
ON CONTINUATION OF BOUNDARY VALUES
FOR PARTIAL DIFFERENTIAL OPERATORS

H. 0 . CORDES

Let

(1) L = Σ ai{x)dldxi + b(x)
i = l

be a first order partial differential operator acting on m-component
vector functions and defined in a bounded domain D with smooth
boundary Γ. Suppose the m x m-matrices a^x) are hermitian sym-
metric and continuously differentiable in D + Γ. Further let the m x m-
matrix b(x) be bounded and measurable over D + Γ.

Recently K. 0. Friedrichs [3] has developed a theory of boundary
value problems of the type

(L-a)u=f, xeD
{ } Tu = 0, xeΓ

where a denotes a nonvanishing real constant and T a certain m x m-
matrix defined all over the boundary T and satisfying certain further
conditions. Concurrently the author worked on the same type of bounda-
ry value problem from a different approach extending Friedrich's re-
sults to the case of nonlocal boundary conditions [1].

Study of these extensions showed that investigation of the follow-
ing problem is of basic importance for the author's method:

The question is asked whether a given m-component vector function
φ defined on the boundary Γ can be continued into the domain D to
become a classical solution u of the equation

where / is any arbitrary measurable function defined and squared in-
tegrable over D, which is not given in advance but may be defined
after φ has been fixed.

Obviously this question is trivially answered "yes" if the boundary
and the boundary function are sufficiently smooth. On the other hand
if this is not the case, counter examples can be given. It is trivial to
find counter examples for special nonelliptic systems but one also can
find some for elliptic systems. For instance if the boundary functions
uQ, vQ on the periphery of the unit circle x2 + y2 — 1 are defined by

( 3 ) u0 = a(ΰ) sin #/2, v0 = - a (#) cos #/2, 0 < ϋ- < 2π
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and if a(&) is piecewise continuous and has a jump for any #0 Φ 0, 2π,
then it will be shown in § 4 that there does not exist any couple u, v
of real or complex valued functions both being defined and continuously
differentiate in the open unit disk x2 + y2 < 1 and such that

(a) -ux + vy = /, uy + vx = g

both are squared integrable over x2 + y2 < 1;

(b) u, v are uniformly bounded on x2 + y2 < 1 and

(c) lim u(r cos ϋ, r sin ϋ) = uo(ϋ)
r->i

lim v(r cos #, r sin #) = vo(??)
r-*i

almost everywhere on 0 < ϋ < 2π.
Considering this problem more carefully it shows that the essential

reason for this continuation to be impossible is the following:
The above problem can be connected with the differential operator

( 5 ) L = aβ/dx + a2d/dy

with au a2 being the matrices

(6) ax = ( ), α2 = ( ) .v ' V 0 1/ VI 0/

Using this operator notation we can say that the equation

( 7 )

with φ, ψ being two component vector functions has no classical solu-
tion, defined in the unit disk and achieving the boundary values defined
by

(8 ) <p(x, y) = (uΌ(&), vo(&)) x = cos ??, y = sin ϋ

in the sense of the conditions (a), (b), and (c) mentioned above.

If we define

(9 ) A{ϋ) = aλ cos & + a2 sin &

(10) A(ϋ) = α2 cos ϋ - αx sin tf

then

(11) L = A(&)dldr + r-xA(&)dld& .

Hence A(#) is the coefficient of the derivative in the direction
normal to the boundary.

We note that A(ϋ) is a non-singular (even orthogonal) matrix for
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every ΰ . It will follow from our development that this is the reason why a
continuation of discontinuous boundary values becomes impossible. If
for some more general operator L the matrix which corresponds to A(ΰ)
is singular on a point or on a set of points then this set can be allowed
to contain discontinuities of certain types. And conversely it will be
our main result that if φ0 is bounded measurable only at the boundary
and if in addition Aφ0 is Lipschitz continuous then a continuation in the
above sense is possible.

The main result is stated in Theorem 3.1. Essentially we will ob-
tain the continuation by use of the elementary solution of the parabolic
equation

(12) V2u = du/dt .

We shall use this for a kind of mollifier. In §§1 and 2 we prove some
auxiliary results most of which will be known. In order to keep the
paper as self contained as possible most of the facts required have been
proved explicitely.

1. Auxiliary results. In this section we will establish some known
results which have to be used essentially in the following. Let

+ si(i.•1)

and let the

(1

be

(1

•2)

! defined

.3)

function

by

Φ(s;

s2 =

0(β;

ί) =

sl +

t) =

(Aπt)

8\ +

Φ(Sl,

-pβ Q

It is known that this function Φ(s; t) is the elementary solution of
the parabolic equation

(1.4) Ψu = Σ &u\ds\ = du/dt .
ί = l

First we note

LEMMA 1.1.

(1.5) [\s\2ke-\s\2ke-lsl2ds = 2-*7Γ-*'ίp(p + 2)(p + 4) . . . (p + 2k - 2) .

Here the integral extends over the whole (su ••, sp)-space.

The proof of Lemma 1.1 can be obtained by repeated application
of Green's formula.

LEMMA 1.2. Let
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(1.6) /(β)=/(*i , ••-,*,)

be a (scalar) complex valued bounded measurable function defined and

nonnegative for

(1.7) —oo <8j< co, j = 1, •••,# .

Let s0 be any point and let Δ denote the cube

(1.8) | 8 , - β S I < δ , i = l , , p .

Statement. If

(1.9) limδ-*[ f(8)ds = 0
δ—0 J4

then

(1.10) Km ( 0(so - s'; t)f{sf)dsf = 0

the integral in (1.10) being taken over the whole s-space.

Proof. It is obvious that we can restrict ourself to the case s0 = 0.
Now, (1.9) being satisfied, let

(1.11)

and let

(1.12) γ(δ) - δ(δ + β(8))

7(δ) is a strictly monotonically increasing function of δ, and 7(0) = 0.
Hence the inverse function δ — S(j) exists in some right neighborhood
of 7 = 0 and δ(0) = 0. Also

(1.13) y^f(s)ds ^ (δ

< β(S) > 0, δ > 0 .

Hence

(1.14)
γ-*o

Let

(1.15) 7Γ = δ/7 ,

then

(1.16) limτ(7) = oo t
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Let Δ' be the cube \s5\ < γ, j = 1, •••, p. Then by (1.15) Δ can be

writ ten in the form

(1.17) Δ = τΔ'

and (1.14) reads

(1.18) limγ-*[ f(s)ds = 0 .

Now for any given t > 0 set γ = £1/2, then

(1.19) U(s0 - s';
J

C(TJ')

where C(τJ') denotes the complement of the cube τzP with respect to
the whole s-space. But remembering the definition of Φ(s; t) we obtain
for the first integral

(1.20) < (4π)-»'27-A f(s)ds
J J '

and hence for t —• 0, i.e., γ —> 0 the first integral tends to zero by
(1.18). On the other hand f(s) is assumed to be uniformly bounded,
hence the second integral can be estimated by

e-σ2dσV .
)

But by (1.16)

(1.22) π - τ(γ) =

tends to ω at ί -> 0. Therefore the second integral also tends to zero.
This proves the lemma.

LEMMA 1.3. Let Φ(s t) be as defined in (1.3) and let

(1.23) yt(s; ί) = d/dsflis; t) .

Then

(1.24) [dsΦ(s - s'; t)Φ(s - s"; t) = (8πt)-pl2exv (-\sr - s"

(1.25) [dsW^s - s'; ^Ψ^s - s"; t)
l\l - (si - sΓ
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both integrals being taken over the whole (slf • ••, sp)-space.

Proof. We only remark t h a t

(1.26) exp(- |β - s'

= exp (-1 s' - s" \28t) exp (-1 s |2/2£)

where we denote

(1.27) h = s- l/2(β' + s") .

Therefore the integral (1.24) equals to

(1.28) (47r£)-*exp(-|s' - s"|2/8£)fexp ( - | s\2l2t)ds

and clearly

(1.29) fexp(-1 s\2l2t)ds = (2πty2 .

This proves the first formula. For the second formula we note that

(1.30) W^s; t) = -(2t)-1(Aπtyϊ>ι\ exp (-|s|2/4ί) .

Now

(1.31) (st - sί)(β. - si') = 61 - l/4(s{ - sΓ)2 .

Hence the integral (1.25) gets the form

(1.32) (2t)-2(iπt)-p exp (- | s ' - s"|2/8ί)

x |fsexp(-|s |2/2i)ds-l/4(s; - sΓ)

But

(1.33)

If we substitute (1.29) and (1.33) into (1.32) then we get

(1.34) = (ttyψπtyv'Xl - (s{ - sϊYItt) exp ( - |s' - s"|2/8ί)

which completes the proof.

LEMMA 1.4. Let

(1.35) Ω^s; t) = (2ί)"1(4τrί)-p/2 exp (-|s|2/4ί)

(1.36) Ω2(s; t) - |s|2(20-2(4τr£)-p/2 exp ( -

Statement.
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(1.37) [dsΩ^s - s'; ίjβ^β - s"; ί ) Σ (β, - βί)(βt - β'J)
J i=i

= -l/2d/dί((87rί)-^2exp(- |s' - s"|2/8ί))

\dsΩ2(s - s'; t)Ω2(s - s"; ί ) Σ (β, - 8{)(β4 - si')
J i-l

(1.38) = -lβdldtlβπt)-^{(Styes' - s"|4

2)(p + 4)} e x p ( - | s ' - s"|

Proof. We introduce the notation

(1.39) σ = (2ί)-1/2(s - l/2(s' + s")), σ* = (8ί)"1/2(s' - s")

and we observe that

(1.40) Σ (β. - βί)(β4 - βί') = 2ί(| d |2 - I σ* |2) .
ί - 1

Now if we substitute (1.36) and (1.40) into the integral (1.37) this in-
tegral equals

(1.41) (2t)-\SπH)-pl2ex^(- |tf*|2)f(|£|2 - |σ* | 2 )exp(- \σ\2dσ)

= (Sπy^iplU'^ 1 - l/16|s' - s"\H'9lM) exp(- \s' - s"\2βt)

Here for the evaluation of

(1.42)

Lemma 1.1 has been applied. Now (1.41) is equal to the derivative in
(1.37) as can be proved by differentiation. Therefore (1.37) is proved.
For the second integral we get in a similar way the expression

(1.43) (2t)-1(8π2t)'Pl2exι>(- k*Γ)

σ*|2(|ό | 2 - |<τ*|2) exp(~\σ\2)dό .

Here we were using that

(1.44) s - s' = (2tγi2(σ - σ*), s - s" = (2t)ll2(ό + σ*) .

We observe that

(1.45) \σ - σ*\2\σ + σ*|2 = (\σ\2 + |<τ*|2)2 - 4(σσ*)2

and further that

(1.46)
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- Σ j«)2J(^)2(l^l2 - k*|2)exp(

Here we used that

(1.47) J*,MI*la - \σ*\*)exp(-\σ\l)dσ = 0, i Φ k .

Substituting (1.45) and (1.46) into (1.43) we get the expression

(1.48)

+ |σ* | 4 + 2(p - 2)lp\σ\2\σ*\2)(\σ\2 - \σ*\*)e-

Further

(1.49) (I σ |4 + I σ* |4 + 2(p - 2)/p| σ |2| σ* |2)(| £ |2 - | σ * |2)

We substitute this into (1.38) and then use Lemma 1.2 to evaluate the
integral, then this integral equals

(1.50) !π-

2)(p - 4)|<7*|2-l/2(p -

On the other hand by calculating the derivative (1.38) we get the ex-
pression

(1.51) -

- l/8p(p + 2)(p + 4)ί-ί)/2"1} e x p ( - | σ *|2)

exp (—Icr*|2){|cr*|6 + l/2(p - 4)|σ*|4

2)(p - 4)| σ* |2 - l/8p(p + 2)(p + 4)} .

If we substitute (1.50) into (1.49) and then compare the obtained ex-
pression with (1.51) we find that both are equal. Therefore formula
(1.38) is proved.

2. Lemmata about special integral operators. The following lemma
was used earlier by K. 0. Friedrichs [2] It can be considered to be
a translation of a theorem about infinite matrices going back to I.
Schur [6].

LEMMA 2.1. Let

(2.1) X ( 8 ; 8 ' ) = X ( 8 U . . . , β p ; 8 ί , . . . , * ί , • • - , * ; )
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be defined and continuous for s, s' 6 Do, Do being any region of (slf , sp)-
space, and let

(2.2)

(2.3)

Statement.

(2.4)

γ = \X(s;s')\ds'

8 = supί \X(s; s')\ds .

ds\[ X(s, s')u(s')ds' 2 < γ δ f \u(s)\2ds
0 \JDO }DQ

holds for every complex valued measurable function u(s) which is squared
integrable over Do.

Proof. By Schwarz' inequality

ds\\ X(s;s')u(s')ds'2 <\ ds(\ \X(s; s')\ \u(s')\ dsj

( ds\\ \X(8'f8')\d8'\ \X(s;s')\\u(s')\*ds>\

\u(s')\2([ \X(s;s')\ds)dsr <y' \ \u(s')\2ds' .

Now let Φ(s t), Ψi(s t); Ω^s t), Ω2(s;t) be defined as in (1.1), (1.23),
(1.35), and (1.36).

LEMMA 2.2.

(2.5) J [ [ dsdt I [ψ^s - s' t)u{s')ds' * < f \u(s) 12ds

for every u(s) squared integrable over the whole s-space and having

a compact carrier. Here the integral \ dt is taken over the interval

0 < t < 1, the integrals 1 ds and I ds' are considered to be taken over

the whole s-space.

Proof. First of all by Lemma 1.3:

(2.6) J [[ dsdt I [ Ψ^s - s'; t)u(s')ds' *

= lim^o ί f ds'ds"ΰ(si)u(s") Γ dt Σ

= lim^o ί f ds'ds"Ϊ6(i7)^(s") Γ

- s'; - s"; t)

x (p - s" | 2 )exp(- |s' - s"\2/8t) .
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But as we saw in the proof of Lemma 1.4 (formula (1.51)) this integrand
is equal to

(2.7) - \βd\dt {(8πt)~Pl2 exp ( - | s' - s" 12j8t)}

and hence the right hand side equals to

= - 1/2lim [[ds'ds"vffiu(8")
s-o J J

x {(8π)-*12 exp (- \s' - s " | 2 / 8 ) - (8πε)-»12 exp ( - \s' — s" 12/8)}

< 1/2 lim f ds'u(P)[ ds"(8πε)~Pl2 e x p ( - \sf - s"\2l8ε)u(s")
ε-o J J

f ds'\ [ exp ( - |s' - s" \2l8ε)u(s")ds" Ύ*

Here we were using that the kernel exp(— \s' — s"|2/8) is positive de-
finite as can be easily seen by Lemma 1.3. Since

(2.8) ί e x p ( - \sf - s"\2l8ε)ds' - f e x p ( - \sf - s"\2l8ε)ds - (8πεY12

Lemma 2.1 yields

(2.9) (8τrε)-*> [ ds'\ J exp ( - |s f - s"\2/8ε)u(s" ' < f |u(s)\2ds .

This completes the proof of Lemma 2.2.

LEMMA 2.3. Let

(2.10) Ω(s;t) = dldtΦ(s;t)

and let v(s) be Lipschίtz continuous over the whole (sl9 •••, sp)-space and
with compact carrier.

Statement.

(2.11) [[ dsdt [ds'Ω(s - s'; t)v(s) * < p ί ^Idv

Proof. Since Φ(s;t) is a solution of the parabolic equation (1.29)
we get

(9 Ί9λ O(Q t\

and hence by Green's formula
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f ds'Ω{s - 8'\ t)v(s') = Σ ( ψi(s - s ' ;

Vi(8) =

(2.13)

where we denote

(2.14)

Consequently

(2.15) [[dsdt ί ds'Ω(s - s' t)v(s') *

< V φ (( dsdt 1 \ ds'Ψt(s - s'; t)vt(s') 2

< V Σ ( Σ (( dsdt I ί dsf¥k(s - s'; t)vt(s') ')

< ί> Σ
ί

which prove the lemma.
In the following c always denotes a constant not depending on u(s).

LEMMA 2.4.

(2.16) [[ dsdt\[ ds'Ω(s - sf; t)(st - sl)u(s') * < c f \u(s)\2ds

for any arbitrary u(s) with compact carrier and squared integrable over
the s-space.

Proof. Clearly

(2.17) Ω(s;t) = djdtΦ(s;t)

- p/(2t))exp(- |8|»/4ί)

Hence the integral in (2.16) can be estimated by

(2.18) 2 Σ (J dsdt I f ds'ί32(s - s' ί)(β ι - sί)%(s')

+ 2p2 Σ 11 dsdί 11 ds'Ω^s - s' ί)(8t - sθ^(s')

Now this can be written in the form

(2.19) 2Km \ \ dsfdsfeu(^)u(s^

[dt Σ ( dsΩ2(s - s'; t)Ω2(s - s"; t)(st - 8{)(β* - «Γ)

ε->o J J

X

ds'ds"u{s')u{s")
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x [dt Σ (dsΩ^s - s'; i)^(s - s"; t)(sι - s'^ - s'/) .

We apply Lemma 1.4 and this equals

(2.20) - lim f ds^'u^nis")
ε-*o J

x {(fcr^Exde - sT/8) - (β^-^Exds ' - s"|2/8ε)}

x exp(- I s' — s" 12/8ε)

where Bλ{ά) means a certain polynomial in a with constant coefficients
and of degree two, the coefficients only depending on p. By a treat-
ment similar to the last expression of Lemma 2.3 we get the final
statement.

LEMMA 2.5.

(2.21) [[ dsdt I f ds'\ Ω(s - s' ί) | |s - s'\ 1+*u(sf) '

<c(ε)[\u(s)\2ds

for any positive ε and for any arbitrary u(s) with compact carrier and
squared integrable over the whole space, c(ε) being a constant indepen-
dent of u(s).

Proof. Clearly it suffices to prove the corresponding inequality with
Ω(s — s' t) replaced by Ω3(s — s'; t), j = 1, 2. In order to achieve these
estimates we again use the notation (1.49) and estimate as follows:

( 9 99\ I / Z Q I O ^ Q Q''f\\\O(<2 Q " / M Γ I Q Q ' I 2 I Q « " 1 2 1 ( 1 + 0 / 2

(-|s'-s"|2/8ί)5
x {(\σ\2 + \σ*\2Y- 4 ( w * ) 2 } < 1 + ε ) / 2

( - \s' - s"\2l8t)J(s' - s"\2/8t)

where

(2.23) J( I σ* 12) = [ doe-^\{ \ σ \2 + | σ* | 2 ) 2 -

|σ* | 2 + 2 ε f dσ exp ( -

(- \s' - s"|

7 a ( e ) ί - 1 + B ( 8 τ r t ) - * / a [ | β f + s " | 2 / 8 ί ] 1 + s e x p ( - \sf - s"\2/8t) .
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Here Hoelders inequality has been employed. Hence (2.22) can be
estimated as follows:

[ [ dsdt I [ ds'

+ 7i(ε)

Ωλ(s - s' t) \s - s'\ 1+2u(s')

s'ds"ΰ(sF)u(s")(8πt)-pl2exι>(-- \s' - s" |

+ 72(ε) ['dW1 [[ ds'ds"u(s7)u{s")

x (8πt)-pi\\sf - s " | 2 /8ί) 1 + 5 exp(- \s' - sff\2/8t)

< 7(e) ΫdW1 ί \u \2ds = γ(ε)2-1 [\u{s)\2ds .

Here again Lemma 2.1 and Lemma 1.1 were employed. A quite analo-
gous argument is possible for Ω2(s — s' ί); therefore Lemma 2.5 is
proved.

LEMMA 2.6.

(2.25) f f t2dsdt [ Ω(s - s' t)u(s')dsr ' < c J | %(β) 12ds

for arbitrary ^(s) with compact carrier squared integrable over the whole
s-space.

Proof. Again it suffices to prove this inequality for Ω replaced by

Ω2 and Ω2. Now

(2.26) f dsΩ^s - s'; ίjfl^s - β"; ί)

ί dό e x p ( ~ |or|

Hence by Lemma 2.1:

(2.27) (( d8'd8"vW)u(8") \ dsΩ^s - s'; t)Ωλ{s - s"; t)

<(2t)-2[\u(s)\2ds .

Consequently

(2.28) ί ί ί2dsdέ I ί β^s - s' t)u(s')dsf *

<ll4t[\u{s)\2ds .
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Again a similar argument proves the corresponding inequality for Ω2;
therefore Lemma 2.6 is proved.

We finally use the preceding lemmata to establish

LEMMA 2.7. Let

(2.29) A(s;t) = ((aik(s;t)))

be an m x m-matrix with coefficients aik(s t) having uniformly Hoelder
continuous and uniformly bounded first partial derivatives in the
domain

(2.30) D o = {8l9 , 8 p \ t 9 - C X D < S ] ύ < + ™ , k = l , . . , p ; 0 < t < 1 } .

L e t

( 2 . 3 1 ) tt(«)

be an m-component vector function having a compact carrier and being
squared integrable over the whole (s19 •••, sp)-space. Let the vector
function

(2.32) A(8

be Lipschitz continuous over the whole (slf ••-, sp)-space.

Statement. There exist two constants cl9 c2 which are independent
of u(s) such that

(2.33) (f dsdt A(s ί) ί ds'Ω(s - s'; t)u{sf) *

< d [\u(s)\2ds + c 2 φ [\dvldst\
2ds .

Proof. We decompose as follows:

(2.34) A(s ί) ί ds'Ω(s - sf t)u(sr) = f fl(β - βf ί)v(βθd8f

+ (A(s; ί) - A(s; 0)) f Ω(s - s'; t)u{sf)dsr

+ Σ ( Ω(s - 8'; ί)(84 - sίK(s')cίs'
i-i J

+ jfl(8-s';ί)[Λ(8;0)-Λ(8';0)

~ Σ (8, - 8{

where
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(2.35) v(s) = A(s; O)u(s), u^s) = [dldSi(A(s; 0))]u(s) .

By our assumption for A(s; t) we get

(2.36) I{A(s t) - A(s 0))w\ < ct\w\

and

(2.37) I [A(s 0) - A(s' 0) - Σ (β, - s't)dldSi(A(s' 0))Ms') |
i i

<c\s - s ' | 1

Therefore we can use the Lemmata 2.3, 2.4, 2.5, and 2.6 respectively
to estimate the integrals in (2.33) for the succeeding terms in (2.34) by

either c \ \u(s)\2 ds or \\dvldSi\2ds. Hence Lemma 2.7 is proved.

LEMMA 2.8. Let u(s) be a bounded measurable m-component vector
function defined in the whole s-space and let it have a compact carrier.
Further, with the notations of Lemma 2.7, let

(2.38) v(s) = A(s;0)u(s)

be Lipschitz continuous over the whole s-space.
Let

(2.39) u(s; t) =[φ(g- s'; t)u(s')ds' .

Then

(2.40) \im u(s; t) — u(s) almost everywhere

and

(2.41) v(s) t) = A(s; t)u(s; t)

is continuous all over in the domain Do defined in (2.30) and its boundary.

Proof. Let ε > 0 be given. Since u(s) is bounded and measurable,
by Lusin's theorem a measurable set Ez of p-dimensional measure m(Es)
less than ε exists such that u(s) is continuous on the complement C(E£)
of E, with respect to the s-space. If χ(s) denotes the characteristic
function of Es and if Δ denotes the cube with sides 2δ defined in (1.8),
then by well known facts

r

o(2.42) limδ-» \ χ{s)ds =

for every s0 e C(E2 + JV8) where ΛΓε denotes a certain nullset. We will
show that for every s0 6 C(EZ + EΈ) relation (2.40) holds. This will
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prove the first statement of the lemma, because then obviously it is
possible to construct a monotonically decreasing sequence of sets which
converges toward a nullset and such that after exempting any set of
the sequence the statement (2.40) holds.

Now, s0 e C(NS + Ez) being given, decompose as follows:

[
JO(JQ)

(2.43) (Φ(s0 - s' t)u(s')ds' =\ +\ +[
J JCCES)ΠJQ J ESΓ\JQ JO

where Δo denotes the cube (1.8) with side δ = δ0. Then

(2.44) ( =μA Φ(so-s';t)ds'
J O(ES)ΠJQ JOCE~)ΠJQ

where μA(j denotes a mean value of u(s) in the cube z/0.

But since u is continuous in C(ES) Π Δ it follows that

(2.45) \μjQ — u(sQ)\ < ε'

if δ0 > 0 is sufficiently small. Also

(2.46) ί Φ(s0 - s'; t)ds' < ί Φ(s0 - s'; t)ds' - 1 .

Consequently, using (2.44) and (2.46) we get

(2.47) I ( Φ(s0 - s'; t)u{s')dsr - u(s0)
I JC(ES)ΠJO

<\μjQ — u(s0)\ + c\ Φ(s0 — sr t)χ(s')ds'

+ c[ Φ(8-s';t)ds'
J C(J0)

with c = sup|^(s) | . Finally for the second and third integral in (2.43)
we obtain estimates

(2.48)

and

(2.49)

<c [ Φ(s - s'; t)χ(s')ds'

Φ(s - s' t)ds' .

Hence by (2.43), (2.47), (2.48), and (2.49)

(2.50) [φ(s - s'; t)u(s')ds' - u(s0)

;\μJβ- u(s0) I 2e\ Φ(s - s'; t)χ(s')ds'

\
J

+ 2c \ Φ(s - s'; ί) ds' .
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Choosing first δ0 sufficiently small the first term can be made arbi-
trarily small; then keeping δ0 fixed by Lemma 1.2 and (2.42) the second
term also can be made arbitraily small by choosing t small. Also the
last term for fixed δ0 becomes arbitrarily small if t tends to zero.
Hence formula (2.40) is proved.

In order to prove the continuity of (2.41) we decompose

(2.51) v(s; t) = [φ(s - 8'; t)v(s')ds'

+ [φ(s - s'; t) (A(s; t) - A(s'; 0))u(s') dsf .

Since v(s) is assumed to be Lipschitz continuous, the first term obuiously
is a continuous function in Do. The second term is also continuous for
every t > 0. But since u(s) is assumed to be bounded we get

(2.52) [φ(s - sf; t)(A(s; t) - A(s'; 0))u(s')ds'

< ct [φ(s - s'; t) dsr + cf [φ(s - s'; t) \ s - s ' | ds'

= c"t + c'l t112 > 0, t > 0 .

Therefore the continuity is also proved for t = 0. This proves the
lemma.

3 A continuation theorem. Let D be a bounded domain of the
(xlf , $w)-space with a twice continuously differentiable boundary Γ
which consits of a finite number of simple nonintersecting hyper surfaces.
More specifically we assume that the boundary Γ has second derivatives
satisfying a uniform Hoelder condition. Let

(3.1) α4(«0 - (((^(α))), i - 1, , n, b(x) = ((bίk(x)))

be m x m-matrices with complex coefficients defined in D + Γ. Let
at(x) be hermitian symmetric and its coefficients be continuously differen-
tiable in D + Γ and let the derivatives satisfy a uniform Hoelder condi-
tion in D + Γ. Let b(x) have continuous coefficients in D + Γ'. Let
A(x), xe D + Γ be any hermitian symmetric m x m-matrix having con-
tinuously differentiable coefficients in D + Γ and such that

(3.2) A(x) = Σ at(x) vt(x), x e Γ
ί = l

where v{x) — (yγ{x), •••, vn(x)) denotes the exterior normal on Γ. We
define the differential operator Lx in ®Zχ by

(3.3) Lλu = Σ ai(x)duldxt + b(x)u(x)
1 1
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for complex valued m-component vector functions

(3.4) u(x) = (uλ{x)y , un(x))

where ®£ l is the space of all u(x) satisfying the following conditions:
( a ) u, du/dXi, i = 1, •••, n, continuous in D.
(b) u(x) uniformly bounded in D.
(c ) lims^0 u(x — εv) = u(x) for every xe Γ, except possibily on an

n-1-dimensional null set.
(d) v(x) — A(x) u(x) is continuous on D + Γ

(e) \ I Lγu |2 dx < oo.
ID

We prove the following

THEOREM 3.1. Let uo(x) be an m-component vector function which
is defined measurable and bounded on Γ and for which

(3.5) vo(x) = A(x)uo(x)

is Lipschitz continuous on Γ.
Then there exists a function u(x) e ®Z i such that

(3.6) u(x) = uo(x) on Γ .

Proof. We consider any arbitray point x0 e Γ. There is a certain
neighborhood

(3.7) Uxo={x3\x-x0\<ε}

which can be mapped by a twice Hoelder continuously differentiable one
to one mapping

(3.8) y = y(x)

onto a bounded region in the (y19 •••, i/w)-space in such a way t h a t the
point x0 goes into the origin y = (0, •••, 0), the intersection

(3.9) Γ , = Γ o Π t ^

into a certain neighborhood of (0, •••, 0) on t h e hyperplane yx — 0, and
the intersection

(3.10) DXQ = (D + Γ)n UXQ

into a certain half neighborhood of (0, * ,0) satisfying yλ > 0. We
also can assume that the Jacobian does not vanish.

(3.11) det ((dyjdx,)) Φ 0, y e DXQ + ΓXQ.
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The image y{Dx) of DXQ under this transformation contains a cube of
the type

(3.12) &XQ = {y 6 0 < Vl < η(x0), \yv\< lβη{xQ), v = 2, . . . , n] .

We denote the intersection of dXQ with the hyperplane yλ = 0 by qXo and
we set

(3.13) x(£lXQ) = O i o , x(qXQ) = q i 0

where x — x(y) denotes the inverse transformation of (3.8). There is
a hypersphere

(3.14)

such that

(3.15)

U f {X 3

= D

\x

x0 1

- X o \ <

ΊU'Xΰ<z

and such that the same inclusion still holds for η'(x0) being replaced by
a somewhat larger number.

This construction can be employed for every x0 e Γ. Since Γ is a
bounded closed set, the whole Γ can be covered by the interior points
of a finite number of spheres

(3.16) U^ v = l , . . . , t f .

There is a decomposition of the identity, i. e., a set of JV functions

(3.17) φv(x), v = l, . . . , i V

being defined and infinitely differentiable in the whole (xl9 , sθ-space
and such that

(3.18) φv(x) - 0 outside of UXv

and

(3.19) Σ^v(») = 1 on Γ .
V - l

Now any vector function uQ(x) being given which satisfies the conditions
of the Theorem 3.1, define

(3.20) uv,0(x) = uo(x)φ,(x), xeΓ, v = 1, , JV .

Clearly uVtQ(x) also satisfies the assumptions of Theorem 3.1, especially
because

(3.21) A(x)u,i0(x) = (A(x)uQ(x))φ,(x) .

We will prove that every uVt0(x) can be continued to a function u^(x) e 2)Zl
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in the sense of the assertion. This obviously will prove Theorem 3.1,
because the sum of all uv(x) will be the desired continuation of uo(x).

Now, if we apply the mapping just defined in each particular
neighborhood DXv then the vector function uVΛ){x) will be transformed
into a certain function

(3.22) wVίQ(y) = Uyt0(x(y))

defined and measurable on y(ΓXy) which contains the cube qXv. Since by
definition uVtQ(x) — 0 outside of D'Xv and since

(3.23) y(iyj c QXv

holds, the function wV)Q(y) is defined for y e c\Xv and has its carrier in
the interior of this π-1-dimensional cube. We can consider wVt0(y) as
being defined on the whole hyperplane y1 — 0 by setting it equal to zero
outside of qXv. We would like to apply the various lemmata of §2. In
order to do this we first transform the operator L1 to the new variables y.

(3.24) A = Σ 5,(2/)©/%, + b(y) ,y e y(DzJ

where

(3.25) α<(2/) - Σ dyildxhak(x(y)); b(y) - b(x(y)) .

Further we define

(3.26) A(y) = A(x(y)), yey(DXv),

Clearly it is possible to continue the matrix A(y) to a matrix function
being defined, bounded and continuously differentiable on the whole
semispace

(3.27) yλ > 0 , - O D < yv < + co, v = 2, •••, n

its first derivatives satisfying a uniform Hoelder condition in every
compact subregion. Now we remark that for

(3.28) yx = t, y2 = sly y3 = s2, , yn = sp; p = n — l

the functions wy>0(y) and A(y) satisfy every assumption necessary for
application of Lemma 2.2, Lemma 2.7, and Lemma 2.8. Hence the
function

(3.29) wv(y) = JΦ(S - s ' ; y1)wv^{sl) ds'

satisfies the following conditions:
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(a) wv, dwvldy,L continuous for yx > 0.
(β) wv uniformly bounded for y1>0.
(7 ) lim^o wv(y — εz) exists for every y with yx — 0 and every vector

zλ — 1, Zj — 0, j1 = 2, , n with the possible exemption of a
set of w-1-dimensional measure zero which is contained in qXv.

( δ) vv{y) — A(y)wv{y) is continuous for y1 > 0.

( β )

(3.30) ( (I Wv(i/) |2 + I A(y)dwvldyi |2 + ± | 0wv/0y{ |2U?/ < « .

Finally take any infinitely differentiate function 7pv{y) being = 1 on
y(D'Xv) and having its carrier in y{DXv) and take

(3.31) w,(y) = φ,(vMv)

Clearly wv(y) also has the properties (α), « ,(ε). Transform this func-
tion back to the old variables and continue it zero outside of Dx^(x).
Call the new function uv(x). Then it is clear that

(3.32) uv(x) = uVi0(x) on Γ .

Also uv(x) satisfies the conditions (α), (6), (c), and (d). Since

(3.33) I L,uv |
2 < c\\ A(y)duvldy11

2 + Σ | du./dy, \2+\u, | 2 Ί

(3.30) yields the condition (β) too. Hence v̂(α?) is the desired continua-
tion and Theorem 3.1 is proved.

4 A counterexample* Let D be the unit circle x\ + x\ < 1 and
accordingly Γ be the periphery of the unit circle x\ + x\ — 1. In D we
consider the operator defined in formula (5) of the introduction

(4.1) Lλ = a1djdx1 + a2d/dx2

with

(4.2) α, = ( " J 5 ) , «, = («

Then the equation

(4.3) A % = /

for the 2-component vector functions

(4.4) u= {uu u2}, / = {/lf/a}

defined in ΰ + Γ is equivalent to the system
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(4.5) -dujdx1 + du2/dx2 = fx

dujdx2 + du2/dx1 = f2 .

Hence for real valued ult u2 we get

(4.6) [ (fl + fl) dx = f (dujdx, - dujdx2)
2 + (Θujdx, + du./dx,)2 dx

= \ [(θujdxj* + (dujdx,)2 + (dUoldXif + (dujdx,)2] dx
)D

+ 2\ (dujdx2du2/dx1 — dujdxβujdxz) dx .

Now, assuming u twice continuously differentiable in D + Γ we can
apply Green's formula to the last integral:

(4.7) \ (du1/dx,du2ldx1 — dujdxfiujdxz) dx

— I u1(x2du2ldx1 — x1du2ldu2ldx2) dσ .

Hence the last integral in (4.6) is equal to

(4.8) 2ί %ix2du2\dxx - xβUo/dXo) dσ = - 2Ϋ*uβujdd dϋ
J Γ Jo

where

(4.9) ΰ — arc tg xjxι .

Now we impose on u the condition

(4.10) ux sin #/2 + u2 cos ι?/2 = 0 .

Then

(4.11) -
Jo

do1 = Iβ^ul sin-2 <?/2 dt? .
Jo

This integration by parts is legitimate because the condition (4.10) implies
u2 = 0 at t? = 0, 2ττ. Since % is supposed to have continuous first
derivatives it follows that ul sin~2<?/2 remains bounded also for ΰ = 0, 2π.
Consequently

(4.12) [ \ L λ u \ 2 d x = [ \ f \ 2 d x

= \ [(dujdx,)2 + (dujdx,)2 + (dujdx,)2 + (dujdx,)2] dx

Since the last integral is nonnegative we obtain
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(4.13) ( I L{Λ |2 dx > [ [(dujdxtf + (dujdxtf
JD JD

+ (dujdxj2 + (du2ldx2)
2] dx .

Next assume φ = {φlf φ2} to be some function satisfying the conditions
(a), (b), (c), and (e), of Theorem 3.1 applied to the special operator Lλ

defined in (4.1). Also assume that on the boundary Γ\

(4.14) φx = a(β) cos #/2, φ2 = - a(β) sin #/2, 0 < ϋ- < 2π .

Let a(β) be real valued and piece wise continuous but not continuous.
Then we will show that this leads to a contradiction.

First of all the vector function φ can be assumed to be real valued
in D + Γ because any complex valued such ψ being given, \β{φ + ψ)
would satisfy the same conditions as φ and would be real valued.

Now, if L_ in ®z_ denotes the restriction of the operator Lλ in ®Zi

to the space ®z_ of all functions twice continuously differentiable in
D + Γ and satisfying the boundary conditions (4.10) then we obtain a
dissipative operator in the sense of R. S. Phillips [4], which is characterized
by local boundary conditions. For the matrix

2

(4.15) A = Σ aivi — aλ cos ϋ + a2 sin ϋ

we get the representation

/ - cos i? sin #\ /sin2 #/2, sin ϋ-β cos ϋβ\
(4.16) A(ϋ) = ( ) = ( )
v v V sin i? cos i?/ Vsin #/2 cos #/2, cos2^/2/

/cos2 */2, - sin #/2 cos ??/2\

"~ V-sin d-β cos */2, sin2 ?9/2/

and it is easy to see that the two matrices of this last decomposition
are identical with the matrices Po and No respectively which project
orthogonally onto the spaces of all eigenvectors corresponding to the
eigenvalues + 1 and —1 respectively. The boundary condition

(4.17) Pou = 0 on Γ

obviously is equivalent to the condition (4.10). Hence the inner product
uAu is <0 for all u satisfying the condition (4.17) (or (4.10)). Hence

(4.18) Q(u, u) = 2Re\ uL.udx = f uAudσ < 0 ,
JD JΓ

which proves that L_ in ®z_ is dissipative. On the other hand in the
sense of K. O. Kriedrichs [3] this boundary condition is "admissible",
because
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(4.19) A = Po - N09 Po > 0, No > 0 .

Also the rank of A is constantly equal to two.

Hence if L ί in ®£* denotes the adjoint of L_ in ®x_ with respect

to the inner product

(4.20) <u, v> = j uv dx
D

and if L+ in ® z + denotes the operator analogous to L_ in ®z_ with the

boundary condition (4.17) replaced by Nou — 0, # e F , then

(4.21) Lϊ* = L* .

But >̂ is a function of LJ because from the conditions (a), (b), (c) and
(e) it follows immediately that

(4.22) <cp, Lu> + <Jjψ, u) = \ ψAu dσ = 0

for all w e ® z . Hence (4.21) implies

(4.23) 99 6 ® z * * .

Therefore a sequence £>w e ^L_ exists such that

(4.24) ζcpn — φ, φn — φy > 0, ^ > oo

(4.25) <L X (^ - φ), Liφ" - <p)>—-> 0, n

Now (4.25) implies

(4.26) (L.iφ71 - φm), Lλ{φn - ^>m)> > 0, n, m > oo .

Let

(4.27) φw > m = φn — ^>m

then (4.13) yields

(4.28) <dφnmjdxu dφnmldx,y + ζdφnmldx2, dφnmldx2> > 0fn,m-+ oo .

Hence dφnjdxlf dφnjdx2 converges in the square mean. Let

(4.29) dφn/dx1 > ψ, n > oo ,

and let u be any vector function continuously differentiate in D + Γ
and vanishing outside of some circle | x \ < r < 1. Then

(4.30) <dφnldxlf u>=- < y

For n —• co we get



ON CONTINUATION OF BOUNDARY VALUES 1011

(4.31) <9?, u) = — <(p, dujdx.y .

But <p is continuously differentiate for | x | < 1. Hence, using the
special properties of u, we get

(4.32) ζψ, U> = - <^, dujdx.y =

Or

(4.33) <ψ - g^/S^, w> = 0

for all u with the above properties. But the set of all such u is dense
in the space L2; hence

(4.34) ψ

In the same manner we obtain the relation

(4.35) dφnjdx2

Hence the derivatives dφ/dxlf dφ/dx2 are squared integrable and the
Dirichlet-integral of φ exists.

But it is a well known fact that a function φ with the properties
(a), (b), (c) which is piece wise continuous on the periphery of the unit
circle and has a jump, cannot have the Dirichlet integral existing.
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