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Laplace's method is a well known and important tool for studying
the rate of growth of an integral of the form

W = je~hfgdx

as h—> oo, where / has a single minimum in [α, 6], It's extension to
multiple integrals has been studied by L. C. Hsu in a series of papers
starting in 1948, and by P. G. Rooney (see bibliography). These authors
•establish what amount to a first term of an asymptotic expansion. All
but one (see [7]) of these results are under fairly heavy smoothness
conditions.

In this paper we examine multiple integrals of the form

= ί e~hfgdx

where / and g are measurable functions defined on a set R in Ep. With-
out making any smoothness assumptions on/and g, and using only the
existence of I(h) and, of course, asymptotic expansions of / and g near
the minimum point of / we obtain an asymptotic expansion of I. The
special features of our procedure are the lack of smoothness assump-
tions and the fact that we get a complete expansion.

Without loss of generality we may assume that the essential infimum
of / occurs at the origin, and that this minimal value is zero. We
introduce polar coordinates: x = (p, Ω) where

p = i x i = Vx\ + x\ + + xl ,

and where Ω — x/\ x | is a point on the surface, Sp-19 of the unit sphere.
Our hypothesis are the following:
(1) The origin is an interior point of R.
(2) For each ρQ > 0 there is an A > 0 such that f(p, Ω) ̂  A if

p ^ ft- (This says that / can be close to zero only at the origin.)
(3) There is an n ^ 0 and n + 1 continuous functions fjc(Ω), k =

0,1, 2, , n, defined on Sp-λ with f0 > 0 for which

f(p, Ω) = P*t UΩ)p* + o(pn+η as p - 0
ft0
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where v > 0. (This is meant in the following sense: for each ε > 0 there
is a ρ0 > 0 for which

fc=0

whenever ô g />0. Besides giving the asymptotic behavior of / near the
origin (3) implies that the infimum of / in R is indeed zero.)

(4) There are n + 1 functions gk{Ω), k = 0,1, n, for which

o(pn+λ~k) as ^ — 0

where λ > 0. (Thus g is permitted a mild singularity at the origin.
The expansion is meant in the same sense as the one in (3).)

Under these conditions we will prove that if there is a h0 for which
I(h) exists then it exists for all h Ξ> h0 and

where the cfc's are constants depending only on the //s and g/s for
j ^ k. Their evaluation will be described in the proof of this result.
In particular

C = Γ ( ( λ + 1 ) / μ

X

where dΩ is the element of (p — l)-dimensional measure on Sp-λ.
In the course of the proof we will use the following lemmas, which

are given now so as to not interrupt the main thread of the argument.

LEMMA 1. Let f be a measurable function on a set R in Ep, and
let g e Lλ{R). Then the function G(z) defined by

G(z) = ( gdx

has bounded variation on {-co < z < oo}.

Proof. Let g = gx — g2, where

0, g(x) ^ 0

o l ί W <o ! f * )

and define Gx and G2 by

Gt(z) = \ gr^aj, G2(z) = I
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C l e a r l y Gx a n d G2 a r e i n c r e a s i n g a n d b o u n d e d o n { — O D < 2 < C O } , a n d
Γ* Π Π
\JΓ

 = &Ί — Lr2.

LEMMA 2. Let F(t) be a continuous function defined on a possibly
infinite interval {a < t < b}, and let f be a measurable function on a
set R in Ep taking values in the interval {a < t <b}. If g e L^R), and
F(f)g e Lλ{R) and G is defined as in Lemma 1, then

\ F(f)gdx = \bF(t)dG(t) .
JB Ja

Proof. Suppose first that a and b are finite, and that g ^ 0. Form
a partition: a = t0 < tx < < tn — 6, and set

Ej = {x\ ί j_ x <f^tj}9

and let M5 = sup {^_^^ t j } F(t) and m3 = inf{ίj_^^£j} F(t).

Then

( F(f)gdx = Σ t F{f)gdx S Σ M,\ gdx
JR j=l jEj J=l JEJ

Similarly

F(f)gdx ^ ±
B J=l

If we let n —> oo so that max^^w (ί̂  — ί j^) —> 0 then both

ΣJlQj) - G(t^)] and Σ
3=1 3=1

S b

F(t)dG(t), since F is continuous and G monotone.
a

If g is not positive we can write g = gλ — g2 as in Lemma 1, apply
the proof just completed to each of gλ and g2, and combine the results
to complete the proof for the case where a and b are finite.

Suppose for example b is infinite. Then for any finite bf,

\ F(f)gdx = l inv_ ( F{f)gdx = l i m ^ [*'F{t)dG{t)
JB J{/^δ'} Ja

= S °°F(t)dG(t) .
J

A similar argument applies if α = -co.
We now return to the proof of the main theorem. First we note

that if h ^ h0 then e~h°fg forms a dominating function for e~hfg, so that
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I(h) exists.
For each ε > 0 we define the two functions /+(/>, Ω) and /_(/>, Ω) by

f±(p, Ω) = p* tMΩ)ρk ± εpn^ .
fc = 0

These functions are defined in all of Ep. Now given an ε > 0 there is
a pQ so that

( i ) \f(ρ, Ω) - p Σϊ-oΛΦ)^ I < ^ n + v

(ii) I g(p, Ω) - p^ ΣU Λ(β)/0* I < εp^^ for p < Po,
and so that

(iii) both the functions f±(p, Ω) are increasing in p for {0 ̂  p ^ p0}
for each Ω e Sp-.x. This can easily be achieved since f0 is positive (and
therefore bounded away from zero) and the other fk's are bounded.

(iv) the sphere {p g p0} is in R.
We denote {p ̂  0̂} by i20 and write I(h) in the form

respectively. We proceed to estimate I2: by hypothesis (2) there is an
A > 0 so that f^Aiΐρ^ρQ. Thus

J2(fc) I ̂  ί e-Λ/ I flf I dx ̂  e-{7ι-Λo^ί e " ^ \g\dx
JB-B0 JM-BQ

— Ce""71^ where C is a constant.

That is,

I2(h) = O(e-Λ4) as fc — oo ,

so it is clear that the dominant part of I(h) must arise from IΊ(/ι). The
remainder of the proof is largely concerned with estimating 7le

In Ro we define r(p, Ω) by

g(p, Ω) = p*-v

Let

+ M _ ( 0 (0, Λ(fl) ^ 0
fft ( f l ) - JO, 9k{Ω) < 0 ' 0fc {Ω) - 1 -(Kfl), Λ ( f l ) > 0

and

^ ' (0, φ.ίJXO' ^ ' ^

In Ro we now define g+(p, Ω) and fif-(/?, β) by
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g+(p, Ω) = pλ~p Σ 9U®)pk + r+(p,

and

g-(p, Ω) - p^ Σ <Γ(£)/>fc + r~(
fc = 0

Then g = g+ — g~ and

S r
e~hfg+dx — \ e~hfg-dx .

Ro JRQ

Thus we may assume that g ^ 0 in Ro.
We recall the definition of /+ and /_ and define I+(h) and IJJi) by

- ( e~hf+gdx, ί_(Λ) - \ e~hf-gdx .
J BQ J RQ

Since gr ^ 0 we conclude

Next we turn our attention to I+: Let Rt = {x\f+ ^ t] and choose
a so small that RadR0. Then

7+(ft) - ί e~hf+gdx + \ _ e~hf+gdx = 7 | + 7 | ' ,

respectively. Now / + is bounded away from zero in Ro outside any
neighborhood of the origin. Thus by the same argument used on 72 we
get

7|' = O(e-hAf) .

Furthermore e'hί+ is bounded away from zero in Ra, since /+ is
bounded there. Thus e~hf+g e L^Ra) and by Lemma 2,

II = \ae-htdG{t) ,
Jo

where G(t) = I #d#. Integrating by parts we get
Jut

7; - β~ΛαG(α) +

= Λ [ae-MG(t)dt + 0{e~ha) .
J
[
Jo

We next do some preliminary calculations, preparatory to estimating
G(t). For each t, 0 <£ t ^ α, the equation £ = /+(/0, β) has a unique
solution for ^ which is continuous in Ω, since /+ is increasing in p..
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Thus the solution defines a star-shaped curve (or surface) given by p =
p(t, Ω). We proceed to estimate p(t, Ω). Set t = IP then t = f+(ρ, Ω)
can be written in the form

or

U = p[fo(Ω) + Λ(Ω)P +'•• (MΩ) + ε)pψ> .

From here on we assume n > 0, for if n = 0, we can solve directly
for p and the estimates are considerably simpler than those which follow.

Now the right hand side of the last equation is a monotone func-
tion of p,0 ^ p ^ α, hence an inverse function exists. Since, for each
fixed Ω, U is an (n + 2)-times differentiate (it's even analytic!) func-
tion of p, 0 <£ p ^ a, then p is an (w + 2)-times differentiate function
of U, and it can therefore be expanded in a Taylor series with remainder.
Thus since fo(Ω) > 0 we get

p = ψ1(Ω)U+ ψ2φ)U2 + + ψn+1(fl, ε)t^»+ι + φn+1(Ω, ε,

where ψ^Ω) = l/[/0(^)]1 / v. Since the ̂ f c 's are expressible in terms of
the /fc's it is easy to check that ψk depends only on //s for j ^ fc, that
^ Λ is independent of ε for k ^ w, that ψn+1 depends only linearly on ε
and finally that ψn+2 is uniformly bounded for Ω e Sp-lf 0 ^ ε ^ 1, and
0 ^ U g α1/v.

Since Z7 = £1/v we express ^ in terms of t, Ω, and ε by

p(t, Ω) - ψ^

+ ψn+a(fl, ε,

By definition G(ί) = \ gdx, which we can write as

S Cp(t.Ω)
9(P,

Sp^JO

where dΩ represents the element of measure on the sphere S^ : {p = 1}.
We proceed to compute:

S rp(t.Ω)/ n \

(Σ QtiΩψ^-1 + o(p^^))dpdΩ

= ( |V(ί> Ω)(±-j!ψLp«(t, Ω)) + o(p^(t, Ω))]dΩ .

If we substitute for />(£, Ω) the expression previously computed for it,
the preceding integral can be written in the form
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G(ί) = ί [V/v Σ

where yκ is independent of ε for fc = 0,1, 2, , n — 1, and yn is linear
in ε. We may also note that each of the g/s enter the γfc's linearly.
In particular

Now if we write yn(Ω, ε) — yn(Ω) — εy'n(Ω) we have

G(t) = ( f Σ 7fc(β)ί(fc+λ)/v - eYn(Ω)t{n+λ)")dΩ + o(ί(w+λ)/v) ,

= Σ % ί ( f c + λ ) / v - ε^;(w+λ)/' + o(t{n+λ)l")
0

where % = ί vk(Ω)dΩ. In particular % = (l/λ)ί [go(Ω)l[fo(Ω)]λlv]dΩ.

Now by Watson's lemma we can multiply this asymptotic formula
for G by e~ht and integrate termwise to get

1+ = Σ c ^ ~ ( f c + λ ) / v - ecf

nh
{n+λ)lv + o(h-{n+λ)lv)

0

where ck = %Γ((fc + λ + l)/y). In particular c0 = η0Γ((X + l)/v). Since
/+ = / ! + I | ' = 7| + o{e-hΛ'), we have also

By the same argument, since I_ differs from J + only in the sign of ε,
we get

0

Now as we have shown before

T h u s

i+ - Σ cΛfc-( fc+λ)/v ^ Λίfc) - Σ c&fe-(fc+λ)/v ^ /- - Σ c ^
0 0 0

If we multiply through by h{n+λ)lv and let h—>°3 we get

-εc'n ^\xmUl±(h) - Σ cfc/ι-(ίk+λ)/v)^(w

But I(h) = IX{K) + o(e~hA) so that we have also

-ec'n ^ Π
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for every ε > 0. Let ε —* 0 to complete the proof for g ^ 0.
If g may change sign near the origin we can decompose g with g+

and g~ as described earlier. The proof just completed applies to each
of these. We can then subtract the results to obtain the result for g.
Also since g'/s enter into the cj/s linearly, the same formula for the
c's applies whether g is one signed or has a variable sign near the origin.
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