REGULAR COVERING SURFACES OF RIEMANN SURFACES

SIDNEY M. HARMON

Introduction. The homotopy and homology groups of a given arec-
wise connected surface are topological invariants. A smooth covering
surface F'* is a locally-topological equivalent of its base surface F. Con-
sequently, it is natural that the fundamental and homology groups of
F*, T(F*) and H(F™*) respectively, should be related to those of F,
T(F) and H(F') respectively. In this paper the term homology is always
used for the 1-dimensional case. The cover transformations of a covering
surface F'* are topological self-mappings such that corresponding points
have the same projection on F. These cover transformations form a
group which we will denote by 7I'(F*). The homology properties of F
should influence I"'(F'*) by means of the composition of the self-topologi-
cal mapping and the locally-topological mapping F'* — F.

Section 1 considers the general class of smooth covering surfaces on
which there exists a continuation along every arc of the base surface.
We refer to such a covering surface as a regular covering surface F'*.
A number of results are collected and put into the form in which they
are needed to derive the main theorems. The class {F'*} is shown to
form a complete lattice. Next there is shown a one to one correspondence
between all subgroups N, C T'(F'), such that N, contains the commutator
subgroup N, of T(F'), and the set of all subgroups H, C H(F). This
correspondence leads to isomorphisms which relate the associated sub-
groups.

Section 2 considers a special class of regular covering surfaces {Fy}
in which F* is characterized by the properties that it corresponds to a
normal subgroup of 7'(F') and 7I'(F}') is Abelian. In our notation these
covering surfaces form the class of homology covering surfaces (cf.
Kerékjarto [5]). An equivalent characterization of the property that
F* corresponds to a normal subgroup is the assumption that above any
closed curve on F' there never lie two curves on F* one of which is
closed and the other open. There are derived here for {F} an isomor-
phism and correspondence theorem which relates subgroups ', € I'(F%)
to quotient groups of H(F) and T(F). The class {F}} is shown to
form a complete and modular lattice. If the base surface F' is an
orientable or non-orientable closed surface, with covering surface F)',
the rank of I'(F) is determined in terms of the genus of F and the
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rank of an associated subgroup H; C H(F).

Section 3 considers the Schottky covering surface F§ of a closed
orientable surface. We denote the boundary of the conformal equivalent
of F§ in the plane by Es. There is obtained here a criterion for the
vanishing of the linear measure of Ej.

We will refer to functions defined on a Riemann surface by an ab-
breviated notation as follows: Green’s functions by G, nonconstant ana-
lytic functions with finite Dirichlet integral by AD and non-constant
analytic bounded functions by AB. We denote the class of Riemann
surfaces on which there does not exist any G, AD and AB functions
respectively by O, O, and O,;. If Wis an open (non-compact) Riemann
surface we are led to the problem of studying it from the following
comparative viewpoint (Sario [13]). Suppose that P is a property of all
closed (compact) Riemann surfaces, determine open Riemann surfaces
which possess the same property. Recently Mori [8] established a con-
nection between homology covering surfaces and the classes O, O, and
0,

Section 4 applies the results of the previous three sections to the
classification of Riemann surfaces. It considers regular covering surfaces
of a closed Riemann surface F' of genus p. We refer to the covering
surface of F which corresponds to N, C T(F') as the commutator covering
surface F*. It is shown that the results obtained in [8] for homology
covering surfaces F* with respect to O,,, O, and O,, may be applied
to any regular covering surface F;* which is weaker than F}*. In the
case of O,; this yields for F;* a criterion in terms of the generators of
quotient groups of T(F) and H(F'). A generalization of Painlevé’s
problem for an open Riemann surface is proved, and there is also ob-
tained a criterion based on vanishing linear measure of a plane point
set which determines that a Schottky covering surface is in O,j.

1. Regular Covering Surfaces.

1.1. DEFINITIONS. A surface is a connected Hausdorff space on
which there exists an open covering by sets which are homeomorphic
with open sets of the 2-dimensional Euclidean space.

A surface F'™ is a smooth covering surface of a base surface F if
there exists a mapping f: F'* — F' such that for every p* e F'* a neigh-
borhood V* of p* is mapped topologically onto a neighborhood V of
p = f(p*) e F.

F* is a regular covering surface of F if it is smooth and if every
arc v on F' can be continued along v from any point over the initia]
point of v. [2] (The term ‘‘unramified and unbounded’’ also appears in
the literature instead of the term ‘‘regular’’ used here.)
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1.2. FUNDAMENTAL GROUP. The results in this subsection are
needed for the later treatment and may be found or are implied in the
literature; and the development closely parallels that of Ahlfors and
Sario [2]. The following result is well-known.

LEMMA 1. Let {v} be the homotopic classes of those curves from 0
on F which have a closed continuation {v*} from 0* € F*. Then D = {v}
18 a subgroup of the fundamental group T(F) with origin at 0.

Let the notation (F'*, f) and F represent a regular covering surface
F* of F' with topological mapping f:F* — F and homotopic classes
originating at 0* where f(0*) = 0. We will identify (F'*, f\) and (F, f.)
if there exists a topological mapping ¢ : Fi* — F,* such that f, = f,0¢
and ¢(0f) = 0. It is clear that this identification is defined by means of
an equivalence relation.

The proofs of the following proposition and of the subsequent
Lemmas 2 through 4 may be obtained from reference [2] or {9].

PROPOSITION 1. The mapping ¢ in the identification of (F*, f.) and
(FF, o) with ¢(0F) = 0 is uniquely determined.
With the foregoing identification, we obtain

LEMMA 2. There exists a one to one correspondence between identi-
fied pairs (F'*, ) and the subgroups D of T(F). Two pairs can be
represented by means of the same (F'*,f) if and only if the corre-
sponding subgroups are conjugate.

LEMMA 3. The fundamental group T(F*) of (F'*, f) is isomorphic
with the corresponding subgroup D of T(F).

If (FY,f) covers FY* and (F},f,) covers F, then it is clear that
(Fy, fiof) covers F' where f,0f(0f)=0. If two pairs (Fy,f,) and
(F'*, f) cover F, we say that the former is stronger than the latter if
and only if there exists an f such that (F.*, f) covers F* and f, = f, o f.
This relation is clearly transitive.

Let D, and D, be the subgroups of T'(F) which correspond respec-
tively to (F*, fi) and (FY', f,), then we have

LeMMA 4. The pair (F), f) s stronger than (F*, f) if and only
of D, C D,.

1.3. CoOMPLETE LATTICE THEOREM. By means of Lemmas 2 and 4,
we obtain an ordering of the regular covering surfaces according to
relative strength which is isomorphic with the ordering of the corre-
sponding subgroups of T(F') by inclusion.

Let {D,} with a in the index set A be a finite or infinite subset of
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a lattice L. Then L is complete if for all {D,} c L, there exists in L
a least upper bound U.c.D, and a greatest lower bound MNaesD..

THEOREM 1. The system of regular covering surfaces of F is a
complete lattice.

Proof. The system of subgroups {D,} of T(F) with ae A is
partially ordered by inclusion. Also the union of any number of sub-
groups {D,} for a; € A is a subgroup U,e.D,, which is the least upper
bound for {D,}. Similarly, the intersection of any number of subgroups
{D,,} is a subgroup U,,cD,, which is the greatest lower bound for {D,}.
Consequently the system of subgroups {D,} is a complete lattice. Be-
cause of the isomorphy obtained from Lemmas 2 and 4, the correspond-
ing regular covering surfaces form a complete lattice.

It can be shown that any complete lattice has a zero and a universal
element. The weakest covering surface of F' corresponds to T'(F') and
is F itself or (F'*,e), where ¢ is the identity; the strongest covering
surface corresponds to the unit element of 7T(F) and is the universal
covering surface of F.

1.4. RELATIONS BETWEEN FUNDAMENTAL AND HOMOLOGY GROUPS.
The commutator subgroup of T(F') will be denoted by N,. The covering
surface FJ which corresponds to N, will be referred to as the com-
mutator covering surface. (Uberlagerungsflache der Integralflunktionen,
Weyl [17])

LEMMA 5. (Nevanlinna [9; 61-63]) There exists a homomorphism
from the elements of T(F') onto the elements of H(F) for which the
kernel is the commutator subgroup.

If 6 is a homomorphism from 7T to H with kernel K, the fundamental
theorem for group homomorphisms yields the isomorphism 7/K = H.
A second fundamental theorem for group homomorphisms may be stated
in the following form (Kurosh [6]).

LEMMA 6. Let 6:F — H be a homomorphism with kernel K. Then

(i) There is a one to one correspondence between subgroups N; of
T such that T D> N; D K and all subgroups H;, of H. In this corre-
spondence H, comsists of all images of elements of N, and N, consists
of all inverse images of elements of H,.

(ii) If N, is normal in T then H, is normal in H and conversely.

(ili) If N; and K are normal in T then T|N, = (T/K)|(N,/K).

THEOREM 2. Let {N;} be the set of all subgroups such that T(F) >
N; D N, and let {H,} be the set of all subgroups H, C H(F). Then
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(i) There exists a one to ome correspondence between {N;} and
{H}. In this correspondence H, consists of all images of elements of
N, and N, consists of all inverse images of elements of H,.

(ii) N,/N, = H,.

Proof. To prove the first part, we use the homomorphism of Lemma5
0:T(F)— H(F) with kernal N,. Part (i) of the theorem is then an
immediate consequence of Lemma 6 (i).

To obtain the isomorphism (ii) we note that N, is normal in N; and
that the restricted homomorphism 6:N, — H, is onto. We apply the
fundamental theorem for group homomorphisms which yields the required
isomorphism.

If in Theorem 2 we set N, = T(F'), we obtain T(F')/N, = H(F") as
a special case.

1.5. RELATIONS BETWEEN THE FUNDAMENTAL GROUP AND THE GROUP
OF COVER TRANSFORMATIONS.

DEFINITION. A cover transformation of a regular covering surface
(F'*, f) is a topological self-mapping ¢ such that, for every »p* e F'*,
¢(p*) and p* have the same projection.

The totality of cover transformations on F'* clearly form a group.
We will denote this group by I'(F'*).

In the sequel, unless otherwise indicated, D or D, will refer to the
subgroup of T'(F') which corresponds to the covering surface F'* or F*
respectively, according to the specifications of Lemma 2. We note that
['(F'*) and the normalizer of D are unaffected by the choice of 0 and 0*.

LemMMA 7. [9; 83] Let M be the normalizer of D in T(F). Then
there exists a homomorphism ¢ : M — ['(F'*) with the kernel D.

THEOREM 3. Let {D,;} be the set of all subgroups D, such that
M > D; D> D and let {I';} be the set of all subgroups of I'(F'*). Then

(i) There exists a one to ome correspondence between {D;} and
{'}. Im this correspondence I'; consists of all images of elements of
D,, and D, consists of all inverse images of elements of I;.

(ii) I';= D,/D.

Proof. We use the homomorphism ¢ of Lemma 7 with kernel D.
Part (i) of the theorem is then an immediate consequence of Lemma 6
(i). To obtain the isomorphism (ii), we note that D is the kernel of ¢
and D is normal in M and, therefore, normal in D, c M. By (i), $ maps
D, onto I";. The restriction of ¢ to D, in conjunction with the funda-
mental theorem for group homomorphisms yields the required isomorphism.
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If in Theorem 3 we set D, = M, we find from part (i) of the theo-
rem that M is mapped onto I"(F'*). Consequently, we obtain from (ii),

(1) I'(F*) = M|D,

as a special case.

COROLLARY. If D 1is mormal in T(F'), then the one to one corre-
spondence and isomorphism specified in Theorem 3 holds for all sub-
groups D,, such that T(F)> D, > D.

Proof. If D is normal in T(F'), then the normalizer of D is T'(F).
We replace M in Theorem 3 by T(F') and obtain the required result.

A special case of the corollary is obtained if in Theorem 3 (ii) we
set D, = T(F). We then find that

(2) r'F* = T(F)/D .
2. Homology Covering Surfaces.

2.1. DEFINITIONS AND BaASIC RESULT. A regular covering surface
of F is mormal if it corresponds to a normal subgroup of T(F') [2].
(The term ‘‘unramified, unbounded and regular’’ also appears in the
literature instead of the single term ‘‘normal’’ used here.)

ProposITION 2. (Seifert-Threlfall [16; 196]) If (F'*, f) is a normal
covering surface of F, then there exists a unique cover transformation
which carries any given point p* € (F'*, f) into a prescribed point pf
with the same projection.

A regular covering surface is referred to as a commutative covering
surface if its group of cover transformations is Abelian.

A homology covering surface is a covering surface which is simul-
taneously normal and commutative.

2.2. CRITERION THEOREM.

THEOREM 4. A regular covering surface F¥ is a homology covering
surface of F if and only if it is weaker than the commutator covering
surface FF, or equivalently, if and only if N, D N, where F} and
F}F correspond respectively to the subgroups N, and N, of T(F).

Proof. To prove the sufficiency of the condition, we first consider
F} which corresponds to N, which is clearly normal in 7T (F). By the
isomorphism (2), we obtain I"(Fy) = T'(F')/N,. The latter quotient group
is Abelian; for if @, b € T'(F'), ab(ba)™ = aba~'b~' € N,; hence N.ab = N,ba.
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By hypothesis, F;* is weaker than F; consequently by Lemma 4,
N; D N,. From the fact that T(F')/N, is Abelian and N; D N, in con-
junction with Lemma 6 (ii), it follows that any subgroup N, which
contains N, is normal. We conclude from Lemma 6 (iii) that T'(F)/N,
is Abelian. The latter quotient group is isomorphic to 7I"(F*) by the
special case (2). We conclude that F* is simultaneously a normal and
commutative covering surface and therefore a homology covering surface.

Conversely, we suppose that F;* is a homology covering surface.
From the special case (2), we obtain /'(Fy*) = T(F')/N;. By hypothesis,
the left member of the isomorphism is Abelian; consequently 7T'(F')/N,
is Abelian. Because of the commutativity of 7'(F¥)/N; and the normality
of N;, we obtain for a,b € T(F'), N,aba™'b—* = N;; therefore, N; D N,.
We conclude, by Lemma 4, that F* is weaker than F.

The last statement of the theorem is an immediate consequence of
Lemma 4.

2.3. ISOMORPHISM AND CORRESPONDENCE THEOREM.

THEOREM 5. Let {F}}5} be the set of all homology covering surfaces
of F under the identification of Lemma 2, and let {N,;} be the set of
all corresponding subgroups of T(F) under the isomorphy of Lemma
3; such that T(F}) = N,,. Let {H} be the set of all subgroups of
H(F) under the correspondence indicated in Theorem 2, such that
N.IN, = H,. Then

(i) I(F%) = HF)H, = T(F)/Ny = [T(F)/NJ/(N,/N.).

(ii) There extists a one-to-one correspondence between the tdentified
sets {Fi} and the sets {N,;} and {H}.

Proof. To derive the first and second isomorphisms of (i), we note
that because of the commutativity of the homology groups, H, is normal
in H(F'). We consider the composite mapping ¢ o g,

b o O[T(F)] = ¢[H(F)] = H(F)/H, ,
$olla e T(F)] = ¢(a) = Ha .

This mapping is composed of the homomorphism ¢ of Lemma 5 and
the natural homomorphism ¢; consequently the composition is a homo-
morphism. The kernel of ¢o6é consists of all a e T(F) such that
H,a' = H,. We note that by Theorem 4, N,, D N,; hence Theorem 2 (i)
is applicable. From the specifications in Theorem 2 (i) for 6 : N,, — H,,
we find that the kernel of ¢ o6 is precisely N,,. The fundamental
theorem of group homomorphism, together with the special case (2), now
yield

I(Fy) = T(F)/Ny = H(F)/H, .



1270 SIDNEY M. HARMON

To derive the third isomorphism of (i), we note that N,, and N,
are normal in T(F'). Hence an application of the fundamental theorem
for group homomorphisms yields the result.

For the proof of (i), we note that by Theorem 4, any homology
covering surface F; satisfies N,;, D N,. Hence Theorem 2 is applicable.
We apply Theorem 2 (i) to obtain a one-to-one correspondence between
{N,;} and {H;}. The one-to-one correspondence obtained is carried
through {N,;} to {F%}, under the postulated identification, by means of
Lemma 2. This completes the proof of the theorem.

2.4. COMPLETE AND MODULAR LATTICE THEOREM. A lattice is called
modular (Dedekind structure) if it satisfies the following weak form of
the distributive law:

If a>b, thenan®Uc)=(anbd)Ui(an c).

LEmmA 8. (Kurosh [7]). The lattice of normal subgroups of any
group is modular.

THEOREM 6. The system of homology covering surfaces {Fu} of F
18 a complete and modular lattice.

Proof. Let {N,;} correspond to the collection {F%}. In the course
of the proof of Theorem 1, it was shown that the system af subgroups
{D;} of T(F) is a complete lattice. {N,;} is therefore a subset of a
complete lattice. From the definition of a homology covering surface
and from Theorem 4 every N,, is normal in T(F) and N,; D N,. The
union or intersection of any number of normal subgroups of {N,;} is a
normal subgroup containing N,. Consequently, {IV,;} is a sublattice and
a complete lattice. By the normality of N,; and Lemma 8, {N,;} is also
a modular lattice. We conclude from Theorem 5 (ii) and Lemma 4 that
{F%} is a complete and modular lattice.

2.5. RANK oF THE GROUP OF COVER TRANSFORMATIONS. We consider
the rank of the group of cover transformations for homology covering
surfaces for which the base surface F' is closed. In this case, T(F')
and H(F') are finitely generated. We have

LEMMA 9. (Seifert-Threlfall [16; 145]). Let F' be a closed surface
of genus p. If F is orientable, H(F') is a free Abelian group of 2p
generators; tf F is nonorientable, H(F') is the direct product of a free
Abelian group of » — 1 generators and a group of order 2.

Because the homology group of a closed surface is finitely generated.
it always has a finite rank.

The fellowing lemma is fundamental in the theory of Abelian groups.
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LemmA 10. Let H be an Abelian group of finite rank r, and let
H; be a subgroup of H. Then H, and H/H; are also of finite rank and
r(H) = r(H,) + r(H|H,).

THEOREM 7. Let F be a closed surface of genus p, and let {F};}
be the class of homology covering surfaces of F such that

TF)) =N, cTF), N,/N, = H,Cc HF) .
If F' is orientable, then
r[I(Fw)] = 2p — r(H,)
and
0=rll'(FHDl=2p.
If F is nonorientable, then
rlC(F9)] =p — 1 — r(H,)
and
O=r[I'FHl=p—1.

In either case, v[I'(F})] assumes all integral values 1n the indicated
ranges.

Proof. We note that the rank of a free Abelian group is equal to
the number of its generators, that the rank of an Abelian group in
which all elements have finite order is zero, and that the rank of an
Abelian group equals the sum of the ranks of the factors in the direct
product decomposition of the group. Consequently, it follows from Lemma
9, that if F' is orientable, r[H(F')] = 2p, and that if F'is nonorientable,
r[H(F)] = p —1. By use of Theorem 5 (i) and Lemma 10, and by sub-
stituting for 7[H(F')] the values just deduced we find that if F is
orientable

r[I(F)] = 2p — r(H) ,
and that if F' is nonorientable,
r[C(FH)] =p—1—r(H) .
Because H, is a subgroup of H(F')
0 = r(H) = r[HF)] .

For each integer n such that 0 < n < r[H(F)], there exists a sub-
group H, which is generated by » linearly independent elements; therefore
r(H;) = n. We conclude that if F'is orientable,
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0= r[l"(F¥)] = r[HEF)] =2p,
and that if F' is nonorientable,
O=r[I[(FH)=r[HF)]=p»—-1.

In both cases 7[(F};)] assumes all integral values in the indicated ranges.

In connection with Theorem 7 it is of interest to note that the
quantities 2p and p — 1 are the 1-dimensional Betti numbers for a closed
orientable and a closed nonorientable surface respectively.

3. Schottky Covering Surface of a Riemann Surface.

3.1. DEFINITIONS FOR RIEMANN SURFACES. We shall define a Rie-
mann surface topologically as a Hausdorff space with certain restrictive
properties.

DEFINITION. A Riemann surface F is a surface together with a
collection of local homeomorphisms {h} from open sets of F' onto open
sets of the complex plane which satisfy the following conditions.

(i) The totality of domains of {4} form a covering of F.

(ii) The images of every nonnull common domain of %, and &, € {h}
are directly conformally equivalent in the complex plane through the
composite homeomorphism #k; o h;*.

We denote the domain of h; € {h} by 4;,. If p e 4,, then z = hy(p)
is uniquely determined. Because of condition (ii), the conformally in-
variant properties of F' are independent of the choice of k; € {k}. Con-
sequently in considering such properties we may regard z in the complex
plane as a local variable instead of » € F. In this paper we shall be
concerned exclusively with conformally invariant properties of F'; there-
fore we will resort to the local variable notation z whenever it is
convenient.

DEFINITION. A complex-valued function f is analytic on F if and
only if fo h;' is analytic on h; (4;) for every h, € {h} with domain 4,.

DEFINITION. A real-valued function w is harmonic on F'if wo hi'is
harmonic on h, (4;) for every h; € {h} with domain 4,.

The Riemann surface as defined here is an orientable surface because
the composite mapping h, o h;* is directly conformal and consequently
sense-preserving. It can be shown that the Riemann surface is topologi-
cally a countable space.

3.2. BAsic CONSIDERATIONS. In this section the base surface F is
assumed to be a closed Riemann surface of finite genus p. By suitably
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cutting F, we can obtain a planar region F, such that an infinite
number of copies of Fs, when put together under special identi-
fications of their boundaries, will generate the Schottky covering surface
Fg of F. The surface F§ is a planar, open Riemann surface. We will
study the boundary of the conformal equivalent of F§ in the complex
plane by means of a Schottky group.

3.3. GENERATORS OF SCHOTTKY GROUP. The conformal equivalent
of the initial copy Fis is an infinite region R, where R, is bounded by
2p disjoint circles Q;, ®: (+ = 1,2, -+, p), lying in the finite plane. We
will refer to this set of circles which bound R, as {Q,}. The p pairs of
circles {Q,} correspond to a system of p hyperbolic or loxodromic linear
transformations which generate a group of linear transformations G
called the Schottky group (Schottky [15]). The group G can be shown
to be denumerably infinite and is properly discontinuous up to a set of
discrete points Ky, called the singular set of the Schottky group. The
transforms of R, converge for p > 1 to a nondenumerable discrete set
of points Es which is the boundary of the conformal image of F§ in
the plane.

A set has zero linear measure if it can be covered by a sequence
of disks {K;} with radii {r;} such that >}, is arbitrarily small. We
will denote the linear measure of the singular set of the Schottky group
by m(Ejy).

We consider a configuration of the bounding circles {Q,} correspond-
ing to a Schottky group G, in order to obtain a criterion for the vanishing
of m(Ey).

Let the 2p.circles {Q,} be paired in such a manner that a set of p
hyperbolic or loxodromic linear transformations S,, ---, S, operate on the
extended complex plane and yield

(3) S1Q1:Q{’ SzQz:Q;, ) SprZQ;;’

with the exterior of each @, mapped into the interior of Q). The set
of such generators will be designated as {S,}. A general form for the
transformation S, is

S —az+b
(4) cz+d

S, and other linear transformations in the sequel will be normalized by
the condition ad — bc = 1. The circles {Q,} have the general equations

(5) Qi:lz—ql=r; Q:lz—ql|l=r1.

A general normalized transformation of {S;} corresponding to the
circles (5) may be written as
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a2 Qiqi + 77y

VvV rr) Vo)
Z _ q;

Virr,  Virer)

(6) Si(z) =

in which g, + 7,¢® transforms into g} — r]e?®—9,

The set {S,} corresponding to the form (6) will generate a Schottky
group.

Let & and & denote the fixed points of a generator S;, where &,
and &, are finite. Then

a—d=+1V(+d—4
2¢ )

(7) &, 6=

Since S;() = ¢;, S;(?) = 2’ may be expressed in terms of a cross-ratio

as
z’_gl ZKZ"§1

=& z_é:z’

where K is a multiplier such that

K=2=& K+1.
Qi—‘fz

By simplification, this reduces to

K = <qi — ¢+ V(g —a) — 4%?2)2‘
2y 7]
We note that K is independent of z and that the fixed points are
independent of the power of z. Consequently, S7(z) = 2™ may be ex-
pressed as

(8)

2™ — & — an — &
2™ — & z2—§&

This yields

Sl"(z) — (anz _ Sl)z _ 5152(Kn - 1) .
(K" — 1z + & — K",

To normalize S{®(z) we divide through by
K““(& - gz) =D
and obtain

<Kn52 _ gl>z EE(KT—1)
D’ D’
(K" —Ve & — K"
DI + DI

(9) Si(e) =
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3.4. IsoMETRIC CIRCLES. Because of the mappings S;Q; = Q! in the
generation of the Schottky group, there is a particular convenience in
utilizing the concept of isometric circle under a linear transformation
(e.g., Ford [4]).

Let S be a linear transformation expressed in the general form (4).
Then length and area are unaltered in magnitude in the neighborhood
of a point z if and only if |¢z + d| = 1. The locus of such points for
¢ # 0 may be written as the circle |z + d/c| = 1/|¢|, with center —d/c
and radius 1/|¢].

DEFINITION. Let S be the linear transformation

S(z) = (az + b)/(cz + d) .

Then the circle

I:lecz+d|=1, c#0,

which is the complete locus of points in the neighborhood of which

length and area are unaltered in magnitude by S is called the isometric
cirele of S.

LEMMA 11. Let the linear tramsformations S have I as its iso-
metric circle, and let S(I) = I'. Then S~ has I' as its isometric circle.

Proof. By definition S carries I into a circle I’ without alteration
of lengths in the neighborhood of any point of I. Consequently S
carries I’ = S(I) back to I without alteration of lengths. By the unique-
ness of I’, we conclude that I’ is the isometric circle of S~

LemMA 12. (Ford [4]). Let I and I' be the isometric circles of S
and S~ respectively and let L be the perpendicular bisector of the line
joiming the centers of I and I'. If S is a hyperbolic, elliptic or para-
bolic linear transformation, S 1is equivalent to the composition of an
1mversion i I followed by a reflection in the line L; if S 1s loxodromic,
there is in addition a rotation about the cemter of I' through the angle
—2arg(a + d).

THEOREM 8. Let S be a linear tramsformation. Suppose that S
and S have the isometric circles I and I’ respectively. Then for
every n

(i) The circles S™™I) and S™I') are equal in magnitude and
S—(I)c I, SMI')cI'.

(i) S—™(I) is the isometric circle of S*+.

(ili) The radii of the circles S—(I) and S™(I') are each equal to
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1/l¢|, where ¢ is the coefficient in the general expression for a linear
transformation corresponding to S¥+,

Proof. Because S and S have the respective isometric circles I
and I’, we conclude from Lemma 11 that S(I) = I'. Let L be the
perpendicular bisector of the line joining the centers of I and I'. We
first consider the case where S is nonloxodromic. Then by Lemma 12,
S—(I) is obtained by successive compositions of an inversion in I’ fol-
lowed by a reflection in L, and S™(I') is obtained by successive com-
positions of an inversion in I followed by a reflection in L. We note
that for all linear transformations the size of the circle is influenced
only by the inversion. The circles S—*(I) and S*’) are symmetrical
with respect to L for all £ < n. Because of the symmetry of the
inversion with respect to the equal circles I' and I, we conclude that
S—(I) and S™(I') are equal. Further, from the geometrical interpretation
of S® and S as expressed by Lemma 12, it follows that S™()c I
and S"(I')c I'.

If S is loxodromic, there is in addition, in the foregoing com-
positions a rotation. For S-*(I) and k < n the required rotation is
—2karg [—(a + d)] = —2kn — 2k arg (¢ + d) about the center of I, and
for S*(I') the required rotation is —2k arg (a+d) about the center of I'.
The circles S~*([) and S*(I’) are therefore symmetrical with respect to
the intersection of L and the line joining the centers of I’ and I. This
symmetry yields equal circles in the successive inversions with respect
to the circles I’ and I. We conclude again that S—(I) and S*(I) are equal
and that S—™(I)c [l and S™I')cI’. This completes the proof of part (i).

To prove part (ii) we consider S**' o S~"(I). The first n operations
by S transform S-"(I) to I. The inversions associated with these
transformation are all in I and are of the type S—""?(I) inverts to
S*-Y(I"), where § = 0,1, -+-,n — 1. The n + 1st operation transforms
I to I' and involves the identity inversion, i.e., I inverts to I. The last
n operations by S transform I’ to S*(I'). The inversions associated with
these transformations are all in I and are of the type S™ 7/~ (I") inverts
to S~"(I). The latter » inversions are thus inverses of the afore-
mentioned 7 inversions. Hence the resulting inversions associated with
S+ preserve infinitesimal lengths on S—"(I). The reflection and rota-
tion components of S**! clearly preserve infinitesimal lengths. Therefore
S-(I) is the isometric circle of S+,

Part (iii) of the theorem is a consequence of the fact that an iso-
metric circle may be written in the form |z + d/c| = 1/|c].

We collect here some results on the inversion of one circle into
another circle which will be needed subsequently. In the sequel, the
circles @, and Q, are always disjoint. If a circle @, is inverted into a
circle Q,, we will designate the image circle by @,, and a corresponding
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subscript notation will be used for the radii » and centers ¢ of the
respective circles.
Let @, and @, be given by

Q11|z-q1|=?”1,
Qz:'z_Q2':T2-

We denote by ! the line which passes through the centers of @, Q,
and we take the points a, 8 € @, N l. Suppose that @, is inverted into
Q. with «, 8 transforming into «;, B, respectively. Then

la — q,]+|a; — q,| = 7},
[B—ql B8 —aql=n1r;.

We denote the distance between ¢, and ¢, by e¢ and obtain

11 — T _ T ,
( Yla—qllB—al e -
(12) I Q2 — Q2! = = T e

e’ — 7

LEMMA 13. Let Q,, Q, be disjoint circles with centers q,, q, and
radit r, r, respectively. Then

(i) 7. increases with increasing r, and fixed e and also with
decreasing e and fixed r,.

(ii) If Q. ts enlarged to Q. in such a manner that Q, C Q. and
Q. 1s disjoint from Q,, then r., > r, and ry > r,.

(iii) q,, lies on the line joining q, and q,, and |q, — q.,| decreases
with increasing e.

Proof. To prove (i) we note that because @, and @, are disjoint,
e > r,. The result then follows from equation (11).

For the proof of (ii), we denote the line passing through ¢, and ¢,
by I. It is sufficient to consider the case in which the center ¢, lies on
! and one of the two points in @, N ! is fixed during the enlargement
of Q. We use the first equation in (11) to find the total derivative
with respect to 7,,. We obtain the result that if @, is inverted into
Q,, dr,,/dr, > 0; and if Q, is inverted into Q,, dr,./dr, > 0. Because
7, is steadily nondecreasing, we conclude that »,, > 7, and 7, > 7,.

The first part of (iii) follows from elementary geometrical consider-
ations of inversions. The second part of (iii) is obtained by differentiat-
ing, in equation (12), | ¢, — ¢.;| With respect to ¢ and noting that the
derivative is negative.

3.5. CRITERION FOR VANISHING LINEAR MEASURE. In the sequence
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of circles which bound the successive generations of mapped regions in
the conformal mapping of F, the size of the circles is influenced only
by the inversions associated with the elements of G in the Schottky
group. Suppose we enlarge any circle 6; € {Q,} to @, in such a manner
that Q, C Q,, and @, are disjoint from all other circles in {Q;}. Then
by repeated applications of Lemma 13 (i) and (ii) it follows that in the
limit m(E!) for the new configuration will be greater than m(Ejs). Con-
sequently, for establishing a criterion for the vanishing of m(Ej), we
may modify the configuration {Q,} to one in which all circles @, are of
equal unit size, subject to the conditions just mentioned. We will refer
to this modified configuration of {Q.,} as {Q}..

We consider the configuration {Q,},. Let ¢; be the distance between
the centers of the pair @, and Q} (:+=1,2, ..., p), and let ,d, be the
distance between the centers of two arbitrary circles Q; and Q; € {Qq}.-
We denote by e the minimum e, and by d the minimum ,d,. If

(B) d=e,

we will say that {Q,}, satisfies condition (B) and denote the configuration
by {Q.} .z The modified configuration {@,}.; will have a corresponding
group of hyperbolic or loxodromic linear transformations G’ which is as-
sociated with the Schottky group G corresponding to {@,}. In the
sequel, we will use the same notation for the circles in {Q.}. and for
the generators of G’ as used previously for those in {Q,} and in {S;}
respectively.

THEOREM 9. Let G be a Schottky group with p generators. Suppose
that there exists a configuration {Q.}. which 1is associated with G.
Then the linear measure of the singular set of G vanishes if

() p<%(6+1/e“'—4).

Proof. Because of equations (3) and (6) in subsection 3.3 and because
@, and @, are equal for all 7, @, and @, are the isometric circles of the
hyperbolic or loxodromic linear transformations S, and S;* respectively.
Consequently, an arbitrary element of the group generated by {S,} is
by Lemma 12 equivalent to a succession of compositions. Each of these
compositions is an inversion in one of the circles {Q,},; followed by a
reflection in the perpendicular bisector of the line joining the center of
this circle to the center of its paired circle and a rotation about the
center of some ;. We note that in the compositions, the size of the
image circles is influenced only by the inversions.

Let Q, and Q] with centers at ¢, and ¢! respectively be that pair
of circles in {Q,},; which has the minimum distance e between their
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centers, and let S, be the corresponding generator. We may take ¢, at
the origin and ¢ to be positive and real. Thus

(13) Q:lz]=1; Qi:lz—ql|=1.

With this choice, we find from equation (6) that @ + d is real and
|a 4+ d| > 2; hence S, is hyperbolic.

By hypothesis, the distance between ¢, and ¢} is smallest for the
circles @, and Q] in comparison with any other two circles in {Q.}s;
also, all of the circles in {Q,}.; are equal. Consequently, we conclude
from Lemma 13 (i) that the circle S,(Q!) — @ has the maximal radius
for all circles of the first generation. We denote by ¢s, the center of
Si(Q)). By noting that S, is hyperbolic, it follows from Lemma 13 (iii)
together with simple geometrical considerations that the distance between
¢s, and ¢, is minimal in comparison with the distance between the center
of any other circles S;(Q,) C @ of the first generation and the center
of any circle in {Q,},5 exterior to Q]. Consequently, if we apply Lemma
13 (i) again, we find that S¥@Q!) c Q) has the maximal radius for all
circles of the second generation.

Another application of Lemma 13 (iii) shows that the distance be-
tween g and ¢, is minimal in comparison with the distance between
the center of any other circle S,o S,(Q,) < @, of the second generation
and the center of any circle in {Q.},; exterior to Q.. Similarly we ob-
tain a corresponding result for the nth generation. We conclude by
induction that the circle S"(Q!) < @, has the maximal radius for all
circles of the nth generation for all n.

Let 7, denote the radius of SQ!) < Q,. We note that S, and S
have the isometric circles @, and Q! respectively. Consequently Theorem
8 (iii) is applicable and we obtain

7. = 1flc]|,

where ¢ refers to the coefficient of the linear transformation correspond-
ing to S»*, By utilizing this equation and equations (9), (13), (6), (7)
and (8) and replacing ¢! by e, we obtain

r = 51—'52
» nil —antl)
K=® —K :
Ve —4
= ‘(—6 TV = 4)2n+1i<__4e +1V e — 4)—(2n+1>'
2 2
Ve =1

B (e 12/e2 - 4)*““+ (e ¥ 1/;2 -4 ’
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The total number of circles in the mnth generation is 2p(2p — 1)~
We denote the total length of these circles by L,. Then

4rp(2p — 1)V e — 4
2 m+1 2 m+1
<—e+1/e—4> +<e+1/e—4>
2 2

L,

IA

We find that
limL,=0

n—oo

if

p<letVe—4'+4_eet+tVve—19)
8 4

Because m(Es) < lim,_..L,, this is the required criterion.

COROLLARY. Suppose that the Schottky covering surface F§ corre-
sponds to a Schottky group G with p generators. Let G be associated
with a configuration {Q.}.s which satisfies Condition C of Theorem 9.
Then the boundary of the conformal equivalent of Fg in the plane has
zero linear measure.

Proof. By definition the boundary of the conformal equivalent of
F§ in the plane is the singular set of G. The conclusion then follows
immediately from Theorem 9.

4. Classification. of Riemann Surfaces.

4.1. EXHAUSTIONS AND HARMONIC MODULI. An arc is analytic if
it is the conformal image of a closed interval in the complex plane.

By virtue of the countability of a Riemann surface there always
exists on such a surface an exhaustion which may be described as follows.

DEFINITION. A nested sequence {w,} of compact regions is an ex-
haustion of an open Riemann surface W if

(i) W, is interior to W,.,.

(ii) The boundary B, of W, consists of a finite number of closed
disjoint piecewise analytic curves.

(ili) Each complement W, — W,_, consists of a finite number of
disjoint noncompact regions.

iv) UpuW, = W.

For every n (n = 0,1, -.-), the complement W, — W,_, consists of
a finite number k(n) of disjoint subregions E, (t =1,2, ---, k(n)) of
finite genus. The boundary of E,; consists of two or more closed disjoint
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piecewise analytic curves which are subsets of 5,_, and B,. We denote
the intersections of the boundary of E,, with 8,_, and 8,, by £.. and
B respectively. There exists on E,; a unique harmonic function u,;
which is continuous on the closure of E,;, vanishes on 3,;, and is con-
stantly equal to unity on B, The function u,; is called the harmonic
measure of A3, with respect to E,,.

If E,, is planar and 8,; and 3,; each consist of one component, then
FE,, is doubly connected. In this case, the function U = e*»*®'ni maps
E,, conformally onto an annulus, where u};, represents the conjugate
harmonic function of u,;.

Let E,, :=1,2,++,kn)< o, n=0,1,.--) be a collection of
doubly-connected subregions of the open Riemann surface W, which may
be represented as annuli and which satisfy the following conditions:

(i) Each annulus E,; is bounded by two closed, disjoint and piece-
wise analytic curves 8, and 3.,.

(ii) Any two of the annuli have no points in common.

(iii) The complementary set of UYYE,, with respect to W has
precisely one compact component W,.

(iv) W, is bounded by the k(n) curves and contains the annuli E,,,
with n’ < n.

We define the harmonic modulus t,; of E,; as

= 2n/§ dus, .
Bni

4.2. GENERAL CONCEPT. The classification problem will be studied
from the viewpoint of Sario [13] which classifies open Riemann surfaces
according to their possession or nonpossession of a given property P
shared by all closed Riemann surfaces. If W has the property P, we
say that W has a removable boundary with respect to P. Thus the
behavior of the open surface with respect to P is the same as if it were
closed, that is, had no boundary. We will consider three properties
shared by all closed Riemann surfaces, namely, they possess no G, AD
or AB functions.

4.3. THE CLASS 0,. The Green’s function g(z, &) of a relatively
compact Jordan region R is defined as the unique harmonic function on
R which possesses the singularity —log|z —¢&| at a point £ € R and
which vanishes continuously on the boundary 3 of R.

In order to generalize this definition to an arbitrary open Riemann
surface, we will require the well-known Harnack’s Principle which we
state in the following form [2].

LEMMA 14. Suppose that a family 7 of harmonic functions on a
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Riemann surface W satisfies the following condition.
To any u;, u,; € 7/ there exists a u, € 77 with w, = max (u;, u,) on W.
Then the function

U(2) = sup u,(2)
w, €

18 either harmonic or constantly equal to oo.

We consider an open Riemann surface W and an exhaustion of the
type described in subsection 4.1. If W, is one of the compact elements
of the sequence {W,} in the exhaustion, its Green’s function g,(z, {)
has the usual interpretation. By the maximum principle ¢,(z,¢) is a
monotone increasing sequence of harmonic functions on W. Consequently
by Harnack’s principle, the sequence has a limiting function g(z, ) on
W which is either harmonic with the exclusion of the pole —log|z — ¢|
or else is identically infinite. In the first case we define g(2, {) to be
Green’s function for W with a pole at ¢. It can be shown that if the
Green’s function ¢ exists it is the smallest positive harmonic func-
tion with the singularity —log|z — ¢|. Also it satisfies the equality
infg = 0. If a harmonic function with the same singularity as g tends
to 0 as z approaches the boundary of W, then it is identical with g.
We conclude that the Green’s function is independent of the exhaustion.

LemmaA 15. Mori [8]. Let F be a homology covering surface of a
closed Riemann surface F' and let r[['(F;)] be the rank of the group of
cover tramsformations of Fif. Then Fy € 0q if and only of r[T(Fy¥)] = 2.

THEOREM 10. Let F¥ be a regular covering surface of a closed
Riemann surface F such that F* is weaker than the commutator cover-
wmg surface of F, or equivalently

TF)=N,cTF), N,>DN,, NJIN.=H CH(F).
Then F¥ € 0, if and only if

B o= {20 {0 {0 <

or equivalently

(i) 2p—2=rH)=2p.

Proof. To prove (i) we note that by Theorem 4, F* is a homology
covering surface. The conclusion then follows from Lemma 15 and
Theorem 5 (i).

To prove (ii), we note that F;* is a homology covering surface and
F is orientable. Consequently, Theorem 7 for the orientable case is
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applicable. We obtain
r[I(F)] = 2p — r(H) ,
in which
0 < r(H) = r[HIF)] .
If F* satisfies (i),
r[[(FF)] =2.
Therefore,
2p — 2 = r(H,) = r[H(F)] .
Conversely, we suppose that F;* satisfies (ii). Then
rI'FH]=2p—rH)=2p—2p —2)=2.
Hence, (i) and (ii) are equivalent.
4.4. THE CLASS 0,,. If f(2) is an analytic function on a Riemann

surface W, the Euclidean area of the image W' is given by the Dirichlet
integral

p(f) = || 17@ rasay

where z = x + 4y is the local variable. It follows that the existence
on W of an AD function implies the existence of a conformal equiva-
lent of W with finite Euclidean area. For simply-connected regions, the
possibility of conformal equivalence with a finite or infinite disk is pre-
cisely the classical type problem. Hence the classification according to
0., is a generalization to arbitrary Riemann surfaces of this classical
problem.

LEmMMA 16. Mori [8]. If F is a homology covering surface of a
closed Riemann surface, then F, e 0,.

THEOREM 11. If FJ is a regular covering surface of a closed
Riemann surface F such that Fy is weaker than the commuiator
covering surface of F', or equivalently,

T(F*)=NcCcTEF), N,DN,,
then

F,;* € OAD .
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Proof By Theorem 4, F is a homology covering surface. The
result is then a consequence of Lemma 16.

4.5. THE CLaASS 0,;. If we consider an AB function f(2) defined
in a region W, of the extended complex plane, which is complementary
to a finite set of isolated points {p;}, it is well known from the classi-
cal theory that the singularities {p;} can be removed by appropriately
defining f(2) at the points p;. Painlevé [10] generalized this concept by
investigating the analytic continuation of AB functions across arbitrary
point set boundaries of regions in the extended complex plane. This is
the classical Painlevé’s problem.

The connection of the classification according to 0,; with Painlevé’s
problem is shown by the following lemma.

LEMMA 17. [10], [1]. Suppose E is a compact set in the extended
plane and W is its complement. Let G be a relatively compact region
in the plane with analytic boundary o and ECG. If G,=G — E,
then every AB function, defined in G, possesses an analytic continuation
to all of G, if and only if W e 0.

Proof. Suppose that W e 0,,. Let F(z) € AB be defined in G,.
By the compactness of £ we can enclose the points of E in a finite
number of piecewise analytic closed curves {C;}. We apply Cauchy’s
integral formula to the region contained in G but exterior to {C}.
Then we can write

() = fi(2) + fo2) ,

where f.(z) is analytic in G, and f,(2) is analytic in the region exterior
to {C;}. We have for f,(z),

If2)| = Mifp,

where M is the supremum of f(z), I is a finite length and o0 > 0. Con-
sequently f,(2) is an AB function in W. Because W e 0., fi(2) is
constant. Consequently f,(z) + constant is an analytic continuation of
f(2) across E.

Conversely, we suppose that the analytical continuation across F is
possible for every AB function defined in G,. If f(z) is an AB function
on W, then the analytic continuation of f(z) across E is an AB function
in the extended plane. Therefore f(z) must reduce to a constant. Hence
we conclude that W e 0g;.

The lemma just proved shows that Painlevé’s problem is the special
case of the classification according to 0,5, where the surface is restricted
to plane regions.
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The following lemma is implicit in the works of Painlevé [10].

LEMMA 18. Let E be a compact set in the extended plane and let
W be the complement of E. If the linear measure of E is zero, then
W e 0,z.

The following is a generalization of Lemma 18.

THEOREM 12. Let W be an open Riemann surface with boundary
B. Suppose that there exists a planar neighborhood N of B such that
the relative boundary of N is a single contour a. If the boundary of
the conformal equivalent of N in the plane has zero linear measure,
then W e 04y

Proof. N is planar by hypothesis; therefore it can be mapped con-
formally onto a region N’ of a disk K:|z| < 1. In this mapping A
appears as a closed point set E interior to K. The linear measure of
E vanishes by hypothesis; therefore by Lemma 18, W e 0.

If W is of finite genus p with boundary A3, then the postulated
planar neighborhood of B8 in Theorem 12 is assured. For in this case,
we can find a compact region W,c W, with genus p, bounded by a
single contour «a, with a lying entirely in W. The complement N =
W — W, is then a planar neighborhood of 2 and has a single contour «
as its relative boundary. The following corollary is then an immediate
consequence of Theorem 12.

COROLLARY. If W is of finite genus and if the linear measure of
B wvanishes under the conformal mapping of N in the plane, then
W e 0,45

THEOREM 13. Let F be a closed Riemann surface of finite genus
p. Suppose that there exists for the Schottky covering surface Fg§ of
F o modified configuration {Q.}.s in the sense of subsection 3.5 such
that p < (e[4)(e + 1V & — 4). Then Fi e 0.

Proof. By the corollary to Theorem 9, the boundary of the con-
formal equivalent of F'§ in the plane has zero linear measure. We note
that F§ is an open Riemann surface of zero genus. The conclusion
then follows from the corollary to Theorem 12.

We consider an open Riemann surface W on which the domains of
the homeomorphism h; € {h} are denoted by 4;,. Let \(z) be a continuous
and positive (except for isolated points) function on each domain 4; of
W. 1If two domains 4, and 4, overlap, let \(z) satisfy the covariance
relation
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dz,
dz;,

Mz;) = Mz)

at corresponding points z;, and 2, in 4, 4,. We further require that
all points in W have an infinite distance from the ideal boundary of W.
We say that the differential

ds = NMz) | dz |
defines a conformal metric on W, if it satisfies all the conditions just
indicated.

Suppose that a conformal metric is defined on W. We fix a point
0in W and let D, be the domain formed by those points whose distance
from 0 is less than p, where 0 < p < ». For p < o, we assume that
the domains are compact and that they generate W as p — «. Each

domain D, is bounded by A,, where 3, consists of a finite number k(o)
of closed disjoint piecewise analytic curves, B, Besy ***y Bommmye L€t

li:Ss ds 1=1,2, -+, k(0) ,
Pg

A(p) = maxg ds ,
A 5P5
K(N) = max k(0') .
p'sSp

Then we have
LeEmMA 19. (Pfluger [11]). If

=4l o _
lim|47ny ==— —log K(N)| = o
== Lo ()
on W, then W e 0,3.

In [8], Mori states without proof a modification of Lemma 19 which
does not involve the assumption of a conformal metric on the surface.
For the modified version of the lemma, we assume an exhaustion of W

and obtain as in subsection 4.1 the corresponding collection of annuli
{E,;}. We set
Yo = min g, = 2/7/& duy; ,

K(N) = max k(n) .

Then we prove

LeEmmaA 20. If

T { S~ Llog K} = e,

N—>oo
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then
We 04

Proof. We consider the postulated exhaustion of W and the corre-
sponding annuli {E,}. Let E,, be one such annulus which is bounded
by B.. and B} and let u,/(2) be the harmonic measure of B;; with re-
spect to E,. By the maximum principle, 0 < u,(z) <1 in E,. We
define the function wu,,(z) to be the distance of the point z from B,;.

Then the function | grad u,,(z) | defines a conformal metric on the annulus
E,,, for which

ds = | grad u,;(2) | |dz] .

Let /3, denote the set of points on E,; which have the distance p
from B,;. Then

li=S ds:S %|dz|=g duy, = 2%
Bo, Bo, OM b

I3 ni
where on is normal to ds.

The result then follows from Lemma 19.
In [8], Mori utilized Lemma 20 to prove

LEMMA 21. Let F;* be a homology covering surface of a closed
Riemann surface F. Suppose that the group of cover transformation
I'(FY) has the system of 2p generators Cy_,,Cy (1=1,2,+--,p). If
there exists for each 1 a relation of the form

V2i-1Cai—1 + 72Co = 0

where vy,_, and 7, are integers and do not vanish simultaneously, then
F¥ e 0,5

Let F' be a closed Riemann surface of genus p. Suppose that F'is
cut along p disjoint nondividing cycles to produce a planar surface FY.
Following Royden [12], we shall refer to a regular covering surface F'*
of F' as a covering surface of type S, if it consists of a finite or infinite
number of copies of Fj.

COROLLARY. [8]. A homology covering surface F* of type S of a
closed Riemann surface F is in 04p.

Proof. Let the 2p nondividing cycles Cy—;, Cy; (1 =1,2, - -+, p) cor-
respond to the 2p generators of I'(F). If we cut F' along the non-
dividing cycles Cy,_, (1 =1,2, -+, p), then the cycles C,;,_, correspond to
the identity element in I"(F}). Hence we may take v, , =1 and 7, =0
and obtain
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V2i-1Csi—1 + 72:Co = 0, (t=1,2,+-+,p).

The conclusion then follows from Lemma 21.

THEOREM 14. Let F¥ be a regular covering surface of a closed
Riemann surface F' of genus p such that F;* is weaker than the com-
mutator covering surface of F, or equivalently,

TF)=N,cTF), N;,oN,, (NJN)=H, CcH(F).

Suppose that

(i) I'(FY¥) has the 2p generators Cy_,, Cy (1=1,2, -+, D) such
that C,,_,, C,; correspond respectively to ay_,, a,; under the isomorphisms
of Theorem 5 (i). If there exists for each 1 =1,2, -++, p a relation of
the form

Yai-1Qai—1 T Vasllay = 0

where v,_, and v, are integers and do not vanish simultaneously, and
Qoigy Ay (1 =1,2, 4+, D) refer to the 2p generators of the Abelian
groups

H(F) T(F) ,.q TE)IN,
H,; ’ Ni Nt/Nc

’

or
(ii) Fy* is of type S,
then Fy* € 0,3.

Proof. By Theorem 4, F;* is a homology covering surface. The
conclusion then follows from Lemma 21 and its corollary in conjunction
with Theorem 5 (i).
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