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SPECTRAL THEORY

ANGUS E. TAYLOR

l Introduction and Summary. Consider a bounded linear operator
A acting in a complex Banach space X having some nonzero elements.
In this paper we shall assume that σ(A), the spectrum of A, consists
of 0 and the distinct points λ1? λ2, λ3, , where Xn Φ 0 and \n -> 0 as
n —• oo. We shall denote by [X] the Banach space of all bounded linear
operators mapping X into itself, with the usual operator norm. The
inverse operator (λ — Ay1 = Rκ(A) (the resolvent of A) is an analytic
function from the resolvent set p(A) (the complement of o(A)) to [X].
We shall assume that each of the points Xn is a simple pole of Rλ(A).
Let En be the residue of Rλ{A) at λn. Then it is known, from general
spectral theory, that

(1.1) El = En , EnEm = 0 if m Φ n ,

and further, that En Φ 0, En Φ /. It is also important to note that
AEn = EnA. For these facts and other relevant parts of general theory
we refer the reader to Chapter 5 of the author's book [3].

By using the extension of Mittag-Leffler's theorem to vector-valued
analytic functions, along with an inversion to convert Rλ(A) into a meromor-
phic function, and then converting back again, we find that Rλ(A) can
be expressed in the form

(1.2) Rλ(A) = Σ *"" Λ En + Φ{\) ,
»•=! λ V »(λ ~ Xn)

where each υn is a nonnegative integer and Φ is an entire function of
1/λ. The series involving the En'$ converges (in the uniform operator
topology) uniformly on each compact set in the complement of σ{A). It
turns out that υn > 0 for all sufficiently large values of n. Also, the
coefficients in the expansion of Φ as a power series in 1/λ are expressi-
ble in terms of A and the En's. The details of all this are given in § 2.

The main purpose of this paper is to investigate the particular cases
in which υn is the same for all values of n. The case υn = l is the
simplest and the most fundamental. In that case the series in (1*2)
takes the form

Σn—l A^Ai — Xn)
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In a certain sense this series supplies a notivation for the entire in-
vestigation, for a series of this form occurs in the theory of compact
self-ad joint operators in Hubert space.

Let us suppose, in fact, that T is a compact self-ad joint operator
on a complex Hubert space X of infinite dimension, and let in have dis-
tinct nonzero eigenvalues λx λ2, λ3, . Then, if En is the projection
associated with the spectral set consisting of the single point λn, we
can represent T in the form

(1.3) Tx = Σ,\nEnx .
71 = 1

The resolvent of T has the representation

(1.4) (λ - T)-*x = 1 x
λ

+ Σ Γ
λ n=i\_X — λn

For reference, see §6-4 in [3]. These series representations are also
valid in the forms

(1.5) T = ±XnEn,
W = l

(1.6) (λ - Γ)-1 = -f + Σ
λ
λ w=iL λ — > _

with convergence in the sense of the operator norm. To prove (1.5),
for example, we make use of the fact that in this situation the En's
themselves are self-ad joint and mutually orthogonal. Hence

/ oo co

= I 2-1 K&kX , ΣΛ '
\k=n+i j=n+l

CO CO

Σ "\ 2 / Ίp rut /v»\ '̂ Γ"ί \ 2 II Tp nn I 12 «---" | |

λ , k ( i L k x , x ) = 2 J ̂ fc II &k& II ̂ 1 1
k=n+l k=n+l k>n

The last inequality results from the fact that

Σ l ! 777 r I I 2 < II r I I 2

fc=l

Since λw —> 0, it follows that

sup \\Tx — Σ λ,jfe-E7fcί»—»• 0

as n—>oo; thus (1.5) is proved. The proof of (1.6) is entirely similar
in principle.

Let us now return to the general context of (1.2). Our first main
theorem is concerned with the case in which υn = 1 for all values of n
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(actually if we merely assume that υn :g 1 for all values of n, we can
alter the function Φ slightly in (1.2) and thereby arrange to make υn = 1
for every value of n).

FIRST MAIN THEOREM. Let A be a bounded linear operator on the
complex Banach space X, with spectrum and spectral projections {En}
as set forth at the beginning of this section. Suppose that the resol-
vent Rλ(A) is representable in the form

(1.7) Rλ(A) = \

where Φ is an entire function of 1/λ. Then there exist bounded opera-
tors Bλ, Cx such that Bλ and Cx commute with A, B1C1 — C1B1 = 0, Bλ has
the same spectrum as A, Cx is quasi-nilpotent and hence has spectrum
consisting of the single point 0, and, finally,

(1.8) A = B1 + C1.

Furthermore,

(1.9) Bλ= ±XnEn,

(1.10) RάBJ = f +

and

(1.11)

The proof is given in §3.
The second main theorem is concerned with the case in which υn = p

(where p > 1) for all values of n. In other words, the spectrum of A
is as before, but it is assumed that for some p > 1 the resolvent of A
is expressible in the form

(1.12) Rλ(A) - Σ ΛP(Λ

K , , En + Φ(X) ,
w=i XP(X — λ j

where Φ is an entire function of 1/λ.

SECOND MAIN THEOREM. When Rλ(A) is expressible in the form
(1.12), the first main theorem is applicable to the operator Ap, and the
result is that there is a decomposition

(1.13) Ap = Bv + Cp ,
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where

.14; n p — 2-1 λ>n£!jn ,

and the relations between Av, Bp, Cp are the same as the relations between
Af Blf C1 in the first main theorem, and

(1.15) R,(BP) = 1 + £ Γ ^ ^ - v K

The proof of this second theorem is given in § 4.
Subject to the general conditions on A stated at the outset of the

paper, there is a sort of " simple canonical form of order p" which Rλ(A)
may take under certain conditions. It is

(1.16) Rλ(A) = 1 + ̂  + ••• + - 4 ^ + Σ ΛPίΛ

X\
λ λ 2 Xp n=l λ*(λ — λ j

The infinite series here may also be written in the form

n=iL λ — λ w λ λ 2 λ

When (1.16) holds we also have

(1.18) A» = ±X*kEk.

It is shown in § 5 that, conversely, if υn = ^ for all n (where p ^ 1),
and if (1.18) holds, then Rλ(A) can be expressed in the form (1.16).

When (1.16) holds for a certain value of p, it also holds for the
next larger value of p. This is clear from (1.17) and (1.18). If (1.16)
holds and if p is minimal—i.e. if (1.16) does not hold with p replaced
by a smaller exponent q, we shall say that A is of finite type p. There
is a growth condition on Rλ(A) which insures that A shall be of finite
type not exceeding p. This is the subject of our third main theorem.

THIRD MAIN THEOREM. Suppose there exists a sequence {Cn} of
rectifiable closed Jordan curves of the following sort:

(1) The origin and Xn+1, λwf2, are inside Cn, but X19 , Xn are
outside Cn;

(2) if εn = max 11 \ for t on Cny then εn —> 0 as n —> oo, and l(Cn) =
O(εw), where l(Cn) is the length of Cn\

(3) if Mn = max || Rt(A) \\ for t on Cn, then εp

n

+1 Mn — 0 as n -> oo
here p denotes some positive integer.

Under these conditions A is of some finite type not exceeding p.
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This theorem is proved in § 5.
The last two sections of the paper (§§ 6,7) are concerned with

operators of the form

where the series converges in [X\, the En's are mutually orthogonal
non-zero projections, and {X}n is a sequence of distinct constants (which
must necessarily converge to zero). In §6 two different kinds of con-
ditions are given which are sufficient to insure that B is of finite type
1. One condition bears on the sequence {Xn}. It is that the series

Σ l λ n + 1 - λ n |
W = l

be convergent. This is of course satisfied if the λw's approach 0 monotone-
ly along some ray. The other condition bears on the projections En.
It is that for all finite sets of constants clt , cn

where M is some absolute constant. This condition is satisfied (with
M = 1) if in particular the space X is a Hubert space and the projec-
tions are symmetric and mutually orthogonal.

In § 7 some unsettled questions regarding B are raised, for the case
in which the foregoing conditions are not satisfied.

Our first main theorem is somewhat reminiscent of Dunford's theory
of spectral operators, as developed in [2], because a spectral operator,
in Dunford's sense, admits a decomposition as a sum of a spectral operator
of scalar type and a quasi-nilpotent operator. However, the operator Bx

of (1.9) need not be a spectral operator, for examples may be constructed
in which the norms {||.£7W||} form an unbounded sequence.

2. The Mittag-Leffler expansion of the resolvent. Let / be a func-
tion which is analytic in the entire complex 2-plane except for simple
poles at a19 α2, α8, , where an Φ 0 and an —* oo. The values of / are
assumed to be in a complex Banach space. Let the residue of / at an

be rn. According to the classical theorem of Mittag-Leffier, whose state-
ment and proof remain valid wτhen the function values are in a Banach
space, there exists a sequence {υn} of nonnegative integers such that if

(2.1) pn(z)= - - I » f l + -*- + . . . H

then
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(2.2) f(z) = Σ \—^- - pn(z)~] + Φ(z) ,
»=iL z — an J

where φ is an entire function of £ and the first series in (2.2) converges
uniformly on each compact set which contains none of the αw's.

It may be noted that pn(z) is a partial sum of the Taylor's series
of the function

z - an

when it is expanded in powers of z.
Let us now consider Rλ{A) as a function of λ, where A is the

operator described in the first paragraph of § 1. The function values
here are in [X], If we set z — 1/λ and f(z) = i?λ(A), the fact that
Rλ(A) has a simple pole with residue En at λw is readily found to mean
that / has a simple pole of residue ( — llX2

nEn) at z = l/λΛ. When we
write

in (2.2), we find, after some simplification,

(2.3) Rλ(A) = Σ [v^—- - P-Wlί?. + Φ(X) ,
n=l\_ λ — Xn J

where <P is an entire function of 1/λ, and

(2.4) P»(λ)=

lθ if υn = 0 .

It is an easy matter to verify that

1 - P . ( λ ) =
λ - λ, Λ W λw»(λ - λn) '

consequently (2.4) and (1.2) are equivalent.
We shall refer to (2.3) or (1.2) as a Mittag-LefHer development of

Rλ(A). It is not claimed to be unique, since there is considerable freedom
in the choice of the integers o19 υ2f .

The fact that Rλ(A) is a resolvent has many implications for the
structure of the series (2.3). We shall proceed to explore these im-
plications.
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LEMMA 2.1. It follows from (1.2) that υn > 0 for all sufficiently
large values of n.

Proof. We have 11 En \ | ^ 1 as a result of the fact that En is a pro-
jection. Now

Km (^2
X Xn

as a result of the convergence of the series in (1.2). Since Xn—*0, the
assertion of the lemma must be true, if we are to avoid a contradiction.

Let us now express Φ(X) in the form

(2.5) Φ(X) = Σ % ,

where the series converges for all nonzero values of λ. We shall see
how to obtain information about the Qn's by contour integration.

LEMMA 2.2. The coefficients Qn in (2.5) are given by the formulas

(2.6) Qo = 0 ,

(2.7) Qx = / - Σ En ,
vn=0

(2.8) Qfc+1 = A" - Σ λ*Sn , (k ^ 1) .

o/ ί^β implication here that, if there are infinitely many υn

not exceeding h, the series in (2.8) is convergent.

Proof. We know that

(2.9) Rλ(A) = L + A + d! + ...
λ λ2 λ 3

when | λ | > | |A | | . Hence, integration around a very large circle cen-
tered at λ = 0 gives

(0 if k = - 1 ,

(2.10) - L - (λfcΛλ(A)rfλ == \l if fc = 0 ,
2 ^ J

(Afc if fc ^ 1 .

On the other hand, we can compute the integral in (2.10) by using (2.3)
and (2.5). The calculations are simple, and formulas (2.6), (2.7) and (2.8)
are the results.
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3. The case υn <̂  1 for all n. In this section we assume that un

never exceeds 1. We may just as well assume that υn = 1 for all values
of n, for, since there can be only finitely many integers n for which
υn = 0, it is easy to see with the aid of Lemma 2.2 that we can write

(3.1) Rλ(A) = 1
XX »=i L λ - λM λ J n=i Xn+

Let us define an operator Bλ by the formula

(3.2) Si = Σ ^
ίl = l

The convergence of this series (in the uniform operator topology) is as-
sured by Lemma 2.2.

LEMMA 3.1. Bλ has the same spectrum as A, and

(3.3) Λλ(B0 = 1 + Σ Γ - ^ — ~ -f "k. .
A, τι=i L λ> — λjn λ> J

Proof. Let us denote by Sλ the right member of the formula (3.3);
it is defined when λ e p(A), where p(A) denotes the resolvent set of A.
From (1.1) we see that

(3.4) EmSκ = ̂ L

Moreover, S λ commutes with each JE7W and hence with Bτ. Using (3.4)
we see that

n&=1 w ^ 1 λ — λ m

But

sλ = L + ~
λ w=i χ(Λ, — Xn)

Hence

j5iSA = λί Sλ — — J = XSλ — 7,
\ X /

or

(λ - BOSx = J .

Since βj and S λ commute, it now follows that (λ — B)-1 exists and is
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equal to Sλ when λ e p{A). Hence p(A) c p{Bλ).
It remains to prove that p{B^) c p(A), or what is the same, that

o(A) c σ(B1). Now, elements x in the range of En are characterized by
the relation Enx = a\ Since En Φ 0, we can choose an α? of this kind
such that x Φ 0. Then

5 ^ = BxEnx = Σ XkEkEnx = λ J£wίc = λnα .

This shows that λn is an eigenvalue of JBle Since the spectrum of an
operator is a closed set, it follows that o{A) c σ(B1). This completes
the proof of the lemma.

Proof of the first main theorem. We now come to the proof of this
theorem, whose statement appears in § 1. Let us define

Cλ = A - Bλ .

It follows readily from (3.2) and (1.1) that

(3.5) Bk = Σ λSi&n if & ̂  1 .

From (3.1) and Lemma 2.2 we see that

(3.6) Λλ(A) = /eλ(B1) + Σ ^ ,

where

(3.7) Qw + 1 = A» - B? ifn^l.

We observe t h a t Q2 = A — Bj = Cx. We shall prove t h a t

(3.8) Q2B, = ^ Q 2 = 0 ,

and t h a t

(3.9) Qn+1 = Qn

2 i ί n ^ 2 .

To prove (3.8) we start by observing that, since λn is a first-order
pole of Rλ(A), we have the relation

(3.10) (A - Xn)En = 0 ,

This is because (A — Xn)En is the coefficient of (λ — Xn)~~2 in the Laurent
expansion of Rλ(A) about the point λ = Xn; see formulas (5.8.1) and
(5.8.6) in [3], p. 306. The same reasoning, or a direct argument from
(3.2), shows that

(3.11) (Bx - Xn)En = 0 ,
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It follows that

Q2En == (A - Bλ)En = 0 ,

and from (3.2) we then deduce Q2B1 = 0. Since En commutes with A
and Blf (3.8) is now proved.

From (3.6) we see that

(3.12) / = (λ - A)Rλ(B1) + (χ-A)±-Qf

when λ e p(A). Now A = Bx + Q2, and hence

(λ - A)ieA(52) - (λ - Bx - QOΛxίBJ = I - Q,Rλ{Bλ) .

Going back to (3.12) and using the Neumann expansion for Rλ(BΎ)y we
find that, for all sufficiently large values of λ,

On comparing coefficients, we obtain the recurrence relations

(3.13) Qn+1 = (B, + Q2)Qn i ΐ n ^ 2 .

In view of (3.8), the truth of (3.9) now follows at once by induction.
The series

V OIL

now takes the form

(3.14) ^ C f

ί^i Xn+1

Since the series converges when X Φ 0, it follows that Cλ is quasi-nil-
potent, i.e. that

and that σ{C^ is the single point 0. Moreover, in view of the form of
the Neumann expansion, the series in (3.14) has the value

λ>

In connection with these arguments, see §5.2 of [3]. The proof of the
first main theorem is now completed,
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4. The case υn = p for all n. According to Lemma 2.2, the form
of Rλ(A) in this case is

(4.1, RλiA) = j . + A + ...+A^

- Xn X Xp

2 J

We remark in passing that if we merely assume υn ^ p for all n,
can still be brought to the form (4.1), so that one might as well

assume υn = p for all n. Also, the expansion (4.1) will be valid if
limsup^oo uw = p, for in that case υn ^ p when n is sufficiently large,
and it is possible, by a finite number of rearrangements, to arrange
matters just as they would be if we had υn rg p for all values of n.

Now we define an operator Bp by the formula

(4.2) B, = ΣλS£7 n,
n = l

and we proceed to prove the second main theorem, as stated in § 1.
By the spectral mapping theorem (see § 5.71 of [3]) we know that

σ(Ap) consists of 0 and the points λf, λj, λf, . We shall compute the
resolvent of Ap. If λ is different from 0 and all of the Xp

n, we know
by the operational calculus that

(X - A*)-1 = /(A), where f(t) = (λ - tp)~ι

see §5-6 of [3], especially Theorem 5.6-B. Thus

(4.3) (λ - A-)-

where the integral is extended over the boundary of a Cauchy domain
which contains o(A) and whose closure excludes all the pth roots of λ.
When we use (4.1) to give Rt{A), and compute the integral in (4.3) by
term-by-term integration, the result is

(4.4) (λ - A*)-1 -
λ ^iLλ-λ; x

r=l Xr+

It is a simple matter to show that the series with index n converges
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uniformly on compact subsets of ρ(Ap), while the series with index r
converges whenever X Φ 0.

A comparison of (4.4) and (3.1) now shows that the first main
theorem is applicable to Ap. We have Ap, Xp

nj Bp in place of A, xn, Bu

respectively. There is one minor point which calls for comment. The
points λf, λf, need not all be distinct, even though the points
X19 X.2, are all distinct. This is not an essential matter, however. If
several of the Xζ are the same, the terms which involve them can be
combined, and the sum of the corresponding En's is a projection. This
concludes the proof of the second main theorem.

5, Operations of finite type p. Let us start out by assuming that
A is such that on — p for all values of n, so that (4.1) holds. Let us
also assume that

oo

(5.1) Λ* — 2J *>%& ,

so that the Cp of (1.13) is 0 in this case. By (3.10) we know that
AEk = XkEk. Hence from (5.1) it follows by induction that

if n ^ p. We then see from (4.1) that Rλ(A) has the form

+ + +

which means that A is of finite type ^ p (see § 1). Conversely, from
(5.2), written more conveniently in the form (1.16), we readily deduce
(5.1) (multiply by Xp and integrate around a contour enclosing σ(A)).

Let us now undertake the proof of the third main theorem, as
stated in § 1. The motivation for this theorem is an expansion theorem
for meromorphic functions, due originally to Cauchy, but conveniently
accessible in Titchmarsh's text [4] (§ 3.2 and § 3.21).

Let X be confined to a compact set S lying in ρ(A). Let Γ be a cir-
cle with center at the origin, large enough to enclose S, σ(A), and all
the contours C19 C2, . Consider the integrals (in the counterclockwise
sense)

on x —

2τrτ JΓ X — t
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Evidently J — In is equal to the sum of the residues of the integrand
at the points λ, λt, •••, \.n. This sum of residues is

Σfc=i λ — λ

We can calculate the value of J, for on Γ

t

and

λ - t \ ' t ' t2

It then follows readily that

/rr O\ T (A V — l I "\ Λ 13 — 2 I i N Ό—1 T\

(O.o) J = —(A-^ -j- λA^ -f- + A»̂  i ) .

Hence

(5.4) X { ) ^ ^ y

We shall now prove that In —• 0 uniformly with respect to λ in S. This
will complete the proof of the third main theorem. Using the notation
established in the theorem itself, we see that

2π(\ λ I - en)

provided that en < | λ |. Since i(Cw) = O(εM), εw —»• 0, and S is a compact
set not containing the origin, the result now follows from the assump-
tion that εp

n

+1Mn->0.

6, Some sufficient conditions for operators of finite type 1. Let us
suppose that E19 E21 are bounded projections on X such that En Φ 0
and EJEn = 0 if m Φ n. Then En Φ I. For, En = I for some n would
imply 0 = EnEnΛ1 = S n + 1 . Next, let us suppose {λw} is a sequence of
distinct constants such that the series

is convergent in [X], (This implies that Xn—>0.) Let

(6.1) B =
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We ask the question: What further conditions, if any, are required
to assure us that B is of finite type 1? The necessary and sufficient
condition for this is that all points except 0 and the λ '̂s be in p(B),
and that

(6.2) Rλ(B) = 1 + Σ Γ—^— ~ f "k .
λ w=iL X — Xn λ J

The proof of Lemma 3.1, if we re-read it in the present context, allows
us to assert the following:

LEMMA 6.1. With the assumptions made in the first paragraph of
this section, the operator B defined by (6.1) is of finite type 1 if and
only if the series on the right in (6.2) converges uniformly on compact
subsets of the X-plane which do not contain 0 or any of the λn's.

We shall give two types of conditions which enable us to utilize the
foregoing lemma.

THEOREM 6.2. In addition to the assumptions made in the para-
graph leading up to (6.1), let us assume that the series

2-1 I ^71 + 1 λ'W I

is convergent. Then the operator B defined by (6.1) is of finite type 1.

Proof. The argument is like that in certain classical tests for non-
absolute convergence (see, e.g. [1], pp. 25-26 and pp. 98-100). Let S
be a compact subset of the plane of the type mentioned in Lemma 6.1.
Then there is a positive constant M such that | (λ — λj"11 ^ M for all
n if λ is in S. Let

rk = Σ KK • A; = 1. 2,

Let

X Xn

Then I vn(X) | <; M when λ is in S, and it is easy to see that

(6.3) Σ I *>»+i(λ) - *>»(λ) I ̂  M2 Σ I λw+1 - λn

It suffices to prove that the series

n=\
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converges uniformly on S. Now, if p ^ 1,

P

fc=l

and so

P

Σ v

^ w 4
^ sup | |r f c

£ sup II rk

v»+ 1(λ)-v l,(λ)| + 2Mf

M2 Σ I λM+1 - λ j + 2M |

Since rn —> 0 as n—>oo, this finishes the proof.
Observe that the geometrical meaning of the convergence of the

series (6.3) is that the polygonal path formed by joining Xlf λ2, λ3, in
succession shall have finite length. This is true, in particular, if the
λw's approach the origin monotonely along some ray.

THEOREM 6.3. Suppose that {En} is a sequence of projections on
the Banach space X, of such a character that En Φ 0 and EnEm = 0 if
m Φ n. Suppose further that there is some constant M such that, for
every finite set of constants clf , cn, we have

(6.4) ^ sup I ct

Then, if {Xn} is any sequence of distinct constants such that Xn —> 0,
the series

(6.5) — Σ XnEn

converges in [X] and defines an operator of finite type 1.

Proof. The convergence of (6.5) results from (6.4), for, it m < n

I I n

Σ ^kEk ^ Λf sup I Xi I ,

and the Cauchy convergence condition is satisfied, since Xn —> 0.
Now let S be any compact set which does not contain 0 or any of

the λw's. Then

inf I λ - Xn I = δ > 0

Hence, for λ e S and m < n

(X e S, n = 1, 2, •••) .
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Σ
X,

X - λ Λ

The uniform convergence on S of

M
S J 4 sup I λ J .

y A'n
 E

is thus established, and the conclusion follows from Lemma 6.1.
The condition (6.4) is automatically satisfied (with M = 1) if {En}

is a sequence of nonzero mutually orthogonal projections in Hubert space.
For, in this case we can first of all establish that

(6.6)

for each x. In fact, let ,

Σ l l ^ i l 2 x ||2

v , = • if Ekx Φ 0, vk = 0 otherwise .

The (vj, Vfc) = 0 if j Φ k, and || ^ || is either 0 or 1. Hence, since an
easy calculation shows that (a?, vk) = || ^ x ||, we have

V I
Z-i I
n=l

r I I 2 — V I ί > 7 ; Ί I 2 < II r I I 2

*' II —' 2 - ι I K^y υ n ) I = 1 1 ^ 1 1 >

by the Bessel inequality. It now follows, using (6.6), that

From this we infer

7, Some open questions. Let us consider an operator B as defin-
ed by (6.1), and let us assume nothing more than is specified in the first
paragraph of § 6. It is not clear that this is enough to give us an
operator of finite type 1. Indeed, the nature of σ(B) is not clear. We
can prove that each λn is an eigenvalue, but it is not evident that a λ
different from 0 and all the λw's is in p{B). We shall prove, however,
that for such a λ the range of λ — B is dense in X and consists of
exactly those elements y e X for which the series
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(7.1) Σ ^Σ

is convergent. Moreover, such a X is not an eigenvalue of B.

Proof of the italicized assertions: With X as indicated, suppose y
is in the range of λ — B, so that (λ — B)x = y for some x. Then

Xx — Σ λ,n2?nίc = y ,
W = l

XEjX — XjEjX = JE77-7/ ,

F r - ^

Therefore

n=i X — Xn

or

(7.2) x = ly + Σ ^
λ »=1 λ ( λ — Xn)

Thus the series in (7.2) converges, and (7.2) defines x as the unique
vector such that (λ — B)x = y. This guarantees that X is not an eigen-
value of B.

Suppose now that y is a vector such that the series (7.1) is con-
vergent (λ being fixed, different from 0 and all the Xn's). Define a vec-
tor x by the series (7.2). A direct calculation shows that

whence

^ + Σ T
X n=ι X

or (λ — B)x = y.
We have now proved all of the italicized assertions except the as-

sertion that the range of X — B is dense in X. To do this we consider
the first and second conjugate spaces X', X", and the conjugate operators

n—l
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The original assumptions about B and the En'& carry over to these con-
jugate operators, and, accordingly, a λ different from 0 and all the λw's
is not an eigenvalue of Bf or of B". Now, if the range of λ — B were
not dense in X, this would imply that λ is an eigenvalue of B' (see
Theorem 4.6-E, p. 226, or the state diagram, p. 237, in [3]). Hence the
range of λ — B is dense in X, and likewise the range of λ — B1 is dense
in Xf. A perusal of the state diagram in [3] now shows that a λ dif-
ferent from 0 and all the λw's, if indeed such a λ can be in σ(B), is in
the continuous spectrum of B. That is, λ — B has range dense in X,
but the inverse is discontinuous. Likewise for λ in relation to £>'.

Supplementary note: After this paper had been accepted for pub-
lication, a discussion of its contents with Mr. Earl Berkson led him to
settle the problems of this final section very neatly. His results are in
the immediately following paper. Mr. Berkson also spotted some am-
biguity in the concept of an operator of finite type. His comments of
clarification, and his interesting example of a resolvent with a Mittag-
Leffler development which is not unconditionally convergent, should be
noted by readers of my paper.
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