THE MULTIPLICATIVE SEMIGROUP OF INTEGERS MODULO m

EDWIN HEWITT AND H. S. ZUCKERMAN

1. Introduction. Throughout this paper, m denotes a fixed integer >1. The set of all residue classes modulo m is denoted by S_m . For an integer x, [x] denotes the residue class containing x. Under the usual multiplication $[x] \cdot [y] = [xy]$, S_m is a semigroup. The subgroup of S_m consisting of all residue classes [x] such that (x, m) = 1 is denoted by G_m .

We write $m = \prod_{j=1}^r p_j^{\alpha_j}$, where the p_j are distinct primes and the α_j are positive integers. Following the usual conventions, we take void products to be 1 and void sums to be 0.

In 2.6-2.11 of [2], the structure of finite commutative semigroups is discussed. In § 2, we work out this structure for S_m . In § 3, we give a construction based on [2], 3.2 and 3.3, for all of the semicharacters of S_m . In § 4, we prove that if χ is a semicharacter of S_m assuming a value different from 0 and 1, then $\sum_{[x] \in S_m} \chi([x]) = 0$. In § 5, we compute $\chi([x])$ explicitly in terms of the integer x, for an arbitrary semicharacter χ of S_m . In § 6, we discuss the structure of the semigroup of all semicharacters of S_m .

Our interest in S_m arose from seeing the interesting paper [4] of Parízek and Schwarz. Some of their results appear in somewhat different form in § 2. Other writers ([1], [5], [6], [7]) have also dealt with S_m from various points of view. In particular, a number of the results of § 2 appear in [6] and in more detail in [7]. We have also benefitted from conversations with R. S. Pierce.

- 2. The structure of S_m . Let G be any finite commutative semigroup, and let a denote an idempotent of G. The sets $T_a = \{x : x \in G, x^m = a \text{ for some positive integer } m\}$ are pairwise disjoint subsemigroups of G whose union is G. The set $U_a = \{x : x \in T_a, x^i = x \text{ for some positive integer } l\}$ is a subgroup of G and is the largest subgroup of G that contains G. For a complete discussion, see [2], 2.6-2.11. In the present section, we identify the idempotents G of G and the sets G and G and G and G and G are first prove a lemma.
 - 2.1 Lemma. Let x be any non-zero integer, written in the form

$$\prod\limits_{j=1}^r p_j^{eta_j}{\cdot}a$$
, $eta_j\geqq 0$, $(a,m)=1$.

Received January 9, 1960. The authors gratefully acknowledge financial support from the National Science Foundation, under Grant NSF—G 5439.

Then there is an integer c prime to m such that

$$x \equiv \prod_{j=1}^r p_j^{\lambda_j} \cdot c \pmod{m}$$
,

where $\lambda_j = \min (\alpha_j, \beta_j)$ $(j = 1, \dots, r)$. If

$$x \equiv \prod_{j=1}^r p_j^{\mu_j} \cdot d \pmod{m}$$
 ,

where $0 \le \mu_j \le \alpha_j$ $(j=1, \dots, r)$ and (d, m) = 1, then $\mu_j = \lambda_j$ $(j=1, \dots, r)$. However, it may happen that $d \not\equiv c \pmod{m}$.

Proof. Let
$$b=\prod\limits_{lpha_j=eta_j}p_j$$
. Then we have
$$x+bm=p_1^{eta_1}\cdots p_r^{eta_r}a+p_1^{lpha_1}\cdots p_r^{lpha_r}b$$

$$=\prod\limits_{i=1}^r p_j^{\min(lpha_j,eta_j)}\cdot (Aa+B)\;,$$

where

$$A = \prod_{j=1}^r p_j^{\max(0, \langle eta_j - lpha_j \rangle)}$$

and

$$B = \prod_{j=1}^r p_j^{\max(0, (\boldsymbol{\alpha}_j - \boldsymbol{\beta}_j))} \boldsymbol{\cdot} b$$
 .

Then it is easy to see that (Aa + B, m) = 1, so that

$$x \equiv \prod_{j=1}^r p_j^{\min(\alpha_j, \beta_j)} \cdot c \pmod{m}$$
,

where c = Aa + B is prime to m. The last two statements of the lemma are also easily checked.

2.2 THEOREM. Consider the 2^r sequences $\{\delta_1, \dots, \delta_r\}$, where $\delta_j = 0$ or $\alpha_j (j=1,\dots,r)$. Corresponding to each such sequence, there is exactly one idempotent of the semigroup S_m , and different sequences give different idempotents. The idempotent corresponding to $\{\delta_1, \dots, \delta_r\}$ can be written as

$$\left[\prod_{j=1}^r p_j^{\delta_j}\!\cdot\! d
ight]$$
 ,

where d is any solution of the congruence

$$\prod\limits_{j=1}^r p_j^{\delta_j}{\cdot}d \equiv 1 \pmod \prod\limits_{j=1}^r p_j^{lpha_j-\delta_j}$$
 .

Proof. An element [x] of S_m is idempotent if and only if $x^2 \equiv x \pmod{m}$. If x is written as in 2.1, this congruence becomes $\prod_{j=1}^r p_j^{j\lambda_j} \cdot c^2 \equiv \prod_{j=1}^r p_j^{\lambda_j} c \pmod{m}$, which is equivalent to

(1)
$$\prod_{j=1}^r p_j^{\lambda_j} \cdot c \equiv 1 \pmod{\prod_{j=1}^r p_j^{\alpha_j - \lambda_j}}.$$

The congruence (1) has a solution c if and only if $\prod_{j=1}^r p_j^{\lambda_j}$ is relatively prime to $\prod_{j=1}^r p_j^{\alpha_j-\lambda_j}$, that is, if and only if $\lambda_j = 0$ or α_j $(j = 1, \dots, r)$. If c_0 is a solution of (1), then all solutions of (1) are given by

$$c=c_{\scriptscriptstyle 0}+y\prod\limits_{\scriptscriptstyle j=1}^{r}p_{\scriptscriptstyle j}^{lpha_{\scriptscriptstyle j}-\lambda_{\scriptscriptstyle j}}$$
 ,

where y is an integer. Plainly

$$\left[\prod_{i=1}^r p_j^{\lambda_j} c
ight] = \left[\prod_{i=1}^r p_j^{\lambda_j} c_0
ight]$$

for all such c.

We have thus proved the existence of a unique idempotent

$$\left[\prod_{j=1}^r p_j^{\delta_j} \cdot d\right]$$

corresponding to a sequence $\{\delta_1, \dots, \delta_r\}$, where $\delta_j = 0$ or α_j $(j = 1, \dots, r)$. If $\{\delta_1, \dots, \delta_r\}$ and $\{\delta'_1, \dots, \delta'_r\}$ are distinct such sequences, the corresponding idempotents are distinct by 2.1.

2.21 COROLLARY. Let

$$\left[\prod_{j=1}^r\,p_j^{\delta_j}\!\cdot\!d
ight]$$

and

$$\left[\prod_{j=1}^r p_j^{\delta j} \!\cdot\! d'
ight]$$

be idempotents in S_m , written as in 2.2. Then their product is the idempotent

$$\left[\prod_{j=1}^r p_j^{\max{(\delta_j,\delta_j')}}\!\cdot\!d''
ight]$$
 ,

as in Theorem 2.2.

This follows directly from 2.1 and the obvious fact that products of idempotents are idempotent.

We next determine the sets T_a and U_a defined above.

2.3 THEOREM. Let

$$[x] = \left[\prod_{j=1}^r p_j^{\lambda_j} c
ight]$$

be any element of S_m , where $0 \le \lambda_j \le \alpha_j$ $(j = 1, \dots, r)$ and (c, m) = 1. Then $[x] \in T_a$, where the idempotent

$$a = \left[\prod_{\substack{1 \leq j \leq r \ \lambda_j > 0}} p_j^{a_j} \cdot d \right]$$
 ,

and d is as in 2.2.

Proof. The idempotent a such that $[x] \in T_a$ has the property that $[x]^{nk} = a$ for some positive integer k and all integers $n \ge$ some fixed positive integer n_0 (see [2], 2.6.2). For $n = n_0 \cdot \max(\alpha_1, \dots, \alpha_r)$, 2.1 implies that

$$a=[x]^{nk}=[x^{nk}]=\left[\prod\limits_{j=1}^r p_j^{nk\lambda_j}{\cdot}c^{nk}
ight]=\left[\prod\limits_{j=1}^r p_j^{\min(nk\lambda_j,lpha_j)}{\cdot}d'
ight]=\left[\prod\limits_{j=1}^r p_j^{\delta_j}{\cdot}d
ight]$$
 ,

where $\delta_j = 0$ if $\lambda_j = 0$ and $\delta_j = \alpha_j$ if $\lambda_j > 0$, and d' and d are relatively prime to m.

2.4 THEOREM. Let

$$a = \left[\prod\limits_{j=1}^r p_j^{\delta_j} \!\cdot\! d
ight]$$

be any idempotent of S_m , written as in 2.2. The group U_a consists of all elements of S_m of the form

$$\left[\prod_{j=1}^r p_j^{\delta_j} \cdot c\right]$$

where (c, m) = 1.

Proof. Let $[x] \in U_a$. Then for some integers l > 1 and $k \ge 1$ and all integers $n \ge n_0$, we have $[x]^l = [x]$ and $[x]^{nk} = a$. This implies that $[x] = [x]^{nk+l}$. Writing x as in 2.1 and using 2.1, we now have

$$\prod_{j=1}^r p_j^{\lambda_j} \cdot c \equiv \prod_{j=1}^r p_j^{\lambda_j(nk+l)} c^{nk+l} \equiv \prod_{\substack{1 \leq j \leq r \ \lambda_i > 0}} p_j^{\alpha_j} \cdot h \pmod{m}$$
 ,

provided that n is sufficiently large; here (h, m) = 1. From 2.1 we infer that $\lambda_j = 0$ or α_j $(j = 1, \dots, r)$. Since $[x] \in U_a \subset T_a$, 2.3 now implies that $\lambda_j = \delta_j$ $(j = 1, \dots, r)$.

Now let $x = \prod_{j=1}^r p_j^{\delta_j} \cdot c$, where (c, m) = 1. Then 2.3 shows that $[x] \in T_a$. To prove that $[x] \in U_a$, we need to find an integer l > 1 such that $[x]^l = [x]$. This is equivalent to finding an l such that

$$\left(\prod_{j=1}^r p_j^{\S_j} \cdot c
ight)^l \equiv \prod_{j=1}^r p_j^{\S_j} \cdot c \pmod{m}$$
 ,

and this congruence is equivalent to the congruence

$$\left(\prod\limits_{j=1}^r p_{\scriptscriptstyle j}^{{\scriptscriptstyle \delta}{\scriptscriptstyle j}}\!\cdot\! c
ight)^{l-1}\equiv 1\pmod\prod_{j=1}^r p_{\scriptscriptstyle j}^{{\scriptscriptstyle lpha}{\scriptscriptstyle j}-{\scriptscriptstyle \delta}{\scriptscriptstyle j}}$$
 .

Since

$$\prod_{j=1}^r \, p_j^{\delta_j} \! \cdot \! c$$

is relatively prime to the modulus, such an l exists. We now identify the groups U_a .

2.5 THEOREM. Let

$$a = \left[\prod\limits_{j=1}^r p_j^{\delta_j}{m{\cdot}} d
ight]$$

be any idempotent of S_m , written as in 2.2. Let

$$A=\prod_{j=1}^{r}\,p_{j}^{lpha_{j}-\delta_{j}}$$
 .

The group U_a is isomorphic to the group G_A .

Proof. For every integer x, let [x]' be the residue class modulo A to which x belongs. For $[x] \in S_m$, let $\tau([x]) = [x]'$. Plainly τ is single-valued and is a homomorphism of S_m onto S_A . We need only show that τ is one-to-one on U_a . If $(c, m) = (c^*, m) = 1$ and

$$auigg(igg[\prod_{j=1}^r p_j^{\delta_j}\!\cdot\! cigg]igg) = auigg(igg[\prod_{j=1}^r p_j^{\delta_j}\!\cdot\! c^*igg]igg)$$
 ,

then

$$\prod_{i=1}^r p_j^{\delta_j} {\cdot} c \equiv \prod_{i=1}^r p_j^{\delta_j} {\cdot} c^* \pmod A$$
 ,

which implies that $c \equiv c^* \pmod{A}$, because $(\prod_{j=1}^r p_j^{\delta_j}, A) = 1$. Since $\prod_{j=1}^r p_j^{\delta_j} \cdot A = m$, we can multiply the last congruence by $\prod_{j=1}^r p_j^{\delta_j}$ to obtain

$$\prod_{j=1}^r p_j^{\delta_j} \!\cdot\! c \equiv \prod_{j=1}^r p_j^{\delta_j} \!\cdot\! c^* \pmod m$$
 .

3. A construction of the semicharacters of S_m . A semicharacter of S_m is a complex-valued multiplicative function defined on S_m that is not identically zero. The set X_m of all semicharacters of S_m forms a semigroup under pointwise multiplication, since [1] is the unit of S_m

and $\chi([1]) = 1$ for all $\chi \in X_m$. In this section, we apply the construction of [2], 3.2 and 3.3, to obtain the semicharacters of S_m . In § 5, we will give a second construction of the semicharacters of S_m , more explicit than the present one, and independent of [2]. This construction will enable us to identify X_m as a semigroup (§ 6).

Theorems 3.2 and 3.3 of [2] give a description of all semicharacters of S_m in terms of the groups U_a . Let χ_a be any character of the group U_a . We extend χ_a to a function on all of S_m in the following way:

 $(1) \quad \chi([x]) = \begin{cases} 0 & \text{if } ab \neq a \text{ for the idempotent } b \text{ such that } [x] \in T_b; \\ \chi_a([x]a) & \text{if } ab = a \text{ for the idempotent } b \text{ such that } [x] \in T_b. \end{cases}$

The set of all such functions χ is the set X_m .

3.1 Theorem. The semigroup X_m has exactly

$$\prod_{j=1}^{r} (1 + p_{j}^{\alpha_{j}} - p_{j}^{\alpha_{j-1}})$$

elements.

Proof. For each idempotent $a = [p_1^{s_1} \cdots p_r^{s_r}c]$ as in 2.2, (1) yields as many distinct semicharacters of S_m as there are characters of the group U_a . The group U_a has just as many characters as elements. By 2.5, U_a consists of

$$\displaystyle arphi igg(\prod_{j=1}^r p_j^{lpha_j-\delta_j}igg) = \prod_{\substack{1 \leq j \leq r \ \delta_j = 0}} \{p_j^{lpha_j-1}(p_j-1)\}$$

elements. Also, distinct idempotents a and b of S_m yield distinct semi-characters of S_m under the definition (1). Therefore the number of elements in X_m is

$$\begin{array}{ll} \left(\,2\,\right) & \sum\limits_{\delta} \varphi\Bigl(\prod\limits_{j=1}^r \,p_j^{\alpha_j-\delta_j}\Bigr) = \sum\limits_{\delta} \varphi\Bigl(\prod\limits_{\substack{1 \leq j \leq r \\ \delta_j=0}} p_j^{\alpha_j}\Bigr) = \sum\limits_{\delta} \left(\prod\limits_{\substack{1 \leq j \leq r \\ \delta_j=0}} \varphi(p_j^{\alpha_j})\right) \\ & = \prod\limits_{j=1}^r \left(1 + \varphi(p_j^{\alpha_j})\right) = \prod\limits_{j=1}^r \left(1 + p_j^{\alpha_j} - p_j^{\alpha_{j-1}}\right) \,. \end{array}$$

The sums in (2) are taken over all sequences $\{\delta_1, \dots, \delta_r\}$ where each δ_j is 0 or α_j .

3.2 THEOREM. Let χ be a semicharacter of S_m as given in (1) with the idempotent $a = [p_1^{\S_1} \cdots p_r^{\S_r}d]$, and let χ' be a semicharacter with the idempotent $a = [p_1^{\S_1} \cdots p_r^{\S_r}d']$. Then the semicharacter $\chi\chi'$ is given by (1) with the idempotent $a'' = [p_1^{\min(\S_1,\S_1')} \cdots p_r^{\min(\S_r,\S_r')}d]$.

This theorem follows at once from 2.21 and the definition (1). We now prove two facts needed in § 4.

3.3 THEOREM. Let χ be a semicharacter of S_m that assumes somewhere a value different from 0 and 1. Then χ assumes a value different from 1 somewhere on G_m .

Proof. Definition (1) implies that the character χ_a of U_a assumes a value different from 1. It is also easy to see that $G_m = U_{\text{II}}$. For $[x] \in G_m$, definition (1) implies that $\chi([x]) = \chi_a(a[x])$. We need therefore only show that the mapping $[x] \to a[x]$ carries G_m onto U_a .

Write $a = [p_1^{\delta_1} \cdots p_r^{\delta_r} d]$. Every element of U_a can be written as $[p_1^{\delta_1} \cdots p_r^{\delta_r} c]$ where (c, m) = 1, by 2.4. We must produce an $[x] \in G_m$ such that $a[x] = [p_1^{\delta_1} \cdots p_r^{\delta_r} c]$. That is, we must produce an integer x such that

(3)
$$\prod_{j=1}^r p_j^{\delta_j} \cdot dx \equiv \prod_{j=1}^r p_j^{\delta_j} \cdot c \pmod{m}$$

and (x, m) = 1. The congruence (3) is equivalent to

$$dx \equiv c \; \Big(\bmod \prod_{j=1}^r p_j^{\alpha_j - \delta_j} \Big) \; .$$

Since d is relatively prime to the modulus in (4), the congruence (4) has a solution x_0 . We determine x as a number

$$x_{\scriptscriptstyle 0} + l \prod_{j=1}^{r} p_{\scriptscriptstyle j}^{lpha_{\scriptscriptstyle j} - \delta_{\scriptscriptstyle j}}$$
 ,

where l is an integer for which

$$x_0 + l \prod_{j=1}^r p_j^{lpha_j - \delta_j} \equiv 1 \left(mod \prod_{j=1}^r p_j^{\delta_j j}
ight)$$
 .

Clearly

$$x = x_0 + l \prod_{j=1}^r p_j^{\alpha_j - \delta_j}$$

satisfies (3) and the condition (x, m) = 1.

3.4. Let $\{\lambda_1, \dots, \lambda_r\}$ be a sequence of integers such that $0 \leq \lambda_j \leq \alpha_j$ $(j=1,\dots,r)$, and consider the set $V(\lambda_1,\dots,\lambda_r)$ of all $[p_1^{\lambda_1}\dots p_r^{\lambda_r}x] \in S_m$ with (x,m)=1. It is easy to see that this set is contained in T_a , where a is the idempotent

$$\left[\prod_{\substack{1 \leq j \leq r \ \lambda_j > 0}} p_j^{lpha_j} \cdot d
ight]$$
 .

3.5 THEOREM. Given $\lambda_1, \dots, \lambda_r$, there is a positive integer k such that the mapping $[x] \to [p_1^{\lambda_1} \cdots p_r^{\lambda_r} x]$ of G_m onto $V(\lambda_1, \dots, \lambda_r)$ is exactly k to one.

Proof. Let u be any integer such that (u, m) = 1, and let $[x_1]$, \cdots , $[x_{k_u}]$ be the distinct elements of G_m such that $[p_1^{\lambda_1} \cdots p_r^{\lambda_r} x_j] = [p_1^{\lambda_1} \cdots p_r^{\lambda_r} u]$. That is,

$$p_1^{\lambda_1} \cdots p_r^{\lambda_r} x_j \equiv p_1^{\lambda_1} \cdots p_r^{\lambda_r} u \pmod{m} \ (j = 1, \cdots, k_u)$$
.

Let u^* be any solution of $uu^* \equiv 1 \pmod{m}$. If (v, m) = 1, then we have

$$p_1^{\lambda_1} \cdots p_r^{\lambda_r} u^* v x_i \equiv p_1^{\lambda_1} \cdots p_r^{\lambda_r} v \pmod{m}$$
.

Since $(u^*vx_j, m) = 1$ $(j = 1, \dots, k_u)$ and the elements $[u^*vx_1], \dots, [u^*vx_{k_u}]$ are distinct in G_m , it follows that $k_u \leq k_v$. Similarly, we have $k_v \leq k_u$.

4. A property of semicharacters of S_m . It is well known and obvious that if H is a finite group and χ is a character of H, then $\sum_{x \in H} \chi(x) = 0$ or o(H) according as $\chi \neq 1$ or $\chi = 1$. This result does not hold in general for finite commutative semigroups. As a simple example, consider the cyclic finite semigroup $T = \{x, x^2, \dots, x^l, \dots, x^{l+k-1}\}$, where $x^{l+k} = x^l$, and l and l+k are the first pair of positive integers m, n, m < n, for which $x^m = x^n$. The following facts are easy to show, and follow from the general theory in [2]. The subset $\{x^l, x^{l+1}, \dots, x^{l+k-1}\}$ is the largest subgroup of T. Its unit is the element x^{uk} , where the integer u is defined by $l \leq uk < l + k$. The general semicharacter of T is the function χ whose value at x^k is $\exp(2\pi i h j/k)$, where j = 0, $1, \dots, k-1$. For $j = 1, 2, \dots, k-1$, the sum $\sum_{k=1}^{k+l-1} \chi(x^k)$ is equal to

$$rac{1-\exp\left(rac{2\pi i(k+l)j}{k}
ight)}{1-\exp\left(rac{2\pi ij}{k}
ight)}$$
 ,

which is 0 if and only if k/(k, l) divides j. Hence the sum of a semi-character assuming values different from 0 and 1 need not be 0.

Curiously enough, the above-mentioned property of groups holds for the semigroup S_m .

4.1 THEOREM. Let χ be a semicharacter of S_m that assumes somewhere a value different from 0 and 1. Then $\sum_{[x] \in S_m} \chi([x]) = 0$.

Proof. It is obvious from 2.1 that the sets $V(\lambda_1, \dots, \lambda_r)$ of 3.4 are pairwise disjoint and that their union is S_m . We therefore need only show that $\sum_{[x]\in V(\lambda_1,\dots,\lambda_r)}\chi([x])=0$ for all $\{\lambda_1,\dots,\lambda_r\}$. By 3.3, χ assumes a value different from 1 somewhere on the group G_m , so that $\sum_{[x]\in G_m}\chi([x])=0$. (Note that χ on G_m is a character of the group G_m .) Thus we have $0=\sum_{[x]\in G_m}\chi([p_1^{\lambda_1}\dots p_r^{\lambda_r}])\chi([x])=\sum_{[x]\in G_m}\chi([p_1^{\lambda_1}\dots p_r^{\lambda_r}x])=k\sum \chi([y])$, where [y] runs through $V(\lambda_1,\dots,\lambda_r)$.

5. A second construction of semicharacters of S_m . In this section, we compute explicitly all of the semicharacters of S_m . The case m even is a little different from the case m odd. When m is even, we will take $p_1 = 2$. To compute the semicharacters of S_m , we need to examine the structure of S_m in more detail than was done in § 3. For this purpose, we fix once and for all the following numbers.

5.1 Definition. For $j = 1, \dots, r$, let

 $g_j = a$ primitive root modulo $p_j^{a_j}$ if p_j is odd;

 $g_1 = 5$ if $p_1 = 2$;

 $h_j = g_j + y_j p_j^{\alpha_j}$ where y_j is such that $h_j \equiv 1 \pmod{m/p_j^{\alpha_j}}$;

 $h_0 = -1 + y_0 p_1^{a_1}$ where y_0 is such that $h_0 \equiv 1 \pmod{m/p_1^{a_1}}$;

 $q_j = p_j + z_j p_j^{\alpha_j}$ where z_j is such that $q_j \equiv 1 \pmod{m/p_j^{\alpha_j}}$;

For $j=1, \dots, r, l=1, \dots, r, j \neq l$, and p_i odd, let k_{ji} be a positive integer such that $p_j \equiv g_j^{k_{ji}} \pmod{p_i^{n_i}}$.

For $j = 2, \dots, r$ and $p_1 = 2$ let

 k_{j_1} be a positive integer such that $p_j \equiv (-1)^{(p_{j-1})/2} g_1^{k_{j_1}} \pmod{p_1^{\alpha_1}}$.

Plainly y_0, y_1, \dots, y_r and z_1, \dots, z_r exist. For p_i odd, the integers k_{ji} exist because g_i is a primitive root modulo $p_i^{\alpha_i}$. For $p_i = 2$, the integers k_{ji} exist for $\alpha_i \geq 3$ by [3], p. 82, Satz 126. For $\alpha_i = 1$ or 2, k_{ji} can be any positive integer.

5.2. Let x be any integer $\neq 0$. Then $x = \prod_{j=1}^r p_j^{\beta_j(x)} \cdot a(x)$, where $\beta_j(x) \geq 0$ and (a(x), m) = 1. Plainly the numbers $\beta_j = \beta_j(x)$ and a = a(x) are uniquely determined by x. For $j = 1, \dots, r$ and p_j odd, let $e_j = e_j(x)$ be any positive integer such that

$$a(x) \equiv g_j^{e_j(x)} \pmod{p_j^{\alpha_j}}$$
.

The number $e_j(x)$ is uniquely determined modulo $\varphi(p_j^{\alpha_j})$. For $p_1=2$, let

 $e_1 = e_1(x)$ be any positive integer such that

$$a(x) \equiv (-1)^{(a(x)-1)/2} g_1^{e_1(x)} \pmod{p_1^{a_1}}$$
.

For $\alpha_1 \geq 3$, $e_1(x)$ exists and is uniquely determined modulo $p_1^{\alpha_1-2}$ (see [3], p. 82, Satz 126). For $\alpha_1 = 1$ or 2, $e_1(x)$ can be any positive integer. If m is even, let

$$(1_e) A(x) = \left(\prod_{j=2}^r h_0^{(p_j-1)\beta_j/2}\right) \left(\prod_{l=1}^r \prod_{\substack{j=1\\j\neq l}}^r h_l^{\beta_j k_{jl}}\right) \left(\prod_{j=1}^r q_j^{\beta_j}\right) h_0^{(a-1)/2} \left(\prod_{j=1}^r h_j^{e_j}\right) .$$

If m is odd, let

$$A(x) = \left(\prod_{l=1}^r \prod_{\stackrel{j=1}{j=1}}^r h_l^{\beta_j k_{jl}}\right) \left(\prod_{j=1}^r q_j^{\beta_j}\right) \left(\prod_{j=1}^r h_j^{\beta_j}\right).$$

If m is even, it is easy to see from 5.1 that

$$\begin{array}{ll} (\ 2\) & A(x) \equiv \left(\prod\limits_{j=2}^r {(-1)^{(p_j-1)\beta_j/2} } \right) \! \left(\prod\limits_{j=2}^r g_1^{\beta_j k_{j_1}} \right) \! p_1^{\mathbf{g}_1} (-1)^{(\alpha-1)/2} g_1^{e_1} \pmod{p_1^{\alpha_1}} \\ & \equiv \left(\prod\limits_{j=2}^r {(-1)^{(p_j-1)/2} g_1^{k_{j_1}} } \right)^{\beta_j} p_1^{\mathbf{g}_1} (-1)^{(\alpha-1)/2} g_1^{e_1} \\ & \equiv \prod\limits_{1=2}^r {\beta_j j \cdot p_1^{\beta_1} \alpha} \equiv x \pmod{p_1^{\alpha_1}} \; , \end{array}$$

and, if $n=2, \dots, r$,

$$A(x) \equiv \prod\limits_{\stackrel{j=1}{j \neq n}}^r g_n^{eta_j k_{jn}} \cdot p_n^{eta_n} g_n^{e_n} \equiv \prod\limits_{\stackrel{j=1}{j \neq n}}^r p_j^{eta_j} \cdot p_n^{eta_n} a \equiv x \pmod{p_n^{a_n}}$$
 .

Therefore $A(x) \equiv x \pmod{m}$ if m is even.

If m is odd, then for $n = 1, \dots, r$, we have

$$A(x) \equiv \prod\limits_{\stackrel{j=1}{j \neq n}}^{\mathbf{r}} g_n^{eta_{jk}} p_n \cdot p_n^{eta_n} g_n^{e_n} \equiv \prod\limits_{\stackrel{j=1}{j \neq n}}^{\mathbf{r}} p_j^{eta_j} \cdot p_n^{eta_n} a \equiv x \pmod{p_n^{a_n}}$$
 .

Therefore $A(x) \equiv x \pmod{m}$ if m is even or odd.

- 5.3. Suppose that χ is any semicharacter of S_m . Let ψ be the function defined for all integers x by the relation $\psi(x) = \chi([x])$. Then ψ is obviously a semicharacter of the integers under multiplication, and $\psi(x) = \psi(y)$ if $x \equiv y \pmod{m}$. We will construct the semicharacters of S_m by finding all of the functions ψ with these properties. As 5.2 shows, ψ is determined by its values on h_0, h_1, \dots, h_r and q_1, \dots, q_r . We now set down relations involving the h's and q's which restrict the values that ψ can assume on these integers.
 - 5.4. If p_j is odd, then

$$h_{j}^{arphi(p_{j}^{lpha_{j}})} \equiv 1 \pmod{p_{j}^{lpha_{j}}}$$
 , $h_{j}^{arphi(p_{j}^{lpha_{j}})} \equiv 1 \pmod{rac{m}{p_{j}^{lpha_{j}}}}$;

hence

$$h_j^{\varphi(p_j^{\boldsymbol{x}_{j}})} \equiv 1 \pmod{m}$$
.

Also,

$$h_{\scriptscriptstyle 0}^2\equiv 1\pmod{p_{\scriptscriptstyle 1}^{lpha_{\scriptscriptstyle 1}}}$$
 , $h_{\scriptscriptstyle 0}^2\equiv 1\pmod{rac{m}{p_{\scriptscriptstyle 1}^{lpha_{\scriptscriptstyle 1}}}}$;

hence $h_0^2 \equiv 1 \pmod{m}$.

If $p_1=2$ and $\alpha_1=1$, then $h_0\equiv 1\pmod 2$, $h_0\equiv 1\pmod {m/2}$; hence $h_0\equiv 1\pmod m$.

If $p_1=2$ and $\alpha_1=1$ or 2, then $h_1\equiv 5\equiv 1\pmod{p_1^{\alpha_1}},\ h_1\equiv 1\pmod{m/p_1^{\alpha_1}};\ \text{hence }h_1\equiv 1\pmod{m}.$ If $p_1=2$ and $\alpha_1\geqq 3$, then $h_1^{2^{\alpha_1-2}}\equiv 1\pmod{p_1^{\alpha_1}},\ h_1^{2^{\alpha_1-2}}\equiv 1\pmod{m/p_1^{\alpha_1}};\ \text{hence }h_1^{2^{\alpha_1-2}}\equiv 1\pmod{m}.$ (The first congruence on the line above is proved in [3], p. 81, Satz 125.) For $j=1,\cdots,r$, we have

$$egin{aligned} q_j^{lpha_j} &\equiv 0 \;, \qquad q_j^{lpha_j} h_j \equiv 0 \;, \qquad q_j^{lpha_{j+1}} &\equiv 0 \pmod{p_j^{lpha_j}} \;, \ & \ q_j^{lpha_j} &\equiv 1 \;, \qquad q_j^{lpha_{j+1}} &\equiv 1 \pmod{rac{m}{p_j^{lpha_j}}} \;. \end{aligned}$$

Therefore we have

$$q_j^{lpha_j} \equiv q_j^{lpha_j} h_j \equiv q_j^{lpha_{j+1}} \pmod{m}$$
 .

Also, if $p_1 = 2$, we have

$$q_1^{lpha_1}\equiv 0$$
 , $q_1^{lpha_1}h_0\equiv 0\pmod{p_1^{lpha_1}}$, $q_1^{lpha_1}\equiv 1$, $q_1^{lpha_1}h_0\equiv 1\pmod{rac{m}{p_1^{lpha_1}}}$.

Therefore we have

$$q_1^{\alpha_1} \equiv q_1^{\alpha_1} h_0 \pmod{m}$$
.

5.5 If ψ is to be a function on the integers such that $\psi(x) = \chi([x])$ for some semicharacter χ of S_m , then the choices of the values of ψ at the h's and q's are restricted by the congruences modulo m derived in 5.4. Thus, since $\chi([1]) = 1$, we have

$$egin{aligned} \psi(h_j)^{arphi(p_j^{lpha j})} &= 1 & ext{if} \;\; p_j \; ext{is odd;} \ \psi(h_0) &= \pm \; 1, \; ext{and} \;\; \psi(h_0) &= 1 \; ext{if} \;\; lpha_1 &= 1 \; ext{and} \;\; p_1 &= 2; \ \psi(h_1) &= 1 \; ext{if} \;\; p_1 &= 2 \; ext{and} \;\; lpha_1 &= 1 \; ext{or} \;\; 2; \ \psi(h_1)^{2^{lpha_1-2}} &= 1 \; ext{if} \;\; p_1 &= 2 \; ext{and} \;\; lpha_1 &\geq 3. \end{aligned}$$

Also we have

$$\psi(q_j)^{lpha_j} = \psi(q_j)^{lpha_j} \psi(h_j) = \psi(q_j)^{lpha_{j+1}} ext{ for } j=1, \, \cdots, \, r \; .$$

If $p_1 = 2$, we have

$$\psi(q_1)^{\alpha_1} = \psi(q_1)^{\alpha_1} \psi(h_0)$$
.

The last two equalities give us:

$$\psi(q_i) \neq 0$$
 implies $\psi(h_i) = \psi(q_i) = 1$;

and

$$\psi(q_1) \neq 0$$
 implies $\psi(h_0) = 1$ if $p_1 = 2$.

5.6. To construct our functions ψ , we now choose numbers ω_0 , $\omega_1, \dots, \omega_r$ and μ_1, \dots, μ_r which are to be $\psi(h_0)$, $\psi(h_1)$, \dots , $\psi(h_r)$ and $\psi(q_1)$, \dots , $\psi(q_r)$. The relations in 5.5 show that we must take these numbers such that:

$$egin{aligned} \omega_j^{arphi_{j}^{lpha_j})} &= 1 & ext{if} \ j = 1, \ \cdots, r \ ext{and} \ p_j \ ext{is odd}; \ \omega_0 &= \pm \ 1; \ \omega_0 &= 1 & ext{if} \ p_1 &= 2 \ ext{and} \ lpha_1 &= 1, \ ext{or} \ ext{if} \ m \ ext{is odd}^1; \ \omega_1 &= 1 & ext{if} \ p_1 &= 2 \ ext{and} \ lpha_1 &\geq 1; \ \omega_1^{lpha_1-2} &= 1 & ext{if} \ p_1 &= 2 \ ext{and} \ lpha_1 &\geq 3; \ \mu_j &= 0 \ ext{or} \ 1 & ext{if} \ j &= 1, \ \cdots, r; \ \omega_j &= 1 & ext{if} \ \mu_j &= 1, \ j &= 1, \ \cdots, r; \ \omega_0 &= 1 & ext{if} \ p_1 &= 2 \ ext{and} \ \mu_1 &= 1. \end{aligned}$$

Formulas (1_e) and (1_0) of 5.2 now require us to define $\psi(x)$ for non-zero integers x as follows:

Finally, we define $\psi(0) = \psi(m)$.

The q's, h's, and k's appearing in (1) and (3) were fixed once and for all in terms of m. The ω 's and μ 's are at our disposal and serve to define ψ . The β 's are determined uniquely from x; but the e's are not. As noted in 5.2, e_j is determined modulo $\varphi(p_j^{\alpha_j})$ if p_j is odd, and e_1 is determined modulo $p_1^{\alpha_1-2}$ if $p_1 = 2$ and $\alpha_1 \geq 3$. Since $\omega_j^{\varphi(p_j^{\alpha_j})} = 1$ if p_j is odd, $\omega_1^{2^{\alpha_1-2}} = 1$ if $p_1 = 2$ and $\alpha_1 \geq 3$, and $\omega_1 = 1$ if $p_1 = 2$ and $\alpha_1 \leq 2$, we see that ψ is uniquely defined by the formulas (3_e) and (3_0) .

5.7. We now prove that $\psi(xy) = \psi(x)\psi(y)$. Since ψ is obviously bounded and not identically zero, this will show that ψ is a semicharacter. Suppose first that $x \neq 0$, $y \neq 0$. Then we have

$$x=\prod\limits_{j=1}^r p_j^{eta_{oldsymbol{j}}(x)}\!\cdot\! a(x)$$
 , $y=\prod\limits_{j=1}^r p_j^{eta_{oldsymbol{j}}(y)}\!\cdot\! a(y)$, $xy=\prod\limits_{j=1}^r p_j^{eta_{oldsymbol{j}}(x)+eta_{oldsymbol{j}}(y)}\!\cdot\! a(x)a(y)$.

¹ We take $\omega_0 = 1$ when m is odd merely as a matter of convenience. Actually, as will shortly be apparent, ω_0 does not appear in the definition of ψ if m is odd.

 $^{^{2}}$ We take $0^{0} = 1$.

Therefore a(xy) = a(x)a(y) and $\beta_j(xy) = \beta_j(x) + \beta_j(y)$ for $j = 1, \dots, r$. Also we have

$$g_j^{e_j(xy)} \equiv a(xy) \equiv a(x)a(y) \equiv g_j^{e_j(x)}g_j^{e_j(y)} \equiv g_j^{e_j(x)+e_j(y)} \pmod{p_j^{a_j}}$$

if p_j is odd. Since g_j is a primitive root modulo $p_j^{\alpha_j}$ and $\omega_j^{\alpha_j(p_j^{\alpha_j})} = 1$, it follows that $e_j(xy) \equiv e_j(x) + e_j(y) \pmod{\varphi(p_j^{\alpha_j})}$ and $\omega_j^{e_j(xy)} = \omega_j^{e_j(x)}\omega_j^{e_j(y)}$ if p_j is odd $(j = 1, \dots, r)$. If $p_1 = 2$, then a(x) and a(y) are odd, and plainly

$$\frac{a(xy) - 1}{2} \equiv \frac{a(x) - 1}{2} + \frac{a(y) - 1}{2} \pmod{2}.$$

Therefore we have

$$\omega_0^{(a(xy)-1)/2} = \omega_0^{(a(x)-1)/2} \omega_0^{(a(y)-1)/2}$$

for both admissible values of ω_0 . Furthermore,

$$\begin{aligned} &(-1)^{(a(xy)-1)/2}g_1^{e_1(xy)} \equiv a(x)a(y) \\ &\equiv (-1)^{(a(x)-1)/2}g_1^{e_1(x)}(-1)^{(a(y)-1)/2}g_1^{e_1(y)} \pmod{p_1^{a_1}} , \end{aligned}$$

if $p_1 = 2$. Therefore we have

$$g_1^{e_1(xy)} \equiv g_1^{e_1(x)+e_1(y)} \pmod{p_1^{\alpha_1}}$$
,

if $p_1 = 2$.

Hence, if $\alpha_1 \ge 3$ and $p_1 = 2$, we have $e_1(xy) \equiv e_1(x) + e_1(y)$ (mod $p_1^{\alpha_1-2}$), as follows from [3], p. 82, Satz 126 (recall that $g_1 = 5$, $p_1 = 2$). Hence

$$\omega_{\scriptscriptstyle 1}^{e_1(xy)}=\omega_{\scriptscriptstyle 1}^{e_1(x)}\omega_{\scriptscriptstyle 1}^{e_1(y)}$$
 if $lpha_{\scriptscriptstyle 1}\geqq 3$, $p_{\scriptscriptstyle 1}=2$.

The last equality also holds if $\alpha_1 \leq 2$ and $p_1 = 2$, since $\omega_1 = 1$ in this case.

The foregoing computations, together with (3), now show that $\psi(xy) = \psi(x)\psi(y)$ if $xy \neq 0$.

We next show that $\psi(xy) = \psi(x)\psi(y)$ if xy = 0. We compute $\psi(m)$. Since $\beta_j(m) = \alpha_j > 0$ for $j = 1, \dots, r$, we have

$$\prod\limits_{j=1}^r \mu_j^{eta_{j(m)}} = egin{cases} 1 & ext{if} \;\; \mu_{\scriptscriptstyle \mathrm{I}} = \cdots = \mu_{r} = 1 \ ext{o} \;\; ext{otherwise.} \end{cases}$$

If $\mu_1 = \cdots = \mu_r = 1$, then by 5.6, we have $\omega_0 = \omega_1 = \cdots = \omega_r = 1$, so that $\psi(x) = 1$ for all x. In this case, we have $\psi(xy) = \psi(x)\psi(y)$ for all x and y. If some $\mu_j = 0$, then $\psi(m) = 0$, and hence $\psi(0) = 0$. In this case, $\psi(xy) = \psi(x)\psi(y)$ if xy = 0.

5.8. We now prove that $\psi(x) = \psi(y)$ if $x \equiv y \pmod{m}$. Suppose first that $xy \neq 0$ and $x \equiv y \pmod{m}$. Then

$$\prod_{j=1}^{r} p_{j^{j(x)}}^{\beta_{j}(x)} \cdot a(x) \equiv \prod_{j=1}^{r} p_{j}^{\beta_{j}(y)} \cdot a(y) \pmod{m}.$$

From this, we see that $\beta_j(x) > 0$ if and only if $\beta_j(y) > 0$. If, for some j, we have $\beta_j(x) > 0$ and $\mu_j = 0$, then $\beta_j(y) > 0$ and $\psi(x) = 0 = \psi(y)$.

Now we can suppose that $\mu_j = 1$ for all j such that $\beta_j(x) > 0$. Then $\omega_j = 1$ if $\beta_j(x) > 0$ $(j = 1, \dots, r)$ and $\omega_0 = 1$ if $\beta_1(x) > 0$. If m is odd, or if m is even and $\beta_1(x) > 0$, we have

$$\psi(x) = \left(\prod_{\substack{l=1\\\beta_{J}(x)=0}}^{r} \prod_{\substack{j=1\\j\neq l}}^{r} \omega_{l}^{\beta_{J}(x)k_{jl}}\right) \left(\prod_{\substack{j=1\\\beta_{J}(x)=0}}^{r} \omega_{j}^{\beta_{J}(x)}\right),$$

$$\psi(y) = \Big(\prod_{\stackrel{l=1}{\beta_{J}(x)=0}}^r \prod_{\stackrel{j=1}{j\neq l}}^r \omega_{\iota}^{\beta_{J}(y)\,k_{jl}}\Big) \Big(\prod_{\stackrel{j=1}{\beta_{J}(x)=0}}^r \omega_{\jmath}^{\epsilon_{J}(y)}\Big) \ .$$

If m is even and $\beta_1(x) = 0$, we have

$$(6) \quad \psi(x) = \left(\prod_{j=2}^r \omega_0^{(p_j-1)\beta_j(x)/2}\right) \left(\prod_{\substack{l=1\\\beta_l(x)=0}}^r \prod_{\substack{\beta_j(x)>0\\\beta_j(x)>0}}^r \omega_l^{\beta_j(x)k_{jl}}\right) \omega_0^{(a(x)-1)/2} \left(\prod_{\substack{j=1\\\beta_j(x)=0}}^r \omega_j^{e_j(x)}\right),$$

$$(7) \quad \psi(y) = \left(\prod_{j=2}^r \omega_0^{(p_j-1)\beta_j(y)/2}\right) \left(\prod_{\substack{l=1 \\ \beta_l(x)=0}}^r \prod_{\substack{j=1 \\ \beta_j(x)>0}}^r \omega_l^{\beta_j(y)k_{jl}}\right) \omega_0^{(a(y)-1)/2} \left(\prod_{\substack{j=1 \\ \beta_j(x)=0}}^r \omega_j^{\beta_j(y)}\right).$$

Since $x \equiv y \pmod{m}$, we see from 5.2 that $A(x) \equiv A(y) \pmod{m}$ and hence

(8)
$$A(x) \equiv A(y) \pmod{p_n^{\alpha_n}} \text{ for } n = 1, \dots, r.$$

The congruence

(9)
$$A(x) \equiv \prod_{\substack{j=1 \ j \neq n}}^{r} h_n^{\beta_j(x)k_{jn}} \cdot q_n^{\beta_n(x)} h_n^{e_n(x)} \pmod{p_n^{n_n}}$$

holds if p_n is odd. To verify this, use (1_e) and (1_0) together with 5.1. Notice that for n = 1, we use only (1_0) .

The congruences (8) and (9), together with the fact that $\beta_n(x) = 0$ if and only if $\beta_n(y) = 0$, now show that

$$\prod_{\substack{j=1\\j\neq n}}^r h_n^{\beta j(x)kjl}\boldsymbol{\cdot} h_n^{e_n(x)} \equiv \prod_{\substack{j=1\\j\neq n}}^r h_n^{\beta j(y)kjn}\boldsymbol{\cdot} h_n^{e_n(y)} \pmod{p_n^{\alpha_n}}$$

if p_n is odd and $\beta_n(x) = 0$. This implies that

$$\sum\limits_{\substack{j=1\ j\neq n}}^{\mathbf{r}}eta_{\mathit{j}}(x)k_{\mathit{j}n}+e_{\mathit{n}}(x)\equiv\sum\limits_{\substack{j=1\ j\neq n}}^{\mathbf{r}}eta_{\mathit{j}}(y)k_{\mathit{j}n}+e_{\mathit{n}}(y)\pmod{\varphi(p_{\mathit{n}}^{lpha_{\mathit{n}}})}$$
 ,

and

(10)
$$\prod_{\substack{j=1\\j\neq n}}^{r} \omega_n^{\beta_j(x)k_{jn}} \cdot \omega_n^{e_n(y)} = \prod_{\substack{j=1\\j\neq n}}^{r} \omega_n^{\beta_j(y)k_{jn}} \cdot \omega_n^{e_n(y)},$$

if p_n is odd and $\beta_n(x) = 0$.

Similarly, if $p_1 = 2$ and $\beta_1(x) = 0$, in which case $g_1 = 5$, (2) implies that

$$(11) \quad A(x) \equiv \left(\prod_{j=2}^r (-1)^{(p_j-1)\beta_j(x)/2}\right) \left(\prod_{j=2}^r 5^{\beta_j(x)k_{j1}}\right) (-1)^{(a(x)-1)/2} 5^{e_1(x)} \pmod{2^{\alpha_1}}.$$

The congruences (8) and (11), together with the fact that $\beta_i(y) = 0$, now show that

$$(-1)^{\sum\limits_{j=2}^{r}\frac{1}{2}(p_{j}-1)\beta_{j}(x)+\frac{1}{2}(a(x)-1)} 5^{\sum\limits_{j=2}^{r}\beta_{j}(x)k_{j_{1}}+e_{1}(x)} \equiv \\ \equiv (-1)^{\sum\limits_{j=2}^{r}\frac{1}{2}(p_{j}-1)\beta_{j}(y)+\frac{1}{2}(a(y)-1)} 5^{\sum\limits_{j=2}^{r}\beta_{j}(y)+e_{1}(y)} \pmod{2^{\alpha_{1}}}$$

From this congruence, we find that

$$\begin{split} &\sum_{j=2}^{r} \frac{1}{2} (p_j - 1) \beta_j(x) + \frac{1}{2} (a(x) - 1) \equiv \\ &\sum_{j=2}^{r} \frac{1}{2} (p_j - 1) \beta_j(y) + \frac{1}{2} (a(y) - 1) \pmod{2} \end{split}$$

if $\alpha_1 \geq 2$, and

$$\sum_{j=2}^{r} \beta_{j}(x)k_{j1} + e_{1}(x) \equiv \sum_{j=2}^{r} \beta_{j}(y)k_{j1} + e_{1}(y) \pmod{2^{\alpha_{1}-2}}$$

if $\alpha_1 \ge 3$. Since $\omega_0 = 1$ if $\alpha_1 = 1$ and $\omega_1 = 1$ if $\alpha_1 = 1$ or 2, we now have

(12)
$$\prod_{j=2}^{r} \omega_{0}^{(p_{j}-1)\beta_{j}(x)/2} \cdot \omega_{0}^{(\alpha(x)-1)/2} = \prod_{j=2}^{r} \omega_{0}^{(p_{j}-1)\beta_{j}(y)/2} \cdot \omega_{0}^{(\alpha(y)-1)/2}$$

if $\alpha_1 \geq 1$, and

(13)
$$\prod_{j=2}^{r} \omega_{1}^{\beta_{j(x)}k_{j1}} \cdot \omega_{1}^{e_{1}(x)} = \prod_{j=2}^{r} \omega_{1}^{\beta_{j}(y)k_{j1}} \cdot \omega_{1}^{e_{1}(y)}$$

if $\alpha_1 \ge 1$. Multiplying (10) over the relevant values of n, we have

$$(14) \quad \left(\prod_{\substack{n=1\\\beta_{n}(x)=0\\p_{n}>2}}^{r}\prod_{\substack{j=1\\j\neq n\\p_{n}>2}}^{r}\omega_{n}^{\beta_{j}(x)k_{jn}}\right)\!\!\left(\prod_{\substack{n=1\\\beta_{n}(x)=0\\p_{n}>2}}^{r}\omega_{n}^{e_{n}(x)}\right) = \left(\prod_{\substack{n=1\\\beta_{n}(x)=0\\p_{n}>2}}^{r}\prod_{\substack{j=1\\j\neq n\\p_{n}>2}}^{r}\omega_{n}^{\beta_{j}(y)k_{jn}}\right)\!\!\left(\prod_{\substack{n=1\\\beta_{n}(x)=0\\p_{n}>2}}^{r}\omega_{n}^{e_{n}(y)}\right).$$

If m is odd, or if m is even and $\beta_1(x) > 0$, (14), (4), and (5) show that $\psi(x) = \psi(y)$. If m is even and $\beta_1(x) = 0$, we multiply (12), (13), and (14) together. Comparing the result with (6) and (7), we find that $\psi(x) = \psi(y)$ in this case also.

We have therefore proved that $\psi(x) = \psi(y)$ if $x \equiv y \pmod{m}$ and $xy \neq 0$. If $x \equiv 0 \pmod{m}$ and $x \neq 0$, then $\psi(x) = \psi(m)$. Since $\psi(0) = \psi(m)$ by definition, the proof is complete.

5.9. The foregoing construction of the functions ψ , and from these the semicharacters χ of S_m , $\chi([x]) = \psi(x)$, clearly gives us all of the semicharacters of S_m . As the ω 's and μ 's of 5.6 run through all admissible values, each semicharacter χ appears exactly once. We could show this by exhibiting, for each pair ψ and ψ ', a number x such that $\psi(x) \neq \psi'(x)$. Rather than do this, we prefer to count the ψ 's and compare their number with the number obtained in 3.1.

For p_j odd, the number of possible values of ω_j is $\varphi(p_j^{\alpha_j})$ if $\mu_j=0$ and 1 if $\mu_j=1$. Hence this number is $\varphi(p_j^{\alpha_j(1-\mu_j)})$. For $p_1=2$, there are several cases to consider $(\mu_1=0 \text{ or } 1,\ \alpha_1=1,\ \alpha_1=2,\ \alpha_1\geq 3)$. In each case, it is easy to see that the number of admissible pairs $\{\omega_0,\omega_1\}$ is $\varphi(2^{\alpha_1(1-\mu_1)})$. Thus, for each sequence $\{\mu_1,\cdots,\mu_r\}$, the total number of sequences $\{\omega_0,\omega_1,\cdots,\omega_r\}$ is equal to

$$\prod_{j=1}^r \varphi(p_j^{\alpha_j(1-\mu_j)}).$$

Summing this number over all possible $\{\mu_1, \dots, \mu_r\}$, we obtain $\prod_{j=1}^r (1 + p_j^{\alpha_j} - p_j^{\alpha_{j-1}})$, as in Theorem 3.1.

6. The structure of X_m .

6.1. Let χ and χ' be any semicharacters of S_m , and let $(\mu_1, \dots, \mu_r; \omega_0, \omega_1, \dots, \omega_r)$ and $(\mu'_1, \dots, \mu'_r; \omega'_0, \omega'_1, \dots, \omega'_r)$ be the parameters as in 5.6 that determine χ and χ' , respectively. The product $\chi\chi'$ then has as its parameters

$$(1) \qquad (\mu_1 \mu_1', \cdots, \mu_r \mu_r'; \omega_0 \omega_0', \omega_1 \omega_1', \cdots, \omega_r \omega_r').$$

Thus, all of the χ 's in X_m for which the μ 's are a fixed sequence of 0's and 1's form a group, plainly the direct product of cyclic groups, one corresponding to each zero value of μ . These are maximal subgroups of X_m , and X_m is the union of these subgroups. The multiplication rule (1) shows clearly how elements of different subgroups are multiplied. The rule (1) shows also that X_m resembles a direct product of groups and $\{0,1\}$ semigroups. It fails to be one because of the condition in 5.6 that $\mu_j = 1$ implies $\omega_j = 1$.

- 6.2. The characters modulo m of number theory (see [3], p. 83) are of course among the semicharacters that we have computed. They are exactly those for which $\mu_1 = \mu_2 = \cdots = \mu_r = 0$. In the description of § 3, they are the semicharacters that are characters on the group G_m and are 0 elsewhere on S_m .
- 6.3. We can also map X_m into S_m , and represent X_m as a subset of S_m with a new definition of multiplication. Let χ be in X_m and let

 χ have parameters $(\mu_1, \dots, \mu_r; \omega_0, \omega_1, \dots, \omega_r)$. For m odd and $j = 0, 1, \dots, r$ or m even and $j = 0, 2, 3, \dots, r$, let w_j be any integer such that $\omega_j = \exp(2\pi i w_j/\varphi(p_j^{x_j}))$. For m even and $\alpha_1 = 1$ or 2, let $w_1 = 0$; for m even and $\alpha_1 \ge 3$, let w_1 be any integer such that $\omega_1 = \exp(2\pi i w_1/2^{\alpha_1-2})$.

We now define the mapping

(2)
$$\chi \to \tau(\chi) = \left[h_0^{w_0(1-\mu_1)} \prod_{j=1}^r \left(h_j^{w_j(1-\mu_j)} q_j^{\alpha_j \mu_j} \right) \right],$$

which carries X_m into S_m . Evidently τ is single-valued.

6.4 Theorem. The mapping τ is one-to-one.

Proof. Suppose that χ and χ' are semicharacters of S_m with parameters as in 6.1. Suppose that $\tau(\chi) = \tau(\chi')$, that is,

$$(3) \qquad h_0^{w_0(1-\mu_1)} \prod_{j=1}^r \left(h_j^{w_j(1-\mu_j)} q_j^{\alpha_j \mu_j} \right) \equiv h_0^{w_0'(1-\mu_1')} \prod_{j=1}^r \left(h_j^{w_j'(1-\mu_j')} q_j^{\alpha_j \mu_j'} \right) \pmod{m} .$$

This congruence, along with 5.1, implies that

$$h_t^{w_l(1-\mu_l)}p_t^{\alpha_l\mu_l} \equiv h_t^{w_l'(1-\mu_l')}p_t^{\alpha_l\mu_l'} \pmod{p_t^{\alpha_l}}$$

for $l=1, \dots, r$ and p_l odd. Since $(h_l, p_l)=1$, and μ_l and μ'_l are 0 or 1, it is obvious that $\mu_l=\mu'_l$. If $\mu_l=\mu'_l=1$, then from 5.6, we have $\omega_l=\omega'_l=1$. If $\mu_l=\mu'_l=0$, then $h_l^{w_l}\equiv h_l^{w'_l}\pmod{p_l^{\alpha_l}}$, so that $w_l\equiv w'_l\pmod{p(p_l^{\alpha_l})}$ and hence $\omega_l=\omega'_l$.

If $p_1 = 2$, (2) implies that

$$(4) \qquad \qquad h_{\scriptscriptstyle 0}^{w_0(1-\mu_1)}h_{\scriptscriptstyle 1}^{w_1(1-\mu_1)}p_{\scriptscriptstyle 1}^{\alpha_1\mu_1}\equiv h_{\scriptscriptstyle 0}^{w_0'(1-\mu_1')}h_{\scriptscriptstyle 1}^{w_1'(1-\mu_1')}p_{\scriptscriptstyle 1}^{\alpha_1\mu_1'} \ (\mathrm{mod}\ \ p_{\scriptscriptstyle 1}^{\alpha_1}) \ .$$

Again, we have $\mu_1 = \mu'_1$. If $\mu_1 = \mu'_1 = 1$, then 5.6 states that $\omega_0 = \omega'_0 = \omega_1 = \omega'_1 = 1$. If $\alpha_1 = 1$, then $\omega_0 = \omega'_0 = 1$, also by 5.6. If $\alpha_1 = 2$ and $\mu_1 = \mu'_1 = 0$, then (3), along with 5.1, shows that $(-1)^{w_0} \equiv (-1)^{w'_0} \pmod{4}$, and hence $\omega_0 = \omega'_0$. If $\alpha_1 \geq 3$ and $\mu_1 = \mu'_1 = 0$, then we have $(-1)^{w_0} 5^{w_1} \equiv (-1)^{w'_0} 5^{w'_1} \pmod{2^{\alpha_1}}$. Once again, [3], p. 82, Satz 126 shows that $(-1)^{w_0} = (-1)^{w'_0}$ and that $w_1 \equiv w'_1 \pmod{2^{\alpha_1-2}}$. Hence $\omega_0 = \omega'_0$ and $\omega_1 = \omega'_1$. Therefore τ is one-to-one.

- 6.5. The set $\tau(X_m)$ consists of all the elements $[p_1^{\delta_1} \cdots p_r^{\delta_r} a]$ of S_m for which $\delta_j = 0$ or α_j , and (a, m) = 1. It is evident from (2) that $\tau(X_m)$ is contained in the set $\{[p_1^{\delta_1} \cdots p_r^{\delta_r} a]\}$. The reverse inclusion is established by a routine examination of cases, which we omit.
- 6.6. The mapping τ plainly defines a new multiplication in $\tau(X_m)$: $\tau(\chi)^*\tau(\chi') = \tau(\chi')$. Every residue class $\tau(\chi)$ contains a number

$$x = h_{\scriptscriptstyle 0}^{w_0(1-\mu_1)} \prod_{j=1}^r (h_{\scriptscriptstyle j}^{w_j(1-\mu_j)} q_{\scriptscriptstyle j}^{\alpha_j\mu_j})$$
 .

If x' is another number of this form, then it can be shown that $[x]^*[x']$ is equal to $[xx'/\prod q_j^{\alpha_j}]$, where the product $\prod q_j^{\alpha_j}$ is taken over all j, $j=1,\dots,r$, for which $p_j|xx'$. We omit the details.

LITERATURE

- 1. Eckford Cohen, A finite analogue of the Goldbach problem, Proc. Amer. Math. Soc. 5 (1954), 478-483.
- 2. Edwin Hewitt and H. S. Zuckerman, Finite dimensional convolution algebras, Acta Math. 93 (1955), 67-119.
- 3. Edmund Landau, Vorlesungen über Zahlentheorie, Band I. S. Hirzel Verlag, Leipzig, 1927.
- 4. B. Parízek, and Š. Schwarz, O multiplikatívnej pologrupe zvyškových tried (mod m), Mat.-Fyz. Časopis Slov. Akad. Ved 8 (1958), 136-150.
- 5. E. T. Parker, On multiplicative semigroups of residue classes, Proc. Amer. Math. Soc. 5 (1954) 612-616.
- 6. H. S. Vandiver and Milo W. Weaver, *Introduction to arithmetic factorization and congruences from the standpoint of abstract algebra*, Herbert Ellsworth Slaught Memorial Papers, no. 7, 1958. Math. Assoc. of America.
- 7. Milo W. Weaver, Cosets in a semi-group, Math. Mag. 25 (1952), 125-136.

THE UNIVERSITY OF WASHINGTON