RADIAL DISTRIBUTION AND DEFICIENCIES OF
THE VALUES OF A MEROMORPHIC FUNCTION

ALBERT EDREI', WOLFGANG H. J. FucHS?
AND SIMON HELLERSTEIN

Introduction. Let f(2) be a meromorphic function. Throughout this
note we make the following conventions.

I. f(0) = 1; this simplifies the exposition without affecting the gener-
ality of the results.

II. We denote by
Gy Oy Cgy ++ »
the sequence of the zeros of f(z) and by
by, by, by, oo+

the sequence of its poles.

The moduli of the terms of these two sequences are taken to be
nondecreasing and each zero or pole appears as often as indicated by its
multiplicity.

III. The standard symbols of Nevanlinna’s theory:
log*, m(r, f), log M(r, f), n(r, f), N(r,f), T(r,[f), 8(z,f)

are used systematically; familiarity with their meaning is assumed.

We investigate here the following problem, a special case of which
has already been mentioned by two of the authors [1; p. 295]:

To find sequences {a,}, {b,} such that if f(z) is a meromorphic function
with zeros {a,} and poles {b,} (and no other zeros or poles), then

(1) 80,/) >0,  &(0,f)>0.

The results of the present note show that a simple behavior of the
arguments of the zeros and poles is almost sufficient to induce the in-
equalities (1). We prove

THEOREM 1. Let f(2) be a meromorphic function with positive zeros
and negative poles.
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Assume that

(2) S+ S =t e,
b Oy v Ibvl
and that
1 1
(3) S tEgE< e

for some finite positive value of &.
Then

N(r, _1_> + N(r, f)
) 1
(4) hnrlﬂswup T ) < TT A

where A(> 0) is an absolute constant.
If the condition (3) is omitted, we still have

1
(5) lim sup N(”'» ?> D
T T(r, f)

COROLLARY 1.1. The assumptions of Theorem 1 imply

A
114’ &(e, f) 2 ——— +A'

lIA

1.

8(0, f) =

If the condition (3) s omitted, but

0 < a < lim inf N(T’J;) < lim sup N, ) é-%’-
N<r’ ?) N(’" f)

<+ o,

we still have

[44 o B
S(O,f)%l_l_a, 8( ’f)‘2‘1+5'

COROLLARY 1.2. Let f(2) be an entire function with real zeros.

(6) P SR
”'Ia‘y-l

and if

(7) S ctw,
"'|a'u[e

If
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for some finite positive value of &, then

A
8 30,f) =z ———,
(8) 0, 1) T A
where A is the absolute constant in (4).
The condition (2) of Theorem 1 cannot be omitted; we shall see
that the theorem does not hold for certain meromorphic functions of
finite order, with positive poles and such that

Syl o=t

mo Oy v | by|*

for every k less than one.
Similarly, Corollary 1.2 does not hold for certain entire functions of
finite order, with real zeros and such that

E 1 = 4 oo,
w Iafﬂ.lK

for every k£ less than two.

The conditions (3) and (7) are used essentially in our proofs, but it
is possible that our results hold without such restrictions. This conjecture
is plausible if we observe that the assertions (4) and (8) do not contain
the parameter E.

Our method gives a little more than has been stated. In the special
case of entire functions it yields

THEOREM 2. Let f(z) be entire. Assume that all its zeros a, lie
on the radii defined by

ret, reil, « oo pelom (> 0),

where the w’s are real.
Then, there exists a positive constant K, depending only on the
@’s, and such that the condition

(9) Sl =4,

wola s

and the condition

L lay-fé

Sor some finite value of &, imply

A
11) (0, f) =z 114’



138 A. EDREI, W. H. J. FUCHS AND S. HELLERSTEIN

where A 1is the absolute constant in (4).

All the previous theorems and corollaries assert that 0 and o are
among the deficient values of certain functions f(z).

Hence, by Theorem 4 of [1], the lower order g, of f(z) is positive®.

Assume now that h(z) denotes a meromorphic function which does
not vanish identically, is of order less than g, but is otherwise arbitrary.
Then, by elementary inequalities of Nevanlinna’s theory,

T(r, hf) o T(r, f) ,
1 1
m(r, fh) = m(r, f) + 0 (1) m<,r,7}7> — m(/r’7>
I(r, fh) T(r, 1) " T(r, fh) T(r, f)

and hence

+ 0(1),

(0, fh) = 80, ), (e, fh) = &(ee, [) .

This shows that our theorems remain true even if infinitely many
zeros and poles have unknown arguments but are sufficiently rare.

It will be shown in [2] that a radial distribution of zeros and poles
makes it, in general, impossible for the function to have other deficient
values than 0 and o. Combining the results of [2] with those of the
present investigation, it is possible to obtain information concerning all
the deficient values of certain interesting classes of functions. The
following result is one of the simplest which may be obtained in this
way.

Let f(z) be an entire function of finite order \. Assume that all
the zeros of f(z) are real and that A > 2.

Then (11) holds and

8, f) =0,
Jor T # 0, T % co.
1. Consequences of an identity of Nevanlinna.

LeMMA 1. Let f(z) be meromorphic with zeros {a,} and poles {b,}.

Assume
1.1) Iargau|§v<-g- (£=1,238, )
1.2) Iargbv—n|§v<—’27— (v=1,238,-);

8 A direct study of the lower order of our functions will be found in [2]. For the
functions in Theorem 1 and its Corollaries, this study yields ‘‘best possible’’ bounds for u.
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(1.3) PURNESHNES e Sy S
L |a/ul v bv!

Then, for r large enough,

(1.4) 2%5 log | f(re®®) | cos 6d6 = cos 7{N<fr, .Jl;> + N(r, f)} .

Proof. Put ¢ =0, z=0 in a well-known identity of R. Nevanlinna
[3; p. 222]. Adapting the formula to our notation, we obtain

1 (* r 1
1.5 ___S 10y p—i0 9 — 1 4 e
(1.5) 27 Jo log| f(re®)l a0 2{xa§ér< a, 7,’{)
_ 1 b\ SO
,bvz.ér< b, 7‘)} + fo) 2’

and hence, in view of the assumptions (1.1) and (1.2)

1 (% r 1 |a, |
1.6 _S i0 > _ 1o
(1.6) 2 s log | f(re*®)| cos 6d6 = 2 cosry{mg‘ér(laﬂ e )

+2lmr - E

An elementary evaluation yields

1.7 %%( I ;M - Lol)~ n(r, %) + %SON(”%X;T - )i .

using (1.7) (and the analogous formula for poles) in (1.6), we obtain

1.8) ?IE—S:" log | f(re®)| cos 0dO = cos 7{N<r,%> + N(r, f)}

ool 1)+ v (3 - By |0}

If » is large enough, this implies (1.4) since, by our assumption
(1.8), the integral in the right-hand side of (1.8) tends to + o« as
7r— 4 oo,

2. Lower bounds for m(r, f).
LEMMA 2. Let g(z) be an absolutely convergent product of primary
Jactors of genus 2.

Assume that the zeros of g(z) lie in the sector 4(¢) defined by

. <7 _ < ).
2.1 largz| < : e (0<e_ 6>
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Then

1
d0 = 2 sin iwr n(t’ ?)

(x/3)+(2/2) 6
2.9 g 1 +|_i(ie_) _N g/
(2.2) og T T

(=[3)—(e[2) g(— re'?)

Proof. Let

2
Ew4w=a—umH%u+%_+u.+%$%

denote the primary factor of genus ¢; we write E(u) instead of E(u, 2).
It follows from the definitions that

Ew) _qon(l=2%), 4 =2S“ &
log 7w °n<1+u>+u T W

and hence, if
u = re', ¢ #= 0 (mod %),

E(retd) { S x* cos ¢ — 22 cos 3¢
2.3 1 ’ - dz .
3) o8 E(— re%) oxt — 2x%cos 2¢ + 1 v

Let {c,} be the sequence of the zeros of g(z); putting

0, =arge,,
we have, by assumption
(2.4) lMé%—&

If 2(= re*) is confined to the sector

T 3
2.5) Ia—gl =<,
(2.3), (2.4) and (2.5) yield

E(2)

—9 eyt gt cos (6 — 6,) — x* cos (6 — 6,)

jog| &/ | 2] s
8 E<—z> 0 2t — 2x%cos 260 — 6,) + 1
Cy
> 2ain £
2Jo 1422

Hence, in the region defined by (2.5)
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g(re®) I 1 A
(2.6) log* 9(— 7o) = 2511'1:—;50 mdw
- n(t, -1—>
= 2sinifrsg 97 g
2 Jot¥(t* + 1Y)

and this clearly implies (2.2).

LEMMA 3. Let f(z) be a meromorphic function of genus not greater
than 2.

Assume
(i) that its zeros {a,} lie in the region A(c) defined by (2.1);
(ii) that tts poles {b,} lie in the region 4*(e) defined by

|argz—n’|§—g——e <0<6§%—>;

() -2 +3-1 =4
”‘la'u'l v

16,1
Then
1 (@B+eEm | f(re®)
2.7) E}?Sm/s)-(s/m lo S(— re*®)
A =7@), € 1
g -—27T——€SIHE—{N<’}”, —j—;) + N(Ir)f)} y

where 7(r)— 0 as r — + oo,

Proof. Since the genus of f(2) does not exceed 2, it is possible to
represent the function by

HE(L, 2)
(2.8) fe)=er——%u
i)

v

where the polynomial P(z) is of degree not greater than 2 [it is obvious
that the infinite products in (2.8) are not necessarily canonical].
Clearly

f®) — 2P/ (0)z 9(2)
(2:9) =9 % 9o’

where
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(2.10) 9(2) = HE(Ez—,2>HE(— z ,2) :
By (2.9)
+ | _flre®) > loot g(re”) | _ 2| P0)] 7,
eiQ) - g(__ ,reie)

and the assumptions (i) and (ii) of Lemma 3 enable us to apply Lemma
2 to the function defined by (2.10). We thus obtain

(z[3)+(2/[2) f(,,.eie)
+| JTreT)
11) g(x/S)—(e/m log f(— re') a0
e %(t, —ch—) + n(t, f)
> 2¢sin = 7° — 2| P .
= esmz'rgo Fp 2 PO
Now
1 1
_nft, =)+ nlt, f) .t =)+ n(E, f)
sS < f> dt>_"'_S < f> dt ,
0 et + %) 2 Jo t?

and by assumption (iii) the latter integral tends to + « as r— + o.
Hence (2.11) yields

1 [ l Sflre®)
(2.12) or S(xls)—(slz) f(= re’)
_ 1 & & 3S°°__nL ’
( 77(7")) sin2-7°|, et + %)
where

n(t) :n(t, —%) + n(t, f) ,

and 7(r)—>0 as r— + o .
Putting

N@t) = S%@—dx

an integration by parts and obvious estimates yield

|7 o 2= L VO

= ool -

1 } _ N
tt + 1) 2rt
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Using the latter estimate in (2.12), we obtain (2.7).

LeMMA 4. If, in Lemma 3, we restrict the value of the para-
meter ¢ by the inequalities

A
N

9
2.13 AR
(2.13) ¢

K
10 6’

then, for all suffictently large values of r,
1
(2.14) Tr, ) 2 L+ A{N(r, —) + N6 D)

where A(> 0) s an absolute constant.
The inequality (2.14) still holds if f(z) 1s replaced by F(z):

(2.15) F(z) = e*f(2)

where S(z) is an entire function (which may reduce to a polynomial).
Proof. We apply Lemma 1 to the function f(2)/f(— 2) (instead of

f(®). By (2.13) and the definition of 4(¢) and 4*(¢), we obtain, for
large values of 7,

(re®)

2. | e

cos 0d0 = cos<6%>{2N<r,l> + 2N(r, f)} .

f

Hence, in view of the trivial relation

Lo

we find, for r large enough,

_S log|[L(=1") Te)](l—cosﬁ)(w%2008%{N<7’,%>+N(7‘,f)},

2x Jo f(re')
f(=2) 1 (= | flre®) |
2m<7’,—f—(z)——> > —T-SO log TT@T’)‘(I cos 0)do

+ 2cos %{N(T,—j;) -+ N(T,f)} ,

f(—2) B k3 “1_ (z13)+(€/2) f(')"e )
@16)  2m(r, 1) )g (1 = cos 4>2ng<xls>-<s/2) log | S rem |

+ 2cos -6—0{N(7",-J17> + N(fr,f)} .
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Using (2.7) and inequalities for the means of Nevanlinna, (2.16)
T

yields
T
_(_1____c_()_sz.>esin_§_+ cos_}
4 2 60/

mir, £(&) + m(r, =) = {@ = 70

x {N(r_}) + N(r, f)} ,

and hence, by Jensen’s formula,

1 — () 1—cos &) esin=
217) 270, f) = (14 cos = + ( = D) 2)

x {NQ«%) + N, f)} (F0)=1) .

Using (2.18), it is easy to obtain an explicit numerical bound for the
coefficient of N(r, 1/f) + N(r, f) in (2.17). Since this bound exceeds
2, we obtain (2.14).

In order to see that (2.14) holds if f(2) is replaced by F'(z), we
observe that

(2.18) m(r, ¥®) = T(r, F(2)) + T(r, f(2)) (f(0) = 1).
Now
(2.19) Tr,f)=o(r®) (r— + o),

because, by assumption, f(z) is of genus not greater than 2 [3; p. 235].

If S(2) is a polynomial of degree not greater than 2, there is nothing
to prove since F'(z) is still of genus not greater than 2. In all other
cases

(2.20) Xr* < m(r, &5,

for some X(> 0) and r sufficiently large. Hence we obtain the last as-
sertion of the lemma by combining (2.14), (2.18), (2.19), and (2.20).

3. Proof of Theorem 1.

Inequality (5) of Theorem 1 follows readily from Lemma 1 and
Jensen’s theorem: with v = 0, (1.4) yields

m(r, f) + m(r-}—) > N(r, %) + N, 7)),

2T(r, f) = 2{N (7, -Jl;) + N, )} (f(0) = 1),

which obviously implies (5).
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The first part of Theorem 1 is contained in the following Lemma
5 which we now state and prove.

LEMMA 5. Let f(z) be meromorphic. Assume that there exists an
integer q(= 1) such that

(3.1) pIJEIE SRR - B
B |Gz,,,[ v b,
(3.2) P BENSTES DS S I
s IaM |q+1 v ]bv IQH
Let p be an odd integer
(3.3) l1=p=q.
Consider the sectors 4, defined by
(3.4) largz—gfﬁ < T (k=012 -,p—1).
D 60q
and the sectors 4i defined by
(3.5) sz—n—&@ < T (=0,1,2-,p—1).
Y 60q

If every zero of f(z) lies in one of the sectors 4, and every pole in
one of the sectors 4;., then

1
‘ N(r,7) +NES
(3.6) hnrlqswup T 7) < T4

’

where A is the absolute constant in Lemma 4.

Proof. Consider the odd integer s defined by
3.7) s§%<s+m

in view of (3.3)

Put

(3.8) l = ps, w = exp (3?—> .
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Clearly [ is a positive odd integer and, by (3.7)
(3.9) l<g<l+2p<3l.
In view of (3.1) and (3.2), the function f(2) is of the form
n E’(—z—, q)
f(z) = es@ Au

e

v

’

where S(z) is entire.
Consider now the auxiliary function

HE(z_j [.‘L])
(310 GE) = f@F@R) - fl0 ) = ereh e Ll
Teng)
b, L1
where R(z) is entire and the genus [q/l] of the primary factors is, by

(8.9), either 1 or 2.
Putting

b, = arg a, , \r, = argh, ,

our inequalities (8.4), (3.5), and (3.7) imply

(3.11) |¢“l—2nks|§—6£0, |%l—7rl——27rk's]§é%.

We also notice that our assumptions prevent the possibility of can-
cellation between the zeros of one of the functions f(w'z) (7 =0,1,---,
I — 1) and the poles of another of these functions. Hence

@12) N, G@) = IN( f) N(r,_G%)_>=lN<r,—J1;).

Put
H(u) = ef® Ay
and rewrite (3.10) as

(8.13) G(z) = H(z") .
The inequalities (3.11), the assumption (3.1), and the first of the
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inequalities (3.9) show that it is possible to apply Lemma 4 to H(u)
{instead of f()). Hence

(3.14) T(r, Hw) = (1 + A){N('r, H%u)) + N(r,H(u))} r=r).

On the other hand, the fundamental definitions of Nevanlinna’s
theory show that, for any meromorphic function w(z):

N(r, w(z")) = N(r', w(z)) ,  T(r, w")) = T(r', wz)) ,
so that (3.13) and (3.14) yield

(3.15) T(r,G() = (1 + A){N(T,—G—(l—z—)—> + N(r, G(z))} =7,

Since
IT(r, f) =z T(r, G(2)) ,

we see that (3.6) follows from (3.12) and (3.15).
We obtain the first part of Theorem 1 by taking p = 1 in Lemma 5.

4. Proof of the Corollaries. Corollary 1.1 follows trivially from
the inequalities (4) and (5) and the definition of deficiency.
Corollary 1.2 is contained in the following.

LEMMA 6. Let f(z) be entire. Modify the assumptions of Lemma
5 by:

(i) omaitting all reference to poles;

(ii) omatting the restriction that p be odd (p may be any integer
satisfying the inequality (3.3)).

Then (3.6) still holds.

The proof of Lemma 5 also yields Lemma 6 provided the integer s
(even or odd) is defined by

s=L<s+1,
D
instead of (3.7). The definitions (8.8) remain unchanged and (3.9) takes
the sharper form
lsg<2l.

The other changes in the proof are obvious and need not be
mentioned here.
We obtain Corollary 1.2 by taking p = 2, in Lemma 6.



148 A. EDREI, W. H. J. FUCHS AND S. HELLERSTEIN

5. Best possible character of the conditions (2) and (6).
Let

(5'1) 81y 83y 83y ¢ ¢
be a sequence of integers such that
(5.2) 81 g 2, 8)\-H > 23)\ (7\: == 17 27 37 e °)’

Consider the entire function

=11 (1-—=2—).

ASimZs, m(log m)

Denoting by {a,} the sequence of the zeros of f(z), elementary
estimates yield

1 . (k < 1).

(5.3) SE<te, B2

[

These relations hold for every choice of the sequence (5.1). Hence
we may take the ratios s,.,/s, to be rapidly increasing with ) and, using
the well-known formula [4; p. 271]:

b 7)
S

—dt
o tt + 7)

b

log M(r, f) = TS

choose (5.1) so that

log T(r, f) — 1ipn inp loglog M(r) _
liminf ~ Logp = b= =0

00

(5.4)

It is sufficient to choose the sequence (5.1) in such a way that, for
some arbitrarily large u, n(f, 1/f) is constant in u <t < e,
Hence, putting

_ _J(®
F U
® =73
(5.5) limint 28 T FG) _ o
P og T

It has been shown elsewhere [1; p. 297, Theorem 4] that the condi-
tion (5.5) implies

&, F(2)) =0,

except possibly for a single value of 7, finite or infinite.
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Hence the inequalities
30, F(z)) >0,  &(c, F(z)) >0,

are both impossible since one of them would imply the other one. We
thus have

1
N ('r', —-) + N(r, F)
T N(r, F) 1. F
1=1 M, F) 1,
S T, 7y 2 e T(r, F) ’

although F'(z) satisfies all the conditions of Theorem 1 except (2) which
is replaced by the weaker condition (5.3).
Similarly, (5.4) and Theorem 4 of [1] yield

&(z, f(2)) = 0 (v # o)
and hence, putting
F*(2) = f(2)
we have
3z, F*(z)y =0 (T # ).

In particular 8(0, F'*(z)) = 0, although F'*(z) satisfies all the condi-
tions of Corollary 1.2 except (6) which is replaced by a weaker condi-
tion analogous to (5.3).

6. Proof of Theorem 2. Our proof is a straightforward consequence
of Lemma 6 and of a classical theorem of H. Weyl [5; p. 335, Satz 16].
We consider the arguments w, of the radii carrying the zeros of
f() and assume
w, = 0;

this is clearly no restriction.
Let £k +1 (0 =k =<m) be the maximum number of linearly inde-
pendent elements among

(6.1) 27T, W, W,y *+ > W, .

Renumbering, if necessary, the ®’s we may assume:
(i) that a relation such as

k
’(6.2) ﬂ027f + jziﬂja)j = O N

is impossible for integral values of the s, not all zero;
(ii) if k& < m, there exist integers n,, and ¢(> 0) such that
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(6.3) oW, = 2N, + f_“, 0, Q=Fk+1,-,m).
Put
k
M, = 3221 |, |
and
(6.4) M = sup {0, M4,y Mo, ==+, My} .

Since no relation such as (6.2) is possible, Weyl’s theorem asserts
the existence of a sequence

(6'5) >\’19 )"2v >"39 e

of increasing integers such that

6.6 N, — L, 21 | < % 1 =1,2 -0 k;5=1,2,8, ),
(6.6) | J jﬁ!—IZOM (g ) )

where the L, are integers. Weyl’s theorem also asserts that the
sequence (6.5) has a positive density. The latter property is unneces-
sarily precise for our purposes; we only need the obvious implication

(6.7) Ny < 20 (s = s)-
We set
K = o),

and observe that the integer K depends only on the w’s.
By the assumptions (9) and (10), there exists an integer ¢ such that

¢zK, Y1 —qe, » 1l <io.

e el el
Define & by the inequalities
(6.8) oM = 4 < Oy
In view of the definition of K and (6.7)
(6.9) q < 20\, .

We now obtain Theorem 2 by verifying that Lemma 6 may be ap-
plied with the value of ¢ chosen above and

(6.10) p=a\,.

It is clear that we only have to ascertain that the zeros of f(z) lie
in regions such as (3.4) with p defined by (6.10).
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Using (6.6) and (6.4) in (6.3), we obtain

(6.11) lox,,wl—AMZﬂlg-l%(—) (I=k+1,k+2 m),

where the A’s are integers.
By (6.6) and (6.4), it is clear that (6.11) holds also for { =1,2, --- k,
with

Ay, = oLy, l=1,2, -+ k).
Hence, by (6.9), (6.10) and (6.11)
\wl_ﬂléi 1=1,2 - m).
p | 7 60q

This shows that the location of zeros allows the application of Lemma
6. Theorem 2 is an immediate consequence.
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