y'w's"]
-+ coboundaries ,

and so I' is a coboundary since

28 = 3(B—1B) + (88)—18 — B—(3B) .
Thus »* preserves products. #* is shown to be one-to-one and onto
exactly as in the proof of Remark 6.6.

In conclusion, we would like to point out that the remarks at the
end of Chapter 3 apply also to Theorems 6.7 and 7.6. The question of
what one needs to know about H*(B) in addition to the product structure
(and various characteristic classes) to determine H*(E) seems to be

rather complicated (see [7], Part 1, and [4], expose 17). Certainly
various higher order operations are needed.
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