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l Introduction* Throughout this paper, m denotes a fixed
integer >1 . The set of all residue classes modulo m is denoted by Sm.
For an integer x, [x] denotes the residue class containing x. Under the
usual multiplication [#] [2/] = [xy], Sm is a semigroup. The subgroup of
Sm consisting of all residue classes [x] such that (x, m) = 1 is denoted
by Gm.

We write m = Πί=i V*3> where the Pj are distinct primes and the
aj are positive integers. Following the usual conventions, we take void
products to be 1 and void sums to be 0.

In 2.6-2.11 of [2], the structure of finite commutative semigroups
is discussed. In § 2, we work out this structure for Sm. In § 3, we
give a construction based on [2], 3.2 and 3.3, for all of the semicharacters
of Sm. In § 4, we prove that if % is a semicharacter of Sm assuming a
value different from 0 and 1, then Σ[aαesTO %([#]) = 0 I n § 5, we compute
X([x]) explicitly in terms of the integer x, for an arbitrary semicharacter
X of Sm. In § 6, we discuss the structure of the semigroup of all semi-
characters of Sm.

Our interest in Sm arose from seeing the interesting paper [4] of
Parίzek and Schwarz. Some of their results appear in somewhat dif-
ferent form in § 2. Other writers ([1], [5], [6], [7]) have also dealt with
Sm from various points of view. In particular, a number of the results
of §2 appear in [6] and in more detail in [7]. We have also benefitted
from conversations with R. S. Pierce.

2. The structure of Sm. Let G be any finite commutative semigroup,
and let a denote an idempotent of G. The sets Ta = {x : x e G, xm = a
for some positive integer m} are pairwise disjoint subsemigroups of G
whose union is G. The set Ua = {x : x e Ta, x

ι = x for some positive
integer 1} is a subgroup of G and is the largest subgroup of G that
contains a. For a complete discussion, see [2], 2.6-2.11. In the present
section, we identify the idempotents a of Sm and the sets Ta and Ua.
We first prove a lemma.

2.1 LEMMA. Let x be any non-zero integer, written in the form

α, & ^ 0 , ( α , m ) = 1 .
3 = 1
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Then there is an integer c prime to m such that

r

x = Π pft c (mod m),

where X3 = min (aj9 β3) (j = 1, , r). If
r

x ΞΞ Π Pp d (mod m) ,

0 ^ μ3 ^ a3 (j = l, , r) and (d, m) = 1, then μ3 — \3 (j = l, , r).
However, it may happen that d ^ c (mod m).

Proof. Let b = Π Pj Then we have

x -f. 6m = p î . . . p^α + p"1 p*r6

= npf n ( ^^- (Aα + β) ,

where

r
A = z TΊ /vjmax(0, (βj—OOJ))

and

B = Π p ^ ^ ' ^ - ^ ^.δ .

Then it is easy to see that (Aa + B, m) = 1, so that

# — Π p ^ ^ ̂  c (mod m) ,
J=i

where c = Aα + 5 is prime to m. The last two statements of the
lemma are also easily checked.

2.2 THEOREM. Consider the 2r sequences {Slf •••, δr}, where δ3 = 0
or a3(j = 1, , r) . Corresponding to each such sequence, there is ex-
actly one idempotent of the semigroup Sm, and different sequences give
different idempotents. The idempotent corresponding to {δlf , δr} can
be written as

where d is any solution of the congruence

ΠpJ'-cZsl (mod ΠPΠ
5=1



THE MULTIPLICATIVE SEMIGROUP OF INTEGERS MODULO m 1293

Proof. An element [x] of Sm is idempotent if and only if
x2 = x (mod m). If x is written as in 2.1, this congruence becomes
~Ώu=ιΊ>Tuc2 — Π J = I P J J C (mod m), which is equivalent to

(1) Π ? N = 1 (mod Π P?'-
5 = 1 \ 5 = 1

The congruence (1) has a solution c if and only if Πϊ=i P^ * s relatively
prime to Πί=i PP~λj> that is, if and only if λ̂  = 0 or <x5 (j — 1, , r).
If c0 is a solution of (1), then all solutions of (1) are given by

c = c0 + y Π PP~ λ j ,

where 2/ is an integer. Plainly

for all such c.
We have thus proved the existence of a unique idempotent

corresponding to a sequence {819 , δr}, where δj = 0 or α̂  (j — 1, , r).
If {δi, * ,δr} and {δj, -- ,δί} are distinct such sequences, the corre-
sponding idempotents are distinct by 2.1.

2.21 COROLLARY. Let

and

δe idempotents in Sm, written as in 2.2. Then their product is the
idempotent

as in Theorem 2.2.
This follows directly from 2.1 and the obvious fact that products

of idempotents are idempotent.
We next determine the sets Ta and Ua defined above.

2.3 THEOREM. Let
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LJ=I

be any element of Sm, where 0 ^ X3 ̂  a3 (j — 1, , r) and (c, m) = 1.
[#] e Γa, where the idempotent

α = Π V*u

λj>0

and d is as in 2.2.

Proof. The idempotent a such that [#] e Ta has the property that
[x]n1c = α for some positive integer fc and all integers n ^ some fixed
positive integer n0 (see [2], 2.6.2). For n = no ma,x(a19 •• ,ar), 2.1
implies that

a = [x\nΊc = [xnk] = Γ π py*\>.cn*l = Γ π PfΏ{nkλJ•^)

where δ, = 0 if λ, — 0 and 8̂  = a5 if λ̂  > 0, and d' and d are relatively-
prime to m.

2.4 THEOREM. Let

6e α/m/ idempotent of Smf written as in 2.2. T7ιe group Ua consists of
all elements of Sm of the form

where (c,m) = 1.

Proof. Let [x] e £7α. Then for some integers I > 1 and k >̂ 1 and
all integers w ̂  no» we have [a;]z = [x] and [#]wfc = a. This implies that

ί . Writing x as in 2.1 and using 2.1, we now have

Π ^ C = f[ j^<»*+«c»*+i = JJ p ? j . ^ ( m o d m ) ,
J=i 1=1 lίlZ

provided that n is sufRciently large; here {h, m) — 1. From 2.1 we infer
that Xj = 0 or a3 (j = 1, , r) . Since [x] e Z7αc Γα, 2.3 now implies that
Xj = δj O' = l, -- , r ) .

Now let # = Πjf=iPjJ#c> where (c, m) — 1. Then 2.3 shows that
[x] e Γα. To prove that [x] e Ua, we need to find an integer I > 1 such
that [x]1 = [a?]. This is equivalent to finding an I such that
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r \l r

JJ p]) c) = Π P]j c (mod m) ,
•5=1 / 5=i

and this congruence is equivalent to the congruence

(τiPΪ-c)1'1^! (mod f[pV

Since

is relatively prime to the modulus, such an I exists.
We now identify the groups Ua.

2.5 THEOREM. Let

be any ίdempotent of Sm, written as in 2.2. Let

5=1

The group Ua is isomorphic to the group GA,

Proof. For every integer x, let [x]' be the residue class modulo A
to which x belongs. For [x] e Sm, let τ([x]) = [x]r. Plainly τ is single-
valued and is a homomorphism of Sm onto SA. We need only show that
r is one-to-one on Ua. If (c, m) = (c*, m) = 1 and

then

Π lή'-c = Π P5j c* (mod A) ,
5=1 5=1

which implies that c == c* (mod ^L), because (Πϊ=i ^ J ^ A) = 1. Since
IK=i £>5J ^. = m, we can multiply the last congruence by Π J U v)j to obtain

Π Pji#c = Π p^ c* (mod m) .

3 A construction of the semicharacters of Sm. A semicharacter
of Sm is a complex-valued multiplicative function defined on Sm that is
not identically zero. The set Xm of all semicharacters of Sm forms a
semigroup under pointwise multiplication, since [1] is the unit of Sm
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and X([l]) = 1 for all X e Xm. In this section, we apply the construction
of [2], 3.2 and 3.3, to obtain the semicharacters of Sm. In § 5, we will
give a second construction of the semicharacters of Sm, more explicit
than the present one, and independent of [2], This construction will
enable us to identify Xm as a semigroup (§ 6).

Theorems 3.2 and 3.3 of [2] give a description of all semicharacters
of Sm in terms of the groups Ua. Let χa be any character of the group
Ua. We extend χa to a function on all of Sm in the following way:

/ .. x γ(\xi\ _ ίθ if ab ^ a for the idempotent b such that [x] e Tb;

Xa([%\ά) iΐ ab — a for the idempotent b such that [x] e Tb.

The set of all such functions X is the set Xm.

3.1 THEOREM. The semigroup Xm has exactly

Π(i + W - W-1)

elements.

Proof. For each idempotent a — [pi1 p^c] as in 2.2, (1) yields
as many distinct semicharacters of Sm as there are characters of the
group Ua. The group Ua has just as many characters as elements. By
2.5, Ua consists of

<p(iL Pjj~8j) = Π {pp-'iPj - i)}

elements. Also, distinct idempotents a and b of Sm yield distinct semi-
characters of Sm under the definition (1). Therefore the number of
elements in Xm is

(2) Σ ψ(fί PP'BJ) = Σ Ψ[ Π Pp) = Σ ( Π Ψ{PV)

= Π (l + Ψ(PV)) = Π (l + Ί>V - W'1)

The sums in (2) are taken over all sequences {8lf , δr} where each δ,
is 0 or a3.

3.2 THEOREM. Let X be a semicharacter of Sm as given in (1) with
the idempotent a = [pi1 pl^d], and let χr be a semicharacter with the
idempotent a — {pξί ••• pfrd']. Then the semicharacter χχr is given by
(1) with the idempotent a" = [pj»ln<«i.«ί> . . . p^ in(δr δPcί].

This theorem follows at once from 2.21 and the definition (1).
We now prove two facts needed in § 4.
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3.3 THEOREM. Let X be a semicharacter of Sm that assumes some-
where a value different from 0 and 1. Then X assumes a value different
from 1 somewhere on Gm.

Proof. Definition (1) implies that the character χa of Ua assumes
a value different from 1. It is also easy to see that Gm — ULll. For
[x]eGm, definition (1) implies that X([x]) — Xa(a[x]) We need therefore
only show that the mapping [x] —> a[x] carries Gm onto Ua.

Write a = [pi1 plrd\. Every element of Ua can be written as
[pi1 p8

rrc] where (c, m) = 1, by 2.4. We must produce an [x] e Gm

such that a[x] — [pi1 ••• pfo]. That is, we must produce an integer x
such that

{ 3) Π Pjj dx = Π v)uc (mod m)
3=1 0=1

and (xy m) ~ 1. The congruence (3) is equivalent to

(4) ώ - c ί mod Π Pp'*

Since d is relatively prime to the modulus in (4), the congruence (4)
has a solution x0. We determine x as a number

where I is an integer for which

Xo + lή PV~δj = 1 (mod Π
3=1 \ 3=1

Clearly

3 = 1

satisfies (3) and the condition (x, m) = 1.

3.4. Let {X19 , λr} be a sequence of integers such that 0 ^ λ̂  ^ aό

(jf = i ? . . , r), and consider the set V(X19 , λr) of all [p]:1 p^χ\ e Sm

with (x, m) — 1. It is easy to see that this set is contained in Ta,
where a is the idempotent

Γ Π W'd\ .

3.5 THEOREM. Given Xlf « ,λ r, there is a positive integer k such
that the mapping [x] —> [pi1 p^χ] of Gm onto V(Xlf , λr) is exactly
Jk to one.
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Proof. Let u be any integer such that (u, m) = 1, and let [αjj,
• , [χkj be the distinct elements of Gm such that [pϊ1 pfrxj] —
[Pi1 ••• p)ru\. That is,

pϊ1 PrτXj = pi1 2>rr^ (mod m) (i = 1, , ku) .

Let u* be any solution of uu* = 1 (mod m). If (v, m) = 1, then we
have

p ^ p$ru*vxj Ξ= j£i pjto; (mod m) .

Since (u*vxj9 m) = 1 (j = 1, , &w) and the elements [u*vx& , [M*MCJ ]
are distinct in GTO, it follows that ku fg fc,,. Similarly, we have kυ ^ fcM.

4 A property of semicharacters of Sm. It is well known and
obvious that if H is a finite group and % is a character of H, then
ΊjχeiiX(%) = 0 or o(H) according as X Φ 1 or X = 1. This result does
not hold in general for finite commutative semigroups. As a simple
example, consider the cyclic finite semigroup T= {x, x\ , x\ , c^+fc~1},
where xι+7c = x\ and I and I + & are the first pair of positive integers-
m,n,m < n, for which xm = xn. The following facts are easy to show,
and follow from the general theory in [2]. The subset {x\ xι+1, , α?z+fc~1}
is the largest subgroup of T. Its unit is the element xUJC, where the
integer u is defined by I ^ uk < I + k. The general semicharacter of
T is the function X whose value at xh is exp (2πihj/k), where j = 0,,
1, , k - 1. For j = 1, 2, . , k - 1, the sum Σ^iί" 1 XO*̂ ) is equal to

1 - exp

which is 0 if and only if &/(&, i) divides i . Hence the sum of a semi-
character assuming values different from 0 and 1 need not be 0.

Curiously enough, the above-mentioned property of groups holds for
the semigroup Sm.

4.1 THEOREM. Let X be a semicharacter of Sm that assumes some-
where a value different from 0 and 1. Then ^ M e s Z([^]) = 0.

Proof. It is obvious from 2.1 that the sets V(\, * ,λ r) of 3.4
are pairwise disjoint and that their union is Sm. We therefore need
only show that Σcχ]eF(λl, ,v X([x]) = 0 for all {Xlf « ,λ r}. By 3.3, %
assumes a value different from 1 somewhere on the group Gm, so that
ΣMec7mZ(M) = 0. (Note that X on Gm is a character of the group Gm.)
Thus we have 0 = Σ M € * m Zίbϊ 1 P>])X([x]) - Σ M e ^ m Z(biλl P>x]) =

where [y] runs through F(λ2, * ,λ r ) .
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5 A second construction of semicharacters of Sm. In this section,
we compute explicitly all of the semicharacters of Sm. The case m even
is a little different from the case m odd. When m is even, we will
take Pi = 2. To compute the semicharacters of Sm9 we need to examine
the structure of Sm in more detail than was done in §3. For this
purpose, we fix once and for all the following numbers.

5.1 DEFINITION. For j = 1, , r, let

g3 — a primitive root modulo pp if p3 is odd;
& = 5 if p1 = 2;
hj = g3 + i/jP^ where y3 is such that h3 Ξ= 1 (mod m/pp);
h0 = — 1 + 7/oPf1 where y0 is such that h0 = 1 (mod m/pf1);
q̂  — p̂ . + ^.pp where z3 is such that q3 ΞΞ 1 (mod m/pp);

For j = 1, , r, Z = 1, •• ,r9 j Φl9 and pτ oddf let kn be a positive
integer such that p3 Έ= ghi (mod p*0.
i^or j = 2, , r αmZ ί?i = 2 Zeί

&,! δe α positive integer such that p3 = ( — l){pj-1)l2g*ji (mod pf1)-
Plainly τ/0»1/iy '",Vr and ^, * ,^ r exist. For pτ odd, the integers

feji exist because gz is a primitive root modulo pp. For px — 2, the
integers kn exist for ^ ^ 3 by [3], p. 82, Satz 126. For <xx = 1 or 2,
k31 can be any positive integer.

5.2. Let a? be any integer ^ 0 . Then x = Tlrj=iP$j{xKa(x), where
βj(x) ^ 0 and {a{x), m) — 1. Plainly the numbers β3 = /3j(ίc) and α = a(x)
are uniquely determined by x. For i = 1, , r and p3 odd, let
e j = e3(x) be any positive integer such that

a(x) = 0^(x) (mod ^ ) .

The number e,(x) is uniquely determined modulo <p(pp). For px = 2, let

ex — ex(x) be any positive integer such that

a(x) = (-i)^^)-!)/^!^) (mod pfi) .

For «! ^ 3, ex{x) exists and is uniquely determined modulo p*1'2 (see [3],
p. 82, Satz 126). For aλ = 1 or 2, e^aj) can be any positive integer.

If m is even, let

) π
If m is odd, let

do) A(x) = ( Π Π

jl /\j=l
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If m is even, it is easy to see from 5.1 that

( 2 ) A(x) s ( ή ( - l ) ( » r V ) ( j j flrf^pfl(_1)(β-i,/,flfβ1 ( m o d p f l

= Π P / P?1^ = & (mod p-i) ,
j = 2

and, if w — 2, , r,

= Π &3*Jn-Pίn9βnn = Π Pp-P^a = % (mod #J») .
.7=1 )=1

Therefore A(x) = x (mod m) if m is even.
If m is odd, then for w = 1, , r, we have

A(X) = Π 9njkjnmPnn9%n = Π PjUPnnU = % (mod p%") .

Therefore A(x) = x (mod m) if m is even or odd.

5.3. Suppose that X is any semicharacter of Sm. Let ψ be the
function defined for all integers x by the relation ψ(x) = Z([#]). Then
ψ is obviously a semicharacter of the integers under multiplication, and
ψ(x) = ψ»(y) if x = ?/ (mod m). We will construct the semicharacters
of Sm by finding all of the functions ψ with these properties. As 5.2
shows, ψ is determined by its values on ho,hlf ' *,hr and q19 •• ,g r.
We now set down relations involving the h's and q's which restrict the
values that ψ can assume on these integers.

5.4. If pj is odd, then

hppjj) = 1 (mod pV) , hfpj3) = 1 mod - ^ )
V ppJ

hence

h?p*j) = 1 (mod m) .

Also,

hi = 1 (mod pf 0 , hi Ξ= 1 (mod — )

hence fcj = 1 (mod m).
If PJ_ = 2 and a^ = 1, then Λ,o = 1 (mod 2), Λo = 1 (mod m/2); hence
h0 = 1 (mod m).
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If px = 2 and aλ = 1 or 2, then
hx = 5 = 1 (mod p?1), ^ = 1 (mod m/pf1); hence hλ = l (mod m).
If Pi = 2 and αx ^ 3, then

hfλ~2 = 1 (mod pp), Λ?*1"2 = 1 (mod m/p?); hence λfx"2 = 1 (mod m).
(The first congruence on the line above is proved in [3], p. 81, Satz 125.)

For j = l, , r, we have

qp E= 0 , qphj = 0 , gp+ 1 = 0 (mod vV) ,

gp = 1 , ? J ^ = 1 , qp^ = 1 (mod ^ t ) .

Therefore we have

qp = g^fcj = g^'+1 (mod m) .

Also, if pλ = 2, we have

??i = 0 , q*% = 0 (mod pΓ) ,

ff?1 = 1 , βf^o = 1 (mod -™Λ .(

Therefore we have

q^ Ξ qfihQ (mod m) .

5.5 If ψ is to be a function on the integers such that ψ(x) = χ([^])
for some semicharacter % of Sm, then the choices of the values of ψ at
the h's and g?s are restricted by the congruences modulo m derived in
5.4. Thus, since %([1]) = 1, we have

ψQι3Y
{pJj) = 1 if pj is odd;

ψ{h0) = ± 1, and ψ(hQ) = 1 if aλ = 1 and px = 2;

) = 1 if px = 2 and' ax = 1 or 2;

'2 = 1 if px = 2 and ^ ^ 3.

Also we have

ψ(g.)^ = ψiq^ψihj) - ^ ( g ^ + 1 for i = 1, ., r .

If px = 2, we have

The last two equalities give us:

ψ(qj) Φ 0 implies ψ(hj) = ψ(q3) = 1;

and
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ψ{?1) φ 0 implies ψ(h0) = 1 if px = 2.

5.6. To construct our functions ψ, we now choose numbers ω0,
<£>i, •• >ωr a n ( i fa* •• >£*r which are to be ψ(h0), ψ(hj, Λ"9ψ(hr) and

ψ(Qi)y φ ,ψ(Qr)' The relations in 5.5 show that we must take these
numbers such that:

ωppjj) = 1 if j = 1, , r and p3 is odd;

ύ>0 = ± 1; o)0 — 1 if Vi — 2 and αx = 1, or if m is odd1;

tϋj = 1 if Pi = 2 and αx = 1 or 2;

ωf 1~2 = 1 if p1 = 2 and aλ ^ 3;

/t, = 0 or 1 if j = 1, -- , r ;

α>j = 1 if μ3 = l , i = 1, « , r ;

α)0 = 1 if Pi = 2 and /^ = 1.

Formulas (le) and (l0) of 5.2 now require us to define ψ(x) for non-
zero integers x as follows:

v - / \i=i 3=1

. ω (αω-Wij ^ j(x)N) if w is even2;

\ / r \ / r \

(30) ψ(x) = ( Π Π ω^{x)Ίcn) Π ^ ( x ) ) ( Π ^>?(:c)) if m is odd.
l=l j=l

Finally, we define ψ(0) = ψ(m).

The q's, Λ's, and it's appearing in (1) and (3) were fixed once and

for all in terms of m. The α>'s and μ's are at our disposal and serve

to define ψ. The β's are determined uniquely from x; but the e's are

not. As noted in 5.2, ê  is determined modulo φ(pfj) if p3 is odd, and

ex is determined modulo pf1"2 if pλ = 2 and αx ^ 3. Since α>f (1>*J) = 1 if

Pj is odd, ωf1'2 = 1 if px = 2 and αx ^ 3, and ^ = 1 if p± = 2 and

αx ^ 2, we see that ψ is uniquely defined by the formulas (3e) and (30).

5.7. We now prove that ψ(xy) = ψ(x)ψ(y). Since ψ is obviously
bounded and not identically zero, this will show that ψ is a semicharacter.

Suppose first that x Φ 0, y Φ 0. Then we have

•Us\Jϋ) , y — \_\_ Pj UKv) J άy — J[χ PjJ ^J U/\Jί/)U/\y) .
J = i 3=1 3=1

1 We take ωo = 1 when m is odd merely as a matter of convenience. Actually, as will
shortly be apparent, ωo does not appear in the definition of ψ if m is odd.

2 We take 0<> = 1.
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Therefore a(xy) = a(x)a(y) and βj(xy) = βj(x) + βό{y) for j = 1, , r.
Also we have

i/) = ge/x)ge/y) == ̂ ω + ^ w ( m o d ^

if Pj is odd. Since gό is a primitive root modulo pp and ωfvV] = 1, it
follows that βj(cc3/) = e^a;) + e/^/) (mod φ{vV)) and α>^(X2/) = ωe/x)ωe/v) if
p^ is odd (i = 1, •••, r ) . If pλ — 2, then α(x) and a(y) are odd, and
plainly

(χy) 1 (^) 1 ^ ) 1 (mod 2)+
2 2 2

Therefore we have

^ (o(x2/)-l)/2 _ ^ (α(x)-l)/2α) (α(2/)-l)

for both admissible values of ω0. Furthermore,

if pλ = 2. Therefore we have

if px = 2.
Hence, if ax ^ 3 and ̂  = 2, we have ex{xy) s βx(x) + βx(?/) (mod p^~2),
as follows from [3], p. 82, Satz 126 (recall that gx = 5, px = 2). Hence

α>Ji(a:v) = tϋ;i(aj)α>flίv) if «! ^ 3,2?χ = 2 .

The last equality also holds if ax ^ 2 and px = 2, since ωx = 1 in this
case.

The foregoing computations, together with (3), now show that
ψ(xy) = ψ(x)ψ(y) if xy Φ 0.

We next show that ψ(xy) = ψ(x)ψ(y) iί xy = 0. We compute ψ(m).
Since /3j(m) = ̂  > 0 for j = 1, , r, we have

J = 1 0̂ otherwise0 otherwise.

If μ1 = . . . = μr = 1, then by 5.6, we have ω0 = cOi = = ωr — 1, so
that ψ(x) = 1 for all x. In this case, we have ψ(xy) = ψ(x)ψ(y) for
all a? and /̂. If some μ3 = 0, then ψ(m) = 0, and hence ψ(0) = 0. In
this case, ψ(xy) = ψ(x)ψ{y) if #2/ = 0.

5.8. We now prove that ψ(x) = ^(1/) if a? = /̂ (mod m). Suppose
first that xy Φ 0 and # = 2/ (mod m). Then
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Π pp{x)-a(x) = Π pp{y)-a(y) (mod m) .
Ji 313=1

From this, we see that β3{x) > 0 if and only if βό{y) > 0. If, for some
j , we have β3(x) > 0 and μ3 = 0, then β3(y) > 0 and ψ(x) = 0 = ψ(y).

Now we can suppose that μ3 = 1 for all j such that β3(x) > 0*
Then ω3 = 1 if &(&) > 0 (j = 1, , r) and ω0 = 1 if /Ŝ a?) > 0. If m
is odd, or if m is even and βx{x) > 0, we have

(4) ψ(x) = ( Π
\ ι=i 3=1 J\ 3=i

{)Q j¥Ί βj(x)=0

(5) ψ(y) = ( Π
\ 1=1

If m is even and ^(OJ) = 0, we have

( 6 ) ψ(x) = (f[ωo

{^-1)^{x)l2)( Π Π ωp{x)kAω0

{a{x)-1)i%( f[ ωe/x)) ,
V? 2 / \ ί = l 3 = 1 / \ j /

) O β ( ) > 0

( 7 ) ψ.(y) = (ή_ ίD0<»j-«pjw/»V f[ Π Π
βjU)=o βj(χ)>o βj(χ)=o

Since a? = y (mod m), we see from 5.2 that A(a?) = A(y) (mod m)
and hence

(8 ) A(x) = A(y) (mod ptn) for n = 1, , r .

The congruence

( 9 ) A(x) = Π h^{x)k^.qβn^hyx) (mod p;»)

holds if pw is odd. To verify this, use (le) and (l0) together with 5.1.
Notice that for n = 1, we use only (l0).

The congruences (8) and (9), together with the fact that βn(x) = 0
if and only if βn(y) = 0, now show that

3=1
3Ψ

yy) (mod p;»)

if pn is odd and βn(x) = 0. This implies that

Σ βj(%)kjn + en(%) — Σ β3(V)k3n + ^n{V) (mod
3=1 3=1

and
r r

\J-\J j 1 1 "^w *-̂ w x ± n v*-"n >
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if pn is odd and βn{x) = 0.
Similarly, if px = 2 and βx(x) = 0, in which case g1 — 5, (2) implies

that

(11) A(x) =

The congruences (8) and (11), together with the fact that βλ(y) = 0,
now show that

Σ ^(Pj-l)βj(x) +~
(_iy=2 2 2

Σ 7 ( p j - l ) W l / ) + ^ ( α ( i / ) ) Σ j(l/) ,{y)

^(-l)j=22 2 5j=* (mod 2"i

From this congruence, we find that

y f e - l)/8Xy) + |^α(») - 1) (mod 2)

if «! ̂  2, and

if aλ ^ 3. Since ω0 = 1 if αx = 1 and α^ = 1 if αx = 1 or 2, we now
have

(12) Π ω0

{pJ-1)βJlx)l2 ω0

{a{x)-1)l2 = Π

if aλ ^ 1, and

(13) Π ωfJ(a;)*^.ωfi(x) =
j=2 j=2

if «! ^ 1. Multiplying (10) over the relevant values of n, we have

(14) ( Π ή<ofr™*»)( Π ωZ»™) = ( Π Π ^ ( ^ 4 Π
n=l j=i

βn(x)=0 j^n

If m is odd, or if m is even and ^(a?) > 0, (14), (4), and (5) show that
ψ(x) = ψ(y). If m is even and β^x) — 0, we multiply (12), (13), and
(14) together. Comparing the result with (6) and (7), we find that
ψ(x) — ψ(y) in this case also.

We have therefore proved that ψ(x) = ψ(y) if x = y (mod m) and
xy φ 0. If x = 0 (mod m) and a? =£ 0, then ψ(x) = ψ(m). Since
ψ(m) by definition, the proof is complete.
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5.9. The foregoing construction of the functions ψ, and from these
the semicharacters X of Sm, X([x]) = ψ(x), clearly gives us all of the
semicharacters of Sm. As the ω's and μ's of 5.6 run through all admissi-
ble values, each semicharacter X appears exactly once. We could show
this by exhibiting, for each pair ψ and ψ', a number x such that
ψ(x) ψ ψr(χ). Rather than do this, we prefer to count the ψ's and
compare their number with the number obtained in 3.1.

For pj odd, the number of possible values of ω3 is <p(pp) if /̂ ^ = 0
and 1 if μ3 = 1. Hence this number is φ{pp{1~^)). For p1 — 2, there
are several cases to consider (μ1 = 0 or 1, aλ = 1, aλ = 2, aλ Ξ> 3). In
each case, it is easy to see that the number of admissible pairs {ω0, ωx}
is φ(2aia~μ'l)). Thus, for each sequence {μly •• ,jwr}, the total number of
sequences {ω0, ωlf , α>,.} is equal to

Summing this number over all possible {μ19 , μr}, we obtain

ILU(1 + VV - W~λ), as in Theorem 3.1.

6* The structure of Xm.

6.1. Let X and Xr be any semicharacters of Smf and let (μ19 , μr;
ω0, ωly , ωr) and (μ[, , μ'r; β)'o, o)[, , ωf

r) be the parameters as in
5.6 that determine X and %', respectively. The product XXr then has
as its parameters

( 1 ) G"i/4, , μrμ'r; ^oωί, ω X , , ωrω'r) .

Thus, all of the %'s in XOT for which the μ's are a fixed sequence of
0's and Γs form a group, plainly the direct product of cyclic groups,
one corresponding to each zero value of μ. These are maximal subgroups
of Xm9 and Xm is the union of these subgroups. The multiplication rule
(1) shows clearly how elements of different subgroups are multiplied.
The rule (1) shows also that Xm resembles a direct product of groups
and {0,1} semigroups. It fails to be one because of the condition in
5.6 that μό = 1 implies ωό = 1.

6.2. The characters modulo m of number theory (see [3], p. 83)
are of course among the semicharacters that we have computed. They
are exactly those for which μ1 — μ2 = = μr = 0. In the description
of § 3, they are the semicharacters that are characters on the group
Gm and are 0 elsewhere on Sm.

6.3. We can also map Xm into Sm9 and represent Xm as a subset
of Sm with a new definition of multiplication. Let X be in Xm and let
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X have parameters (μlf , μr; ω0, ωlf , ωr). For m odd and j = 0,1,
• , r or m even and j = 0, 2, 3, , r, let w, be any integer such that
ω3 — exp (2πiwjlφ(pp)). For m even and aλ = 1 or 2, let wx = 0; for
m even and a± ̂  3, let ̂  be any integer such that ωλ = exp (2πiwJ2ai~2)Λ

We now define the mapping

(2) χ — r(χ) - [/co(1~μi) π (hy^-^qpv) ] ,

which carries Xm into Sm. Evidently τ is single-valued.

6.4 THEOREM. The mapping τ is one-to-one.

Proof. Suppose that X and Xr are semicharacters of Sm with para-
meters as in 6.1. Suppose that τ(χ) = τ(χ')> that is,

( 3 ) /#od-μi> f[ (hy^-^qpv) = /^ό ( 1-^ Π (hlfj{1-^]qp^) (mod m) .

This congruence, along with 5.1, implies that

i = hfι(1-μί)pΐM (mod pγι)

for I = 1, , r and pz odd. Since (/̂ , p )̂ = 1, and μτ and //J are 0 or
1, it is obvious that μι — μ[. If μτ — μ[ = 1, then from 5.6, we have
ωι = ω[ = 1. If μz = /̂ ί = 0, then /#* = fej°ί (mod p?ί)> s o that ^j Ξ W[
(mod φ(pΐ1)) and hence ω^ = ω[.

If px = 2, (2) implies that

( 4 ) /^ou-^)/^iίi-μi>p^i == ̂ δ^-^^ί^-K^fiK (mod pί1) .

Again, we have μλ — μ[. If μx — μ[ — 1, then 5.6 states that ω0 = ωj —
£«! = α>ί = 1. If «! = 1, then ω0 = ω[ = 1, also by 5.6. If αx = 2 and
μ1 = μ[ = 0, then (3), along with 5.1, shows that (-l)w° = (~l)wό (mod 4),
and hence ωQ = ωj. If αx ̂  3 and μ1 = μ[ = 0, then we have ( —l)w°5Wl Ξ=
( —l)^65wi (mod 2Λl). Once again, [3], p. 82, Satz 126 shows that ( - l p =
( —l)wό and that wλ = w[ (mod 2Λl-2). Hence ω0 = ωj and α>! = coj.
Therefore τ is one-to-one.

6.5. The set τ(Xm) consists of all the elements [pi1 p^α] of Sm

for which δ̂  = 0 or aj9 and (α, m) = 1. It is evident from (2) that
τ(Xm) is contained in the set {[pi1 p8

rra]}. The reverse inclusion is
established by a routine examination of cases, which we omit.

6.6. The mapping τ plainly defines a new multiplication in τ(Xm):
τ(X)*τ(χ') = τ(χf). Every residue class τ(χ) contains a number

x =
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If x' is another number of this form, then it can be shown that [#]*[#']
is equal to [xx'IYl qp], where the product Π Q.V is taken over all j ,
j = 1, , r, for which Pj | xx'. We omit the details.
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