THE MULTIPLICATIVE SEMIGROUP OF
INTEGERS MODULO m

EpwiN HEWITT AND H. S. ZUCKERMAN

1. Introduction. Throughout this paper, m denotes a fixed
integer >1. The set of all residue classes modulo m is denoted by S,,.
For an integer x, [*] denotes the residue class containing x. Under the
usual multiplication [x]-[y] = [®y], S, is a semigroup. The subgroup of
S,, consisting of all residue classes [x] such that (¥, m) =1 is denoted
by G..

We write m = []j., p/, where the p, are distinct primes and the
a; are positive integers. Following the usual conventions, we take void
products to be 1 and void sums to be 0.

In 2.6-2.11 of [2], the structure of finite commutative semigroups
is discussed. In §2, we work out this structure for S,. In §3, we
give a construction based on [2], 3.2 and 3.3, for all of the semicharacters
of S,,. In §4, we prove that if X is a semicharacter of S, assuming a
value different from 0 and 1, then Xr;es, X([#]) = 0. In § 5, we compute
A([x]) explicitly in terms of the integer x, for an arbitrary semicharacter
% of S,. In §6, we discuss the structure of the semigroup of all semi-
characters of S,,.

Our interest in S,, arose from seeing the interesting paper [4] of
Parizek and Schwarz. Some of their results appear in somewhat dif-
ferent form in §2. Other writers ([1], [5], [6], [7]) have also dealt with
S,, from various points of view. In particular, a number of the results
of §2 appear in [6] and in more detail in [7]. We have also benefitted
from conversations with R. S. Pierce.

2. The structure of S,,. Let G be any finite commutative semigroup,
and let @ denote an idempotent of G. The sets T, ={r:2eG, 2™ =a
for some positive integer m} are pairwise disjoint subsemigroups of G
whose union is G. The set U,={x:x¢e T,, ' =« for some positive
integer I} is a subgroup of G and is the largest subgroup of G that
contains @. For a complete discussion, see [2], 2.6-2.11. In the present
section, we identify the idempotents a of S, and the sets 7, and U,.
We first prove a lemma.

2.1 LEMMA. Let x be any non-zero integer, written wn the form
Hp?j'a'v BjZOy(aym):l-
J=1
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Then there is an integer ¢ prime to m such that
x EJI:IIP?"C (mod m),
where N, = min (;, B;) (j =1, +++, 7). If
x = Ep#f-d (mod m) ,

where 0 =, = a; (=1, -+, 7r)and (d,m) =1, then p;, =X\, (j=1, -+, 7).
However, it may happen that d = ¢ (mod m).

Proof. Let b= 1;[ p;. Then we have

@j=Bj
x4+ bm=ph... pffa+p‘f1 «ee DI
= 1 pye#0- (40 + B),
j=1

where

A — ﬁ p;ﬂaxm-(ﬂj_“j))
j=

-

and
B = jl—[;p;nax(o,mj_gjn_b .
Then it is easy to see that (Aa + B, m) =1, so that
x = j[:Il prir@rbd.c (mod m) ,

where ¢ = Aa + B is prime to m. The last two statements of the
lemma are also easily checked.

2.2 THEOREM. Consider the 2" sequences {§,, ---,3,}, where &, =0
or a,(j =1, +-+,7). Corresponding to each such sequence, there is ex-
actly one idempotent of the semigroup S,, and different sequences give
different idempotents. The idempotent corresponding to {5, ---, 8,} can
be written as

[fI p?f-d] ,
j=1
where d is any solution of the congruence

Meyd=1 (mod il p&”f‘sf) .
J=1 J=1
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Proof. An element [x] of S, is idempotent if and only if
2= (mod m). If x is written as in 2.1, this congruence becomes
TI5=, p3-¢® = T1j-, piie (mod m), which is equivalent to

(1) I pyc=1 (mod T 5™ .
J=1 J=1

The congruence (1) has a solution ¢ if and only if ]}, p}¥ is relatively
prime to [[j-, »j’~*, that is, if and only if M;=0or a; (j =1, +++, 7).
If ¢, is a solution of (1), then all solutions of (1) are given by

r
c=c +yllp™,
j=1

where y is an integer. Plainly

[FLrve] = [t o]

for all such c.
We have thus proved the existence of a unique idempotent

[fir-4]

corresponding to a sequence {5,, +--, 8,}, where §, =0ora; (j =1, ---, 7).
If {5,+--,8,} and {3, ---, 8/} are distinct such sequences, the corre-
sponding idempotents are distinct by 2.1.

2.21 COROLLARY. Let

[117-4]

and
(1w ]

be idempotents in S,, written as in 2.2. Then their product is the
idempotent

[ﬁ p}rxmx(sj.sj),dll] ,
J=1
as in Theorem 2.2.

This follows directly from 2.1 and the obvious fact that products
of idempotents are idempotent.

We next determine the sets T, and U, defined above.

2.3 THEOREM. Let
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(o] = [ 11 e

be any element of S, where 0 =N, Za; (j=1,:++,7) and (c,m) =1.
Then [x] € T,, where the idempotent

a=[ 11 pd],
1sj=r
Aj>0

and d is as in 2.2.

Proof. The idempotent a such that [x] e T, has the property that
[]"* = @ for some positive integer k& and all integers n = some fixed
positive integer =, (see [2], 2.6.2). For n = n, max(«a, -+, a,), 2.1
implies that

a = [x]nk — [xnk] = [ﬁ p;zkxj.cnk] = [ﬁ p?‘iﬂ(nk}\j,w.’).dl] — [ﬁ pﬁf-d] ,
Jj=1 j=1 j=1

where §, =0if A; =0 and §;, = a, if N\, > 0, and d’ and d are relatively
prime to m.

2.4 THEOREM. Let
o=[f1704]

be any idempotent of S,, written as in 2.2. The group U, consists of
all elements of S,, of the form

(71 7-e]

where (¢, m) = 1.

Proof. Let [x]e U,. Then for some integers I >1 and k=1 and
all integers n = n,, we have [z] = [#¢] and [x]** = a. This implies that
[#] = [x]"***. Writing « as in 2.1 and using 2.1, we now have

r r
I e = [ p e = T pyh (mod m),

1sJ=7r
A

j>0

provided that = is sufficiently large; here (h, m) = 1. From 2.1 we infer
that \, =0 or o, (j =1, -+, 7). Since [x]e U, T,, 2.3 now implies that
N=28 (F=1, -, 7).

Now let z = [I’-, p¥-¢, where (¢, m) =1. Then 2.8 shows that
[x]e T,. To prove that [x] e U,, we need to find an integer ! > 1 such
that [z]' = [#]. This is equivalent to finding an ! such that
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(TLpp-e) = I p-c (mod m),
J=1 J=1

and this congruence is equivalent to the congruence
7 -1 7
<H pﬁf-c> =1 (mod 11 p71—8;> .
J=1 J=1
Since
IT p-c
Jj=1

is relatively prime to the modulus, such an [ exists.
We now identify the groups U,.

2.5 THEOREM. Let

a = [II p?f-d]
Jj=1
be any tdempotent of S,,, written as in 2.2. Let
A= f[ P8I,
J=1
The group U, is tsomorphic to the group G..

Proof. For every integer z, let [x] be the residue class modulo A
to which x belongs. For [x]e S, let 7([x]) = [x]’. Plainly 7 is single-
valued and is a homomorphism of S,, onto S,. We need only show that
T is one-to-one on U,. If (¢, m) = (¢*, m) =1 and

“([free]) = ([ frw-er])

then
11 py-c = 1 pi+c* (mod A),
j=1 j=1

which implies that ¢ =c¢* (mod A), because ([l %, A)=1. Since
1= p¥-A = m, we can multiply the last congruence by [, »%/ to obtain

11 p¥-c = j}}l p¥i.¢* (mod m) .

J=1

3. A construction of the semicharacters of S,. A semicharacter
of S,, is a complex-valued multiplicative function defined on S,, that is
not identically zero. The set X,, of all semicharacters of S, forms a
semigroup under pointwise multiplication, since [1] is the unit of S,
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and X([1]) = 1 for all x € X,,. In this section, we apply the construction
of [2], 3.2 and 3.3, to obtain the semicharacters of S,.. In §5, we will
give a second construction of the semicharacters of S,, more explicit
than the present one, and independent of [2]. This construction will
enable us to identify X,, as a semigroup (§ 6).

Theorems 3.2 and 3.3 of [2] give a description of all semicharacters
of S,, in terms of the groups U,. Let X, be any character of the group
U,. We extend X, to a function on all of S,, in the following way:

0 if ab = a for the idempotent b such that [x] e T,;

(1) (=D ={ , _
XL([x]a) if ab = a for the idempotent b such that [x] e T,.

The set of all such functions X is the set X,.
3.1 THEOREM. The semigroup X, has exactly
11+ pyr = pr)
elements.

Proof. For each idempotent a = [pt --- plre] as in 2.2, (1) yields
as many distinct semicharacters of S,, as there are characters of the
group U,. The group U, has just as many characters as elements. By
2.5, U, consists of

(I pr*) = TL {pr~"(, — 1}
j—O
elements. Also, distinct idempotents a and b of S,, yield distinct semi-
characters of S,, under the definition (1). Therefore the number of
elements in X, is
e @;—38 — @
(2)  Se(llp J)—;w(ég[ p) = Z(Hsﬂ(pﬂ))

Jjs

[ II/\

=§(1+¢<pf))—ﬁ;( Py — 7).

The sums in (2) are taken over all sequences {5, -+, §,} where each ¢,
is 0 or a;.

3.2 THEOREM. Let X be a semicharacter of S, as given in (1) with
the idempotent a = [pd «-- p¥rd], and let X' be a semicharacter with the
idempotent a = [pli «+« p¥d']. Then the semicharacter X)' is given by
(1) with the idempotent o = [pPn@rd) ... ppin@repd],

This theorem follows at once from 2.21 and the definition (1).

We now prove two facts needed in § 4.
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3.3 THEOREM. Let X be a semicharacter of S, that assumes some-
where a value different from 0 and 1. Then Y assumes a value different
Sfrom 1 somewhere on G,,.

Proof. Definition (1) implies that the character ¥, of U, assumes
a value different from 1. It is also easy to see that G, = Uy;. For
[x] € G,, definition (1) implies that x([z]) = X.(a[z]). We need therefore
only show that the mapping [x] — a[x] carries G, onto U,.

Write @ = [pft -+ p»d]. Every element of U, can be written as
[pit ... pire] where (¢, m) =1, by 2.4. We must produce an [z]eG,,
such that af[x] = [pd --- pie]. That is, we must produce an integer =«
such that

(3) 11 pis+do = 1 p-c (mod m)
j=1 J=1

and (x, m) =1. The congruence (3) is equivalent to

(4) der=c¢ (modﬁpﬁ‘j‘sﬁ> .

Since d is relatively prime to the modulus in (4), the congruence (4)
has a solution z,, We determine z as a number

a1,
j=1
where [ is an integer for which
2o+ LTI P =1 (mod 1 pi”) -

J=1 Jj=1

Clearly
x =@, + L] pyrs
j=1

satisfies (3) and the condition (x, m) = 1.

3.4. Let {\, +-+,\,} be a sequence of integers such that 0 = )\, = «;
(=1, ---,7), and consider the set V(\, --+,),) of all [pit--- p}x]e S,
with (¥, m) = 1. It is easy to see that this set is contained in T,
where a is the idempotent

1sj=7r

A
]>0

| 11 prd].

3.5 THEOREM. Given \, +++,\,, there is a positive integer k such
that the mapping [x] — [pit «++ pyx] of G, onto V(\, «++,\,) is exactly
k to one.
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Proof. Let u be any integer such that (uw,m)=1, and let [x,],
oo, [x;, ] be the distinct elements of G, such that [p}r... p}2,] =
[pM ««- p}u]. That is,

pteee Py, =pitece ppu (mod m) (5 =1, -4+, k,) .

Let u* be any solution of wu* =1 (mod m). If (v,m) =1, then we
have

Moo plrutor, = pitees pirv (mod m) .

Since (u*vz;, m) =1 (j =1, ---, k,) and the elements [u*vz)], - - -, [u*vz, ]
are distinct in G, it follows that k, < k,. Similarly, we have k, < k,.

4. A property of semicharacters of S,. It is well known and
obvious that if H is a finite group and )X is a character of H, then
Neen X(®x) = 0 or o(H) according as X #1 or X =1. This result does
not hold in general for finite commutative semigroups. As a simple
example, consider the cyclic finite semigroup 7T'= {x, &%, +++, &%, « ++, 2tH*1}
where z'** = #?, and [ and [ + k£ are the first pair of positive integers.
m, n, m < n, for which 2™ = x”, The following facts are easy to show,
and follow from the general theory in [2]. The subset {a?, 2™+, .., 2™}
is the largest subgroup of 7. Its unit is the element x**, where the
integer u is defined by I < uk <l + k. The general semicharacter of
T is the function X whose value at 2" is exp (2wihj/k), where 7 = 0,
1,.--e,k—1. For j=1,2,--+,k— 1, the sum 3%t~ x(z") is equal to

1 — exp <zm(kk+ l)j)

. 27rij>
1 exp< T
which is 0 if and only if k/(k,l) divides j. Hence the sum of a semi-
character assuming values different from 0 and 1 need not be 0.

Curiously enough, the above-mentioned property of groups holds for
the semigroup S,,.

4.1 THEOREM. Let ) be a semicharacter of S,, that assumes some-
where a value different from 0 and 1. Then Siates,, X([x]) = 0.

Proof. It is obvious from 2.1 that the sets V(n, :--,)\,) of 3.4
are pairwise disjoint and that their union is S,,. We therefore need
only show that >ievny,...ay Z([x]) =0 for all {\, .-+, \,}. By 3.3, %
assumes a value different from 1 somewhere on the group G,, so that
Siwtes,, X([#]) = 0. (Note that X on G, is a character of the group G,.)

Thus we have 0 = e, 201 « - 2 DA(2]) = Ziares, XD -+ - D}2]) =
k> x(ly]), where [y] runs through V(x, ---, ),).
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5. A second construction of semicharacters of S,. In this section,
we compute explicitly all of the semicharacters of S,,. The case m even
is a little different from the case m odd. When m is even, we will
take p, = 2. To compute the semicharacters of S,, we need to examine
the structure of S, in more detail than was done in §8. For this
purpose, we fix once and for all the following numbers.

5.1 DEFINITION. For j =1, -+, 7, let

g, = a primitive root modulo py’ if p, is odd;

6 =51 p=2;

h; =g, + y,p99 where y,; is such that h, =1 (mod m/p5?);

hy = — 1 4+ y,p** where y, is such that h, =1 (mod m/p®);

q, = p; + 2,05 where z; is such that q; =1 (mod m/p3?);
For j=1,«--,7,1l=1,-s,7,5 %1, and p, odd, let k; be a positive
integer such that p, = gin (mod p7v).
For j=2,«--,7 and p, = 2 let

ky be a positive integer such that p; = (—1)*Pgin (mod pi).

Plainly v, v, ++-, ¥, and 2, ++-, 2, exist. For p, odd, the integers
k; exist because ¢, is a primitive root modulo pj:.. For p, =2, the
integers k,, exist for oy = 3 by [3], p. 82, Satz 126. For a;, =1 or 2,

k; can be any positive integer.

5.2. Let x be any integer 0. Then x = I[j., p%* .a(x), where
Byx) = 0 and (a(x), m) = 1. Plainly the numbers B, = 8,(x) and a = a(x)
are uniquely determined by . For j =1, .., and p, odd, let
e; = e,(x) be any positive integer such that

a(r) = g7 (mod pf) .
The number e,(z) is uniquely determined modulo @(p$s). For p, = 2, let
e, = e,(x) be any positive integer such that
a(x) = (—1)= 0gp® (mod pfr) .

For a; = 3, e,(x) exists and is uniquely determined modulo p{*~* (see [3],
p. 82, Satz 126). For a; =1 or 2, e¢(x) can be any positive integer.
If m is even, let

»

@) A@ = (T hwee)(1T ]

1=1 j=1
J#1

jkﬂ)(,-f;[l q?f)ho‘“—””(jli[l h§f> .
If m is odd, let

@ = (i),
=
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If m is even, it is easy to see from 5.1 that

(2)  Aw) = (IL(=1)orese )(T1 gt pir(— 1) g2t (mod pf)

= (I (~1ymrogen ) pa(—1yerge
Jj=2
= jI:];Sﬂ'pfla =2 (mod pf),
and, if n =2, -+, 7,

A@) = [ g2 pingin = T pir-plira = @ (mod pi) .
J#Fn J#n
Therefore A(x) =« (mod m) if m is even.
If m is odd, then for n =1, .-+, 7, we have

A(x) = JHZI ghikin. phngin = jI}l pii-para = @ (mod prn) .
J#n J#n

Therefore A(x) = x (mod m) if m is even or odd.

5.3. Suppose that ) is any semicharacter of S,. Let + be the
function defined for all integers x by the relation +r(x) = X([#]). Then
4r is obviously a semicharacter of the integers under multiplication, and
() = Y(y) if x =y (mod m). We will construct the semicharacters
of S, by finding all of the functions y» with these properties. As 5.2
shows, 4 is determined by its values on Ay, Ay -+, h, and ¢, ---,q,.
We now set down relations involving the A’s and ¢’s which restrict the
values that y» can assume on these integers.

5.4. If p, is odd, then

hy@i =1 (mod pyY), h§¥iP =1 <m0d ﬂZj) ’
s

hence

hee? =1 (mod m) .

Also,

k=1 (mod p#), hi=1 (mod 72) ;
1
hence 2 =1 (mod m).
If p,=2and a, =1, then h,=1 (mod 2), h, =1 (mod m/2); hence
hy=1 (mod m).
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If p, =2 and a;, =1 or 2, then
hy=5=1 (mod p3), h, =1 (mod m/p?); hence h, =1 (mod m).
If p, =2 and @, = 3, then

B =1 (mod p#), B =1 (mod m/p®); hence K™ =1 (mod m).
(The first congruence on the line above is proved in [3], p. 81, Satz 125.)
For j=1,.--,r, we have

=0, qh; =0, q57"* =0 (mod p3’),

¢=1, qh=1, q=1(md ™)
;7

Therefore we have
93’ = q3'h; = ¢37** (mod m) .
Also, if p, = 2, we have
=0,  qihy=0 (mod p"),

n=1, Q“h, =1 <mod ”j)
Pt

Therefore we have
" = q¥h, (mod m) .

5.5 If 4 is to be a function on the integers such that J(z) = x([x])
for some semicharacter X of S,, then the choices of the values of r at
the h’s and ¢’s are restricted by the congruences modulo m derived in
5.4. Thus, since X([1]) =1, we have

Yr(hy)p PP =1 if p, is odd;

’\l"(ho) = 4+ 1, and 11f(h0) =1lifa,=1 and p, = 2;

Y(h) =1if p,=2 and' o, =1 or 2;

Nil‘(hl)zwr? =1 if = 2 and o, = 3.
Also we have

V(@)™ = (@) () = (g for G =1, 7.
If p, =2, we have
Y(g)™ = Y(g)"Yr(ho)

The last two equalities give us:

(g;) # 0 implies Y(k;) = Y(q;) = 1;

and
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¥(q,) # 0 implies (k) = 1 if p, = 2.

5.6. To construct our functions +, we now choose numbers @,
Wyy ooy Wy and Py ooy Uy which are to be "lj‘(ho)) "p(hl)’ ct "J’\(hr) and

V(q), +++,Y(q,). The relations in 5.5 show that we must take these
numbers such that:

% =1if j=1,+.-+,7 and p, is odd;

w,==x1;, o,=11if p, =2 and a, = 1, or if m is odd};
w,=11if p,=2and a, =1 or 2;

@7 =1if p,=2 and a, = 8;

gy;=0o0r 1if j=1,-0,7;

w,=1if p,=1,7=1, -+, 7;

w,=11if p,=2 and ¢, = 1.

Formulas (1,) and (1,) of 5.2 now require us to define yr(x) for non-
zero integers x as follows:

(3) W) = (ILoyres=r)(T1 1 b ) (11 )

1=1 j=1 Jj=1
J#

”
. wo(u(x)—l)/2<:[[ w;j(rc)) if m iS even?;
J=1

@) v = (111 w%f‘”'ﬂn)(;gl y?f‘”)(jf:[l W) if m is odd.
J#L

Finally, we define y~(0) = ++(m).

The ¢’s, h’s, and k’s appearing in (1) and (3) were fixed once and
for all in terms of m. The w’s and p’s are at our disposal and serve
to define y». The B’s are determined uniquely from x; but the ¢’s are
not. As noted in 5.2, e, is determined modulo @(p§s) if p, is odd, and

e, is determined modulo p»—* if p, =2 and a, = 3. Since wy?? =1 if
p,is odd, @™ =1 if p,=2 and @, =8, and ®, =1 if p, =2 and
o, < 2, we see that 4 is uniquely defined by the formulas (3,) and (3,).

5.7. We now prove that r(xy) = y(x)y(y). Since +r is obviously
bounded and not identically zero, this will show that +» is a semicharacter.
Suppose first that « = 0,y = 0. Then we have

r r r
&= Jljl PP a(x) , Yy = 1 iV aly) , xy = I POV a(z)aly) .
1 We take wg =1 when m is odd merely as a matter of convenience. Actually, as will

shortly be apparent, wy does not appear in the definition of ¢ if m is odd.
2 We take 00 =1,
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Therefore a(zy) = a(x)a(y) and Bixy) = Bix) + Byy) for j =1, -+, 7
Also we have

g?ﬂzy) = a(xy) = a(x)a(y) = ggj(x)ggj(y) = g;j(.‘c)-}-ej(y) (mod p}x’j)

if p; is odd. Since g, is a primitive root modulo p?/ and wf P =1, it
follows that e,(xy) = e;(x) + e,(y) (mod #(pY)) and W™ = @I P WP if
p; is odd (j=1,:-+,7). If p, =2, then a(x) and a(y) are odd, and
plainly

a(ry) —1 _a(®) —1 | a(y) —1
5 = 5 + 5 (mod 2) .

Therefore we have

wo((l(xy)—l)IZ — wo(a(ﬂc)—l)/zwo(a(y)—-l)m

for both admissible values of w,. Furthermore,

(_1)(a(xy)—1)/2gfl(xy) = a(x)a(y)
= (_1)(a(z)—1)/2gle1(x)(_1)<a(y)—1)/2g<131(y) (mod pitl) ,

if p, = 2. Therefore we have
gil(iﬂ’y) oen gil(w)+61(y) (mod pfl) ,

if p,=2.
Hence, if a, = 3 and p, = 2, we have e, (xy) = e, (x) + e, (y) (mod py—?),

as follows from [3], p. 82, Satz 126 (recall that g, =5, p, = 2). Hence
WA = @i if , =23, p,=2.

The last equality also holds if a;, <2 and p, = 2, since w, =1 in this
case.

The foregoing computations, together with (3), now show that
Y(xy) = Y(x)Py) if xy = 0.

We next show that yr(xy) = (@) (y) if xy = 0. We compute y(m).
Since Bym) =a; >0 for j =1, -+, 7, we have

f[ ﬁj(m):{l if th= o =p=1,
= 0 otherwise.

If gy =+« =p, =1, then by 5.6, we have =0, =+ =0, =1, so
that Y(x) =1 for all . In this case, we have (2y) = Y (x)y(y) for
all x and y. If some g, =0, then y(m) =0, and hence (0) =0. In

this case, Y(xy) = Y(x)y(y) if xy = 0.

5.8. We now prove that y(z) = y(y) if * =y (mod m). Suppose
first that 2y # 0 and « =y (mod m). Then
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T1 2%/ -a(x) = 11 p¥*-a(y) (mod m) .
J=1 j=1

From this, we see that B,(x) > 0 if and only if B,(y) > 0. If, for some
J, we have By(x) > 0 and g, = 0, then B;(y) > 0 and Y(x) = 0 = Y (y).

Now we can suppose that g, =1 for all j such that B,(x) > 0.
Then w, =1 if Bx) >0 (j=1,---,7) and w, =1 if B(x) > 0. If m
is odd, or if m is even and B,(x) > 0, we have

(4) v = (11 Lopos)( 1 ep),
sioto 8,15k

(5) v) = (1T Topos)( 11 apv) .
8, (m =0 T 8 loo

If m is even and By(x) = 0, we have

r

(s l 7
(6) ,‘lf(x) — (1:[_12 wo(pj—l)ﬂj(x)ﬂ)( LI_I j_]:[l a)?j(z)kﬂ>w0(a(x)—1)/2< jl‘[_l w;j(:@)) ,
- B, (@)=0 B(z)>0 B 5l =0

(7) ,\l/‘(y) — <jr1;-[2 wo(pj—l)Bj(y)m)( f[ f[ wlBj(y)kﬂ>wo(a(y)—1)/2< ﬁ (051(”)> .

=1 J=1 Jj=1
By (@) =0 Bj(z) >0 Bj(z) =0

Since © =y (mod m), we see from 5.2 that A(x) = A(y) (mod m)
and hence

(8) A(x) = A(y) (mod p2z») for n =1, «--, 7.
The congruence

(9) A@) = [1 B gin= hin (mod pi)

J#En

holds if p, is odd. To verify this, use (1,) and (1,) together with 5.1.
Notice that for n = 1, we use only (1,).

The congruences (8) and (9), together with the fact that B,(x) =0
if and only if 8,(y) = 0, now show that

7 y
jI_I hE3@j L ponl® = jﬂ_l hEIWEjn  pentv) (mod pzn)
J;}z J;n

if p, is odd and B,(x) = 0. This implies that

35 8@k + (@) = 3 BW)ksn + €t) (mod P(p) ,

J#n

and

¥

¥

(10) jH a)gj(z)kjn.a)ﬁn(?/) — ,H a)ﬁf(””“m-a)f,n“f’ ,
=1 =1
J#n I
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if p, is odd and B,(x) = 0.
Similarly, if p, = 2 and B,(z) = 0, in which case g, = 5, (2) implies
that

11) A@@) = (jlj (__1)<p;—1>sj(z>/2><j]j 53_1(1)7611)(_1)((1(1:)-—1)/2591(1:) (mod 2%) .

The congruences (8) and (11), together with the fact that B.(y) =0,
now show that

r 1 1 r
(— 1)};2 3 Py DBs@) + 5 (a@)~ 1)5 2, Bi@kntel)

Z-(m 185(y) + <a<y>—1> > B5) + ex(y)
= (—1)7=2 57=2 (mod 21)

From this congruence, we find that

m‘»—a

(9, — DB,=) + —;—(a(x) — 1=

b

N]H

(9, — DB,) + %(a(y) — 1) (mod 2)

if o, = 2, and
j% 'Bj(x)kjl + 61(90) = j% ,Bj(y)kﬂ + el(y) (mod 2“1—2)

if ¢, =38, Since w,=1if o, =1and w,=11if a,=1 or 2, we now
have

r ¥
(12) jl_I @, P VBI@I12, gy (@@-D12 = [T @, PI~VBIWI2, gy (@@ -D]2

if o, =1, and

L ¥
(13) ]sz{sj(z)kﬂ,wfl(x) — jH WBIVEILL )2 @)
= =2

if «, = 1. Multiplying (10) over the relevant values of %, we have

9 (I Hopsn) I wp@)=( 11 Hopws)( 11 wpv).
< Lo J7n >< n’fff:o ) <5n7<§1=o I ><Bn(z_)=0 )

2> 2 e D, >2 ,>2
If m is odd, or if m is even and B,(x) > 0, (14), (4), and (5) show that
Y(@) = P(y). If m is even and Bi(x) =0, we multiply (12), (13), and
(14) together. Comparing the result with (6) and (7), we find that
Jr(x) = Yr(y) in this case also.

We have therefore proved that yr(x) = Y(y) if x =y (mod m) and
2y #+ 0. If =0 (mod m) and x +# 0, then y(x) = Jr(m). Since Y(0) =
Yr(m) by definition, the proof is complete.
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5.9. The foregoing construction of the functions +r, and from these
the semicharacters X of S,, X([x]) = y(x), clearly gives us all of the
semicharacters of S,. As the @’s and ¢’s of 5.6 run through all admissi-
ble values, each semicharacter X appears exactly once. We could show
this by exhibiting, for each pair +» and ', a number x such that
Jr(x) # 4'(x). Rather than do this, we prefer to count the +’s and
compare their number with the number obtained in 3.1.

For p, odd, the number of possible values of w; is ¢(p3) if ¢, =0
and 1 if g, =1. Hence this number is @(pj?*~*?). For p, =2, there
are several cases to consider (¢, =0or 1, a;, =1, a, =2, o, = 38). In
each case, it is easy to see that the number of admissible pairs {w,, ®}
is @(2@4-#)  Thus, for each sequence {z, ---, 4}, the total number of
sequences {w,, @, +++, ®,} is equal to

1T P(p522) .
j=1

Summing this number over all possible {4, ---, ¢}, Wwe obtain
;- (1 + p¥ — p37Y), as in Theorem 3.1.

6. The structure of X,.

6.1. Let x and X’ be any semicharacters of S,, and let (¢, « -+, t;
Wy, @y, +++, ,) and (g, ++-, t; 0}, w;, +++, @) be the parameters as in
5.6 that determine X and X', respectively. The product XY’ then has
as its parameters

(1) ([ulﬂ{’ ct ety /,!,.ﬂ,'.; WyW5, W@, * ¢, wrw;) .

Thus, all of the X’s in X, for which the f’s are a fixed sequence of
0’s and 1’s form a group, plainly the direct product of cyclic groups,
one corresponding to each zero value of ©t. These are maximal subgroups
of X, and X,, is the union of these subgroups. The multiplication rule
(1) shows clearly how elements of different subgroups are multiplied.
The rule (1) shows also that X, resembles a direct product of groups
and {0,1} semigroups. It fails to be one because of the condition in
5.6 that g, =1 implies w; = 1.

6.2. The characters modulo m of number theory (see [3], p. 83)
are of course among the semicharacters that we have computed. They
are exactly those for which p4 = g, = +++ = g4, = 0. In the description
of §38, they are the semicharacters that are characters on the group
G., and are 0 elsewhere on S,,.

6.3. We can also map X, into S,, and represent X, as a subset
of S,, with a new definition of multiplication. Let X be in X, and let
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X have parameters (f4, -, ty; Wy, @y, <+, ®,). For m odd and j = 0, 1,

cee,7 0or m even and § =0,2,3, .-+, 7, let w, be any integer such that

w; = exp @riw,/p(p;?)). For m even and a, =1 or 2, let w, = 0; for

m even and a, = 3, let w, be any integer such that w, = exp Cziw,/2%7?).
We now define the mapping

(2) L— 7)) = [hg’oﬂ—fq) f[ (hifj(l—uj)q;ajw)] ,
J=1
which carries X,, into S,.. Evidently = is single-valued.

6.4 THEOREM. The mapping T 1s one-to-one,

Proof. Suppose that X and ¥’ are semicharacters of S,, with para-
meters as in 6.1. Suppose that 7(¥) = 7()'), that is,

r T
(8) Ryt [T (om0 qiom) = hyit =+ 1T (R3°-+9q724) (mnod m) .

This congruence, along with 5.1, implies that
bt mr i = hpit-EDpikt (mod  pf)

for I =1, ---,7 and p, odd. Since (k, p;) =1, and g, and ¢ are 0 or
1, it is obvious that g, = p. If ¢, = ¢ =1, then from 5.6, we have
w,=w;=1. If g, =y =0, then h{» = A"t (mod p{), so that w, = wi
(mod @(p?)) and hence w, = w;.

If p, =2, (2) implies that

(4) Jeot—k) fpr 0= paus = Juog-sp prit—s)po (mod pi) .

Again, we have p, = 1. If ¢, = pf =1, then 5.6 states that 0, = 0] =
w,=w,=1. If o, =1, then w, =) =1, also by 5.6. If a,=2 and
= 4 =0, then (3), along with 5.1, shows that (—1)* = (—1)*s (mod 4),
and hence w, = ). If ay = 3 and y, = ¢ = 0, then we have (—1)*b* =
(—=1)#5%1 (mod 2%1). Once again, [3], p. 82, Satz 126 shows that (—1)*° =
(—1)* and that w,= w, (mod 2*7?). Hence ®, =, and o, = o).
Therefore 7z is one-to-one.

6.5. The set 7(X,,) consists of all the elements [p} «++ pira] of S,
for which 8, =0 or «a; and (@, m)=1. It is evident from (2) that
7(X,) is contained in the set {[pi ... p¥a]}. The reverse inclusion is
established by a routine examination of cases, which we omit.

6.6. The mapping 7 plainly defines a new multiplication in ¢(X,):
(0¥t = ©(}’). Every residue class 7(X) contains a number

[
r = h:)vo(l—-p.l) ];Il (h}p](l—,&l.j)q?j,mj) .
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If «’ is another number of this form, then it can be shown that [x]*[’]
is equal to [zx'/T] ¢3/], where the product [] ¢% is taken over all j,
jg=1,---,r, for which p,|xx’. We omit the details.
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