ON FUNCTION FAMILIES WITH BOUNDARY

JOZEF SICIAK

1. Introduction. Let A be a family of real valued upper semi-
continuous functions defined on a compact Hausdorff space E.

A closed set Fc E is called determining for A if every function
fe A attains its maximum on F. If for the space E there exists one
and only one minimal determining F' = F(E, A) (i.e., a determining set
such that no proper closed subset of it is determining), then F is called
the boundary of E with respect to the family A. .

A function k€ A is called a barrier-function of A at a point x€ F =
F(E, A) if and only if (%) > h(x) for  + &, zc F.

A point Ze F for which there is a barrier-function of A is called a
semiregular boundary point of E with respect to A. If for a point
#c F there exists a continuous (at the point Z) barrier-function, then
& will be called a regular boundary point of E with respect to A.

Let D be a set contained in a topological space and let f(x) be a
real function defined on D. Then the function f* defined in the closure
D of D by means of

1) F*(@) = lim sup f(z') , veD, zeD,

is called an upper regularization of f.
Let A, be a subfamily of A. Then the function

@) #(@) = sup @)}, vek,

is called the wupper envelope of A,.

Let f be an upper semicontinuous nonnegative function defined in
a compact set E. We shall denote by ||f||; the maximum of f on E,
[1fllz = max.ez f(@).

We say that a family A of functions f defined on E is separating
(or A separates the points of E) if for any two points z, # x, of E
there is a function fe€ A such that f(x,) # f(x,).

A well known theorem of Silov [5] asserts: I f A is a family of
absolute values of all functions of a separating algebra of complex
continuous functions defined on a compact Hausdorff space E, then E
has the boundary F with respect to the family A.

This boundary is sometimes called a Silov boundary of E (with respect
to the given algebra).

E. Bishop |3] has recently proved that if E is metrizable and A is
a complete (with respect to the uniform convergence) Banach algebra
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of continuous function on E, then the Silov boundary of E is the closure
of regular points of E with respect to A.

Let us mention that the papers of S. Bergman [1], [2] on the domains
with a distinguished boundary surface are the first to indicate the
significance of the boundary of a domain D with respect to the algebra
of holomorphic functions of several complex variables in D.

Recently it appeared that the notion of the boundary of a set with
respect to the family of functions, which do not necessarily form an
algebra, may be useful. For instance, Bremermann [4], considering a
generalized solution of the Dirichlet boundary value problem within the
family of pluri-subharmonic functions in a domain D of the space C" of
n complex variables, had to consider the boundary of D with respect to
the family of pluri-subharmonic functions in D. The boundary values,
in the procedure described by Bremermann, could be given just on the
Silov boundary of D and nowhere else. But the family of pluri-subharmonic
functions does not form any algebra. Also in the case of the first boundary
value problem for the heat conduction equation u,, — %, = 0 in a domain
D, the boundary values can be given only on a part of the boundary of
D. That part is a Silov boundary of D with respect to the solutions of
the inequality u,, — %, = 0. Those solutions do not form any algebra,
of course.

The aim of this paper is to prove the existence of the boundary
with respect to function families much more general than the algebras,
namely, for the families A which are closed only under the multilplication
or addition of functions of A.

This fact can be applied to a uniform treatment of a Perron procedure
of upper envelopes with respect to various function families having the
boundary. Suppose that for a function family A there exists a boundary
F = F(E, A). Then, by means of reasoning classical in potential theory,
we have the following theorem:

If, along with f and g, the family A contains af + Bg, where
a=0and B8=0, if A contains all real constants, and if e F is a
regular boundary point of E with respect to A then for any real function
b(x) defined and continuous on F we have

b(@) = lim p(w) ,
where P(x) denotes the upper envelope of all functions fe A such that
f(@) < b(x) for xcF.

Let any point of F' be regular. Then @(x) = b(x) for x € F, and it
is quite natural to look at such an upper envelope (%) as at a generalized
solution of the Dirichlet boundary value problem within the family A.
If the function family A is closed under the operation of taking the
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upper envelope, then the generalized solution is a function of A.

There are well known examples of function families (which are not
any algebra) within which the solution of the Dirichlet problem was
found just by means of the Perron procedure [4], [6].

2. Some general function families with boundary. We shall need
the following general

LEMMA 1 (éilov). For any family A of upper semicontinuous
Sfunctions defined on a compact Hausdorff space E there exists a minimal
determining set (one at least).

This lemnga can be proved by means of transfinite induction (see
the proof by Silov [5]).

THEOREM 1. Let A be a family of monnegative functions defined
and upper semicontinuous on a compact Hausdorff space E. If the
family A satisfies the following conditions:

1° If f and g are functions of A then the product f - g€ A;

2° If & is an arbitrary fived point of E then for any neighborhood
U(®) of & and for any ¢ > 0 there exists a finite system of functions
Sfuforoo, fu€ A such that the set

U ={xcE|flx)y<e, =12 -k}

is contained in U(@) and U* contains a meighborhood U'(x) of x; thenm
the set E has a boundary with respect to A.°

Proof. Due to Lemma 1 it is sufficient to prove that E has only
one minimal determining set with respect to A. The proof of the
uniqueness may be given by a literal repetition of Silov’s proof in [5].
This repetition is possible because Silov used only the assumptions formu-
lated in Theorem 1.

REMARK. If ¢ is a positive real number and f(x) is any real function
upper semicontinuous on a closed set F, then the functions ¢ - f and f
attain their maxima at the same points of E. Therefore, E has a boundary
with respect to A if and only if E has a boundary with respect to A,
where A denotes the family of functions ¢ which can be written in the
form g =c-f, ¢ >0, fe A.

The function family A considered in Theorem 1 is closed under the
operation of multiplication of functions of A. A similar theorem holds

L The integer k may depend on 2, U3 or 5.
2 The similar thesrem has been proved in [7].
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for function families closed with respect to additions of functions of A.

THEOREM 1. Let A be a family of upper semicontinuous functions
defined on a compact Hausdorff space E. If A satisfies conditions:

1° If f,gc A, then f+ ge A;

2° If e E and U®) is a neighborhood of x and & > 0, then there
exists a finite system of functions fi, fy, -+, fr € A such that

U* = {x]e® < e, =1, -, k}

is contained in UX) and U* contains a neighborhood U'(Z) of &;
then E has a boundary with respect to A.

Proof. It is sufficient to observe that the family A, of functions
h = ¢/, where fe A, satisfies the assumptions of Theorem 1. Therefore,
E has a boundary with respect to 4,. But this is also a boundary of
E with respect to A.

REMARK 1. Any function family, which satisfies 2°, separates the
points of E, but the converse statement is not true. For instance, let
E be the segment [0, 1] and let A be the family of all powers z*, ¢ =
1,2, +---. Then A satisfies 1° but it does not satisfy 2°, although A
separates the points of E. The boundary of E with respect to A is in
this case the only point z = 1.

Now we shall prove the existence of the boundary for function
families which are closed with respect to multiplication (or addition) and
which only, instead of 2° in Theorem 1, separate the points of E. But
we now must assume that the space E is metric and the functions
considered are continuous, while in Theorem 1 they could be only upper
semicontinuous.

THEOREM 2. Let A be a family of nonnegative continuous functions
defined on a compact metric space E. If A satisfies the conditions:
1° If f,ge A, then f-gec A,
2° A separates the points of E;
then E has a boundary with respect to A

Proof. In virtue of Lemma 1 it is sufficient to prove only the
uniqueness of the minimal determining set for A. For the proof per
reductio ad absurdum let us assume that there exist two different minimal
determ.ining sets F, and F, for A. The set F'|F, is nonempty, since,
otherwise, we would have F,c F, and F, would not be a minimal
determining set. Let &, ¢ F,| F, and let Uy(%,) = {x ¢ E|o(z, %) < 1/2"} be

3 After submitting this paper for publication, the author discovered that H. Bauer,

with different techniques, obtained more general results, see H. Bauer, Silovscher Rand
und Dirichletsches Problem, Ann. L’Inst. Fourier XI(1961), 89-136.
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a neighborhood of &,, where n, is an integer so large that U,(%,) N F, = ¢.
Since F) is a minimal determining set for A, there exists a function
feA which attains its maximum m = |[f[|;, on F, in the set U, and
such that max.e, f(x) =m > f(y), y€ F,|U,. In virtue of 1° and the
Remark on p. 377, we can assume that

11y = IFlley = IIflls =1, f(y)<—i— for ye F,| U, .

Since F, is determining and U, N F, = 4, there must be a point ¥, ¢ F,
such that f(#,) = 1. The function f(x) is continuous. Thus, there is a
neighborhood Vy(#,) = {y|p(y, ¥,) < 1/2™} of ¥,, where m, is so large that

f() >% for ze V, and V(@) N Uf@) =4 .

Since F, is minimal there is a function g(x) such that ||g|| = g(y) =1,
9, being a point of V,, and g(x) < 1/4 for x e F,| V.. Now we put h(x) =
flx)g(x). We can easily verify that

h(yl)g%,h(x)<% for xe F\|U, or weF)|V,.

Since h(y,) = 3/4, so max,c, M(x) = ||h]|; = 3/4. Therefore, the function
hy(x) = [h(z)/|| h]|z]¥, where k i3 a sufficiently large integer, satisfies the
conditions,

I!hlllErl;h,(x)<—i— for e F|U, or weF,|V,,

and moreover there exists a point x,€ U, and a point y,€ V, for which
hy(z,) = h(y,) = 1.

This was the first step of our proof. To begin the next one, let
us observe that one can find an integer m, > m, so large that

Uyw,) = {xlp(x, ®) < 2L} C UG&) and h(x) = % for ze U, .
Since F) is a minimal determining set there exists f,€ A such that
Hfolle =1, fo(®) < 1/4 for xe F,|U, and f(%) =1 for a point Ze U,.
We define fi(x) = fo(x)h(x). We have fi(x) < 1/4 for x€ F,|U,or x € F,| V,
and fy(®,) = 3/4. So ||fillz = 3/4 and there is a point y,€ V, such that
fi@) = || fills. Therefore, the function f = (fi/||f:lls)*, k being a suitable

integer, satisfies the conditions
fll=fy) =1 and f(x) < % for xe Fi|U, or xzeF,|V,.

The function f(x) is continuous, so one can find an integer m, > m, so
large that Vi(v)) = {ylo(y:, ¥») < 1/2™} < V, and f(y) = 8/4 for ye V..
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Since F, is minimal, there is a function g€ A and a point %, € Vy(y,) such
that ||glls = 9(¥,) = 1 and g(y) < 1/4 for F,|V,. Therefore, the function
hz) = f(x)g(x) has the following properties: he A, [|h]| = 3/4, h(x) < 1/4
for xe F,|U, or xe F,|V,, Hence, the function h,(x) = (h(x)/||k]lz)",
where k is a snfficiently large integer, satisfies

hallg = 1, hg(x)<% for xe F\|U, or xe F,| V,,

and- there is a point x,€ U, and a point y, € V, for which h,(x,) = h,(y,) = 1.

Continuing this procedure, we construct two sequences of points {«,}
and {y,}, two descending sequences of neighborhoods {U,(x,)} and { V,(%,)},
and a sequence of functions {i,(x)}. By their construction these sequences
gatisfy the following conditions: The functions h.(x), v =1, 2, -+ belong
to A (in fact, we have only h,(x) =c, hf(x), where h¥c A and ¢, =
const > 0, but it does not matter because of the Remark on p. 377). The
neighborhoods U, and V, converge to points  and , respectively. The
points & and ¥ are also the limits of {x,} and {y,}, respectively. For any
y=1,2, -+ we have

Wholly = hof(@,) = h(w) =1, h(w) < % for e F,| U, or e F,| V,.

Since U,,,c U,, V,,, c V,and U, N V,=¢, v=1,2, .-+, we have
x # 9. The family A separates the points of E. Thus, there is a function
he A such that i(£) = h(g). Without any loss of generality we may
agsume that (&) < h(y). Let A(y) — h(%) = 3e. Since A(x) is continuous,
we may find two neighborhoods U(Z) and V(%) such that

hzx) < k(x) + ¢ for xe UE) and h(y) —e < h(y) for ye V(@) .

Since U, and V, converge to & and 4, respectively, there is an integer
v, such that U, < U(z) and V, < V(). Let M = |[h|,, and let m be
so large that M/2" < e. Then the function b(x) = h(x) [, (x)]" satisfies
the conditions:

(i) bw =M <, forweF,|U, or xcF|V, :

= 4m C 1 Vo 2 vp !

(ii) bx) < W& +¢e, for xzeU,;
(i) b(x) = MP)—e ME) + ¢, for xeV, .

Thus the function b(x) attains its maximum ||b||, on F, and b(x) < ||b]|s
for xe F,. Therefore, F, is not a determining set. This contradiction
completes our proof.

A simple consequence of Theorem 2 is the following
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THEOREM 2'. Let A be a separating family of real continuous
Sfunctions defined on a compact metric space E, and let A be closed

under the addition operation. Then E has a boundary with respect
to A,

3. Regular boundary points. The following theorem is a reformula-
tion of the theorem by E. Bishop (see [3], p. 633) in a slightly more
general form.

THEOREM 3. If A s a separating family of nonnegative continuous
Sfunctions defined on a compact metric Hausdorff space E and if

1° A contains positive constants,

2° A s closed under addition and multiplication of functions of
A,

3° A contains limits of uniformly convergent sequences of functions
of A;
then E has a boundary F with respect to A, and F is the closure of
regular boundary points of E with respect to A.

Proof. The boundary F' exists by Theorem 2. Let x, be a fixed
point of F and let U, = U(&) be a neighborhood of U,. It will now be our
task to find a regular point in the neighborhood U,. By the definition of F'
and in virtue of assumptions 1° and 2° of the theorem, there is a function
fo€ A such that ||f,]lz = 1, fuo(x) = 1 for some point x, € U,, and fi(y) < 1/4
for ye F'|U,. Let U, C U, be a neighborhood of x, such that f(x) > 3/4
for xe U,. There is a function fi(x)e€ A such that ||/l =1, fi(z,) =1
for a point x, € U, and fi(y) < 1/4 for x € F'| U,. Repeating this procedure,
we can define:

1° a sequence of neighborhoods {U,}, U,., € U,, whose product
contains a single point ¥,

2° a sequence of functions f,(x) such that

3

Sy > = fy(y)<% for ye F|U, and |[fillz=1,v=12---.

Now we can define a function g € A, which is a barrier function of A
at the point y,. Namely, in the same way as in the proof of Theorem 2
of |3], we at first construct, by induction, a sequence of functions g,e A
such that

(1) 1Gwi — Gulle <277

(i) llgulls =81 —2 ")

(i) g.(y)) =31 —27")

(iv) [92n(¥) — 9.()| <27 for ye F\U,, ,
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where {U, .} is a suitably chosen subsequence of {U.,}.

We put g.(x) = 3/2 [fi(¥,)]* fi(x) and check that g, satisfies (ii) and
(iii). Assuming that g,, ---, g, have been constructed, we define g, in
the following way. Since g, is continuous and gy, = 3(1 — 27%), we
can find £, > ¢, such that

g:(x) <31 —27%) 4+ 2% for xe U,

Fr+1 °

Now we define g,.,(x) = gu(®) + 3 - 27° [ fu,, (¥)] 7 fu,,,(¢) and check
that g,, g5, ***, 9u, 911 satisfy (1)-(iv) (for details see [3], p. 633). A
barrier function of A at the point 7 is given by

g(x)=3g%%=£gggn<w>, zeE .

Namely, we have g(y,) = 3, ||lglls < 8. Since

@) = g.(@) +3 5 _Jul®
’ k;"H Zkf#k(yo)

and since f. (¥) < 1/4 for we F|U, we have

k+17

—n—1 - 1/4 — —n—1
g(x) < 3(1 — 2 )+3k§+12k.3/4—3—2 <38 forxeF|U,,,, .

Hence, g(x) < 3 for = + y,.

4. Applications. Let D be a bounded set in the Euclidean space
R*, n=1. Let A= A(D) be a family of real functions defined on D.
We denote by A* the set of all the upper regularizations of functions
of A. We shall call the boundary of D with respect to A* also the
boundary of D with respect to A.

By means of Theorems 1 and 2, we can easily check that the following
function families have boundaries:

(1) The family of moduli of all polynomials of n complex variables
for any bounded set D c C".

(2) The family of moduli of holomorphic functions of » complex
variables for any bounded set D < C™.

(3) The family of pluri-subharmonic functions for any bounded set
Dc C~

(4) The family of convex functions of 7 real variables for any
bounded domain D c R*, n = 1.

(56) The family of solutions in a bounded domain D  R™ (continuous
in D) of the system of differential inequalities (or equalities)

o*u 0 k;#1+“'+#n:#22
Ot -+ - Oy L i=1,2 0,1

Y%

U =X af, ..., 1,
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(6) The family of continuous solutions of the system of differential
inequalities

; 0"uU Z ou
Plul=>a?, ..., 8ty —————— + > b, =0,
lul = 35 ai # 0xyt -+ + Oxhn »ZT oy,

k§ﬂ§2, by:COHSt i=1v2;'°'7l

in any bounded domain DcC R"*™ contained in the set

— oo g, < y~€[0,8]'00)
S_—‘—‘{(CU1v"°;wm yly""ym) . ’ ! })

/L:“lyz!'°'yn j:1’2)“°7m

g; =s8gnb; .

The statements of (1) and (2) follow from Theorem 1 with fu.(2) =
alz, — 2%, £=1,2, ---, n where a = const is suitably chosen. (3) follows
from Theorem 1’ with f.(z) = log|a(z. — 2))|, £ =1, ---, n.

The families (4)-(6) are closed with respect to addition of their
functions. The function f(x) = ., (x, — «})* i3 a universal separating
convex function. The functions f.(x) =2, — %, ¢ =1,2 -+, n are
separating for (4) and (5). The functions fu(x) = 2. — &.,, £t =1,2, -+«  n,
9.(¥) = Yo — ¥u), £ =1,2,---, m are separating for (6).

Let us observe that the family (5) involves as a special case the
family of double-harmonic functions. It is well known [1] that the
boundary of a bicylinder with respect to double-harmonic functions is
equal to the boundary of the bicylinder with respect to holomorphic
functions. A similar situation holds for strictly pseudo-convex domains.
But it is not known what is the situation for general domains. The
relation between the Silov boundary of a domain D — C* with respect
to holomorphic functions and with respect to pluri-subharmonic functions
has been investigated in [4].

The family (6) involves as a special case the family of ‘‘subparabolic”’
functions (compare [6]).

Any linear function f(x) = ax, + ax, + -+ a,x, + b, where a, are
real numbers, satisfies the system of inequalities & [f] =0, i =
1,2,---,1. Let D be a strictly convex domain in the space R”. This
means that for any point &€ D, D" being a topological boundary of D,
there is a hyperplane a.%, + +++ + a,2, + b = 0 which has no common
points with D, except the point #. Therefore, the function f(x) =
a2, + -+ + a2, + b (multiplied by —1, if necessary) is a continuous
barrier-function of family (5) at the point €. Hence, by the theorem
on p. 376, we have

COROLLARY. If D 1is a strictly convex domain, then for any
continuous function b(x) defined on D there s a generalized solution
®(x) of the Dirichlet boundary value problem inside any family (5).
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Particularly, if D is strictly convex and b(x) is continuous on D*, then
there is a convex function @(x), continuous in D, such that ¢(x) = b(x)
for xe D-.

THEOREM. If D is a bounded domain in C*, then the boundary
of D with respect to the family A of pluri-subharmonic functions in
D, continuous in D, is the closure of regular poimts of D with respect
to A.

Proof. Let A, denote the family of all functions g such that there
exists a function f€ A for which g(x) = ¢/, We can easily check that
A, C A and A, satisfies all the assumptions of Theorem 3. Indeed, if f
and g€ A,, then by a computation of the Hermitian form

$ Plog(f+9), 5

W 02, 0%,

we check that f -+ ge A, in the case of f and g being sufficiently regular.
The general case is attained by approximation. The other assumptions
follow directly from the known properties of pluri-subharmonic functions.
By Theorem 1 domain D has a boundary with respect to A,. By
Theorem 3 this boundary is the closure of the regular boundary points
with respect to A,. Let us now observe that the boundary F of D
with respect to A is the same as the boundary F, of D with respect to
A,. Namely, since A, C A, then F, C F. The function g and e‘ attain
their maxima in the same points of D. If ge A, then e’c A,. Thus
any function of A assumes its maximum on F,, whence F C F.. It
follows that F = F), and the boundary of D with respect to A is the
closure of regular boundary points of D with respect to A.
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