
A NOTE ON WEAK SEQUENTIAL CONVERGENCE

R. D. Me WILLIAMS

l Let X be a real Banach space, JΣ the canonical mapping from
X into X**, and K{X) the set of all elements F in X** which are
XMimits of sequences in JXX. Thus Fe K(X) if and only if there
exists a sequence {xn} in X such that

(1.1) F(f) = limnf(xn)

for all / e X * . While the closure of JXX in the X*-topology is X**
[4, p. 229], it is not true in general that K{X) = X**. By using
properties of the space of continuous real functions defined on a real
interval, we shall prove that the subspace K(X) is norm-closed in X**.

2 If x is a bounded real function defined on a closed interval [α, b],
let \\x\\ = sup{|#(s)| : a <£ s ^ 6}. If a? is a bounded Baire function of
the first class, then there exists a sequence {xn} c ^ [a, b] such that
#(s) = limnίcn(s) for all se[a, b] and \\xn\\ = | | # | | for all w [2, p. 138].
However, if a bounded function x is the pointwise limit of an unbounded
sequence of elements of a subspace X of <g% then it is not necessarily
true that a? is the pointwise limit of a bounded sequence in X.

LEMMA 1. Lea; X be a subspace of <g% ami ieί a? 6e α reαi function
which is the pointwise limit of a bounded sequence in X. Then there
exists a sequence {xn} in X such that x is the pointwise limit of {xn}
and \\xn\\ = 11 $| | for all n.

Proof. If {yn} is a sequence in X which converges pointwise to x, with

π Ill/nil = M < oo, let continuous functions <£>, <px, φ2, be defined by

{2:" (9>M =

for all se[a,b]. Then {φn} converges to φ in the ^*-topology of ^
[1, p. 224], and hence [3, p. 36] for each positive integer n there exist
nonnegative numbers anU , ankn such that

(2.2)

Define

(2.3)

c X

Σ^i.*

by

= 1 , Σ α . * 9>»+, - *>
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Then {zn} converges pointwise to x, and — M ^ zn(s) ^ ||a?|| + n"1 for
each n.

If a sequence {ψn} is now defined in <& by ψn = min(zπ, — <ρ), an
argument like that used with {<pn} shows that there exist, for each n,
nonnegative numbers bnU , bnjn such that

(2.4)

if K}

(2.5)

clis

3=1

defined

= 1 '

by

Σ

u,

+ φ <

*«+/ -

then a? is the pointwise limit of {un}, and | |w j | -> | | # | | as n-> oo. Since
it may be assumed that | |w j | Φ 0 for each w, the desired sequence {xn}
is o b t a i n e d b y def ining xn — (\\x\\l\\v>n\\) un.

3. The conjugate space ^ * of ^ is equivalent with the space of
all finite regular signed Borel measures on [α, 6], under a mapping U
such that if / e <if* and μ r = *7/, then

(3.1) f{χ) = Γ acZ^

for all xe^ [4, p. 397], It follows that if X is a closed subspace of
<if and .FeX**, then i^eEpΓ) if and only if there exists a bounded,
pointwise-convergent sequence {yn} in X with the property that

(3.2)

for all fe

LEMMA 2. If X is a real Banach space and Fe K(X), then there
exists a sequence {xn} in X such that F is the X*-limit of {Jxxn} and
\\xn\\ = | |iΓ| | for all n.

Proof. Case 1. If X is a closed subspace of <g* and JPG iί(X), there
must be a bounded, pointwise-convergent sequence {yn} c X such that
(3.2) holds for all fe 9f *. If x(s) = limn2/Λ(s) for α ^ s ^ 6, then by
Lemma 1 there exists a sequence {xn} in X such that x is the pointwise
limit of {xn} and ||a?n || = ||a?|| for all n. Thus F is the X*-limit of {Jxxn}
and it is easily verified that Hi?7!! = ||a?n|| for each n.

Case 2. If X i s an arbitrary real Banach space and FeK(X), then
there is a sequence {yn} in X such that .F is the X*-limit of {Jxyn}.
If Y is the closed subspace of X generated by {yn}, we can define
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<?€ Y** by

<3.3) G(f\ Y) = F(f) for all/eX*,

and this definition is unambiguous since F is the X*-limit of a sequence
in JXY. It is easy to verify that GeK(Y) and ||G|| = | | * Ί | . Since Y
is separable, Y is equivalent with a closed subspace of & [1, p. 185],
and hence by Case 1, there is a sequence {xn} in Y such that G is the F*-
limit of { J ^ J and || xn || - || G || - || F\ | for all n. Finally, if / e X*, then

<3.4) F(f) = G(f\Y) = \imnf(xn),

.so F is the XMimit of {Jxxn}, and the lemma is proved.

4. THEOREM. If X is a real Banach space, then K(X) is norm-
closed in X**.

Proof. If FeK{X), then there is a sequence {Fn} in iί(X) such
that Fn-+ F in norm, and | | i ^ — Fn^\\ < 2rn for each n > 1. If we
let JP0 = 0, then by Lemma 2 there exists, for each n ^ 1, a sequence
{#πfc} in X such that ||a?nfc|| = \\Fn — Fn^\\ for all k and such that
JPW - Fn-! is the X*-limit of {Jxxnk}.

For each fc the series ΣΓ=î f̂c converges to an element % e l such
that

Σ 2~j for each j.

Given 0 Φ fe X* and ε > 0, there exist positive integers J and K such
that 2r> < ε/(3||/|!) and l ^ / ) - /(ΣίU a? *)| < e/3 for all k^K. Hence
for k^K,

Σ:
?ι = l

J \2-i ̂ nk
n = l

so that F is the X*-limit of {Jxxk}.
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