EIGENVALUES OF SUMS OF HERMITIAN MATRICES

ALFRED HORN

Let a = (ay, -+-,,) and 8 = (B, ---, B,) be arbitrary nonincreasing
sequences of real numbers. We consider the question: for which non-
increasing sequences ¥ = (v, -+, 7,) do there exist Hermitian matrices
A and B such that A, B and A + B have «, 8 and 7 respectively as
their sequences of eigenvalues. Necessary conditions have been obtained
by several authors including Weyl [4], Lidskii [3], Wielandt [5], and
Amir-Moez [1]. Besides the obvious condition

(1) 71—}_”'+7n:al+°°'+an+61+”'+8n:
these conditions are linear inequalities of the form

(2) /715+"‘+7kT§ai1+"‘+ai,+811+"'/8jry

1

where ,7 and k are increasing sequences of integers. As far as I know
all other known necessary conditions are consequences of these inequalities.
It is therefore natural to conjecture that the set E of all possible v
forms a convex subset of the hyperplane (1). The set E has hitherto
not been determined except in the simple cases » = 1,2, and will not
be determined in general here.

In § 2, which is independent of §1, we are going to give a method
of finding conditions of the form (2) which will yield many new ones.
We shall find all possible inequalities (2) for r = 1,2, and arbitrary
n, and establish a large class of such inequalities for » = 3. In §1, we
use Lidskii’s method to find a necessary condition on the boundary points
of a subset £’ of E. These results are used in §3 to determine the
set & for n = 3,4. In addition a conjecture is given for E in general.

If x is a sequence, z, denotes the pth component of z. If 4 is a
matrix, A* and A’ denote the conjugate transpose and transpose of A.
If 7 is a sequence of integers such that 1 <7, < --- <1, <mn, by the
complement of ¢ with respect to » we mean the sequence obtained by
deleting the terms of 4 from the sequence 1,2, ---, n. If a is a sequence
of numbers, diag (a4, -+-, @,) denotes the diagonal matrix with diagonal
«a. If M and N are matrices, diag (M, N) denotes the direct sum matrix

(M 0
0 NJ/.
The inner product of the vectors x and ¥ is written (x,y). I, is the
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unit matrix of order r. Finally exp B denotes the sum i‘, Br[n!.
n=0

1. Boundary points of E’. In this section we are going to use
methods introduced by Lidskii [3]. Lidskii gave sketchy proofs of his
results and it is not obvious how to reconstruct his argument, see [5].
I will therefore derive the results of Lidskii which are needed. These
are Theorem 1 and formula (18) below.

The set E referred to in the introduction is the set of points v such
that v, = -+ = v, and 7 is the sequence of eigenvalues of diag («,, - -,
a,) + U* diag (B, +++,B,) U, where U ranges over all unitary matrices.
Fix a, 8, with &, > ++- >, and 5, > --- > B,, and let E’ be the subset
of E obtained by letting U range over real orthogonal matrices. To
indicate the dependence of E' on « and 8 we write E' («,, +++,a,; 5,
-«+,8,). Boundary points and interior points of E’' are always taken
with respect to the relative topology of the hyperplane (1).

THEOREM 1. If v is a boundary point of E' with distinct coordi-
nates then there exist a positive integer r < m and increasing sequences
2,7, and k of order r such that

(i =+ V) € By =+, i, 5 By + 0, By,)
and
iy oo Vi ) €E @y ooy i 5By +oy By )
where ', 7' and k' are the complements of 1, j and k with respect to n.
Proof. Let U, be a real orthogonal matrix such that diag («y, ---,
a,) + Uy diag (B, +++, B,) U, has eigenvalues v. If T=(,) is a real

anti-symmetric matrix, exp 7' is orthogonal. For sufficiently small values
of t,, the eigenvalues X, > -+« >\, of

diag (ay, *++, ,) + Uy exp (— T)Bexp (T)U, ,

where B = diag (8,, +++, B,), are distinct and determine a point of E'.
Let A = U, diag (ay, ++-, @)U/, and let x, be a unit eigenvector of A +
exp (— T)Bexp T corresponding to the eigenvector A, which varies con-
tinuously with 7. We have

(3) Az, + exp (— T)Bexp (T)x, = Mz, .

Using superscripts to denote derivatives with respect to ¢,,» <gq, it
follows that

(4) Axz? + exp(— T)Bexp (T)xr + (exp (— T)Bexp (T))"x,
= g, + A,@H
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It is easily seen that (exp 7)™ reduces to 7'?* when T =0. Hence
when T = 0, (exp (— T)Bexp T)*, = (B, — §,)Z", where Z* is the matrix
whose (p, ¢) and (g, p) entries are 1 and whose other entries are 0.
Since x, is a unit vector, (x,, 19) = 0. Therefore by (3),

(5) (Ax,, 2% + (exp (— T)Bexp (T)x,, ") = 0.

‘Taking the inner product of (4) with z, we find by (5) and the symmetry
of A and B,

A\ = ((exp (— T)Bexp T)™x,, x,) .
Setting T = 0,
( 6) 7= 2(1811 - Bq)wwwlq s

where w, and 7}* denote the values of z, and N\ when T=0. If v is
not an interior point of E’ the rank of the n by n(n — 1)/2 matrix
‘G = (7}) must be less than n — 1. Now' let D = (w,,w,,) be the n by
n(n — 1) matrix whose rows are indexed by I, where 1 <1 <n, and
whose columns are indexed by (p, q), where p and g vary over the range
1<p=sn, 1<q=mn, and p # q rather than p <q. Clearly D, and
‘hence DD’, has the same rank as G. If F is the square matrix (w?,)
.of order n, then DD’ = I — FF’. Thus if rank D<n — 1, FF' has 1
as a multiple eigenvalue. Since F'F' is stochastic, it follows that FF"
is decomposable [2, pp. 47 and 73]. That is to say, F'F' = Pdiag (M, N)P’,
where M and N are square matrices and P is a permutation matrix.

Let
H
F = P( @ >P’
J K

be the decomposition of F' corresponding to that of FF’'. Then GJ' +
HK' = 0. Since the entries of F' are nonnegative, we have GJ’' = HK'=
0. It follows that if a column of G contains a nonzero term then all
terms of the corresponding column of J vanish, and similarly for H and
K. Moving all nonzero columns of G and H to the left, we find

S, 0
F=rpl” R,
(s s)

where R is another permutation matrix. Since F' is doubly stochastic,

W, 0
S, and S, must be square matrices. If W = (w,,,), then W = P( 0 W)R s
2
where W, and W, are square. Setting [ = diag (v, ---,7.), we
have A+ B= W'I'W. Therefore RAR’' + RBR' = C, where C =

! The following argument is due to Robert Steinberg.
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diag (W, W,;)P'I" Pdiag (W,, W,). Let j and k be such that RBR' = diag (Bj,r
++,B,,) and P'I'P=diag (v, -+, 7). If W, is of order r, then C =
diag (C,, C,), where C, has eigenvalues v, , ++-,7,, and C, has eigenvalues
Vepspr ***s Vi Lherefore RAR' = diag (4,, 4,), where A, + diag (8, -
B;,) = C, andA, + diag (8;,,,, **+,B;,) = C.. This completes the proof.

If M=mmy),l1<t=7r1=<j <ris a matrix of order » and N =
), r+1=k=nr+1=Z1=<mnis a matrix of order n — r, we define
M x N to be the matrix (m;m,;) of order r(» — r) whose rows are
indexed by pairs (¢, k) and whose columns are indexed by pairs (7, ).
This product is left and right distributive and (M x N) = M’ x N'.
Also (M, x N)(M, x N,) = (MM, x N.N,). Weset MON=WMx I,_,) —
(I, x N). It follows from these remarks that if W, and W, are or-
thogonal then so is W, x W, and

(7)  (WMW)© (W/NW,) = (W, x W) (MO N)(W, x W) .

The index of a real symmetric matrix is the number of its positive
eigenvalues.

9

LEmMmMA 1. If M, N, and M + N are nonsingular real symmetric
matrices then index M + index N = index (M + N) + index (M + N7).

Proof.? We have M~ + N-' = NN + M)M~, so that M~ + N-
is nonsingular. Also

(I I (M O(I M (M—I—N 0
M —N/\0 N/\I —N 0 M+ N~
The result now follows by the Law of Inertia.

THEOREM 2. Let v be a boundary point of E’ with distinct coordi-
nates. Then there exist sequences t,j and k satisfying the conclusion.
of Theorem 1 and such that

Lt e+t S =h e+ R+ r(r+1)2.

Proof. Using a slight change of notation, we have seen that there
exist permutations 7,7 and %k of (1, ---, %) and real symmetric matrices
A, A, B,B,C,C, such that A, has eigenvalues «,;, -+, a;, A, has
eigenvalues «;,, , +++, a; , B, =diag (8, -++, B;,), B.=diag (8y,,,, *+*, 84,),
C, has eigenvalues 7, -, 7x,, C. has eigenvalues 7, , -, 7, and
A+ B=C, where A = diag(4,, 4,), B= diag (B,, B,) C = diag (C,, C,).
We also assume ¢, < -+ < %, and 7, < -+ < %,, and similarly for the
J’s and k’s. We set @, =«;,5, =8, and ¥V, =7,1=1=n. Let

2 This simple proof is due to Robert Steinberg.
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T = (t,,) be a real anti-symmetric matrix and let x, > --+ >\, be the
eigenvalues of A + exp(—T)BexpT. If «,---,2, is a real ortho-
normal system of corresponding eigenvectors, we let w, and w!* be
the values of x,, and x} when 7T = 0, where x}? denotes the derivative
of x, with respect to ¢,,» <gq. If W is the matrix whose rows are
Wy, *, W,, then W = diag(W,, W,) and C,= W/I''W,, C,= W/I,W,,
where [I', = diag (V¢,, **, Ve,), [ = diag (Yu, . v+, Vi), Clearly X,
reduces to 7, when T =0, and we let 7" be the value of A} = O\, /¢,
when T = 0.

Starting from the equation
(8) Aw,, + (exp (—t)Bexp T)x,, = Ny,
we find
(9) Az} + (exp(—T)Bexp T)xt! + (exp (— T)Bexp T)"x,,

= Mij%g, + A, 5] .

As in Theorem 1 it follows that
(10) M = ((exp (— T)Bexp T)"xy,, )
and therefore
(11) 711 = 2(B, — B)w,wy, -

We are going to test ¢ =X\, + -+- + A, for a local extreme at
T=0. If p and ¢ are < », then exp T has the form diag (exp T}, 0)
when t,, = 0 for (u, v) # (p, @), and hence ¢ remains constant for ¢,, in
a neighborhood of 0. Therefore all partial derivatives of ¢ with respect
to t,, vanish at the origin when p < ¢ < 7, and similarly when » < p < q.
By (11), 6 =0 at T =0 when p <7 < ¢, since the last n — r com-
ponents of w, are 0 when 1 <! < r. We now calculate A\}’* at T =0
when

(12) 1=sp=sr<qg=n, l=susr<v=n, 1sli=sr.
Differentiation of (10) yields

(13) A = ((exp (— T)Bexp T)*"“wy,, 1)
+ 2((exp (= T)Bexp T)"wy), v,)

It is easily seen that when T'=0
(exp (—— T)B exp T)pq,uv = —(quBTuv _|_ TuvBqu)
* %B (TT™ + T*T") + %(T“T“" + T*T*)B.

Considering only the cases (12), a straightforward calculation shows that
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when T =0,

((exp (— T)Bexp T)""mx,,, ;) = 0 for p+wu, q+v
=28, — B, — By)w,,w,, for p+u, ¢g=0v

(28, — B, — Bw,wi, for p=wu, g+

= —2(8, — B)w}, —w}) for p=u, g=v.

Il

Recalling that w,, =0 for | < r < ¢, we find that when T =0,

(14) lé ((exp (— T)Bexp T)""“x,, ;) = —2(8, — B,) for p=1u,q =
=0 otherwise.

The second term on the right of (13) reduces when 7= 0 to

(15) 28, — Bowijws, .

To compute w}y, rewrite (9) in the form

(A + exp(—T)Bexp T — \, L)xi}
= —(exp (—T)Bexp T)"x,, + My, .

Setting 7= 0 and using (11), we find, since w,, = 0,
(C - VZIn)w;w = —(Eu - Ev)y »

where y is the vector such that y, = w,, = 0,9, = w,, and ¥, =0 for
m + u, m + v. Therefore

w%) = (Eu - Ev)((il‘[n - C)Aly)q .

Since ¢ > 7, and C = diag (C,, C,), we may replace C by C, and I, by
I,_,. Thus

(16) w?‘lu = (Eu - Ev)dtwwlw ’
where d,, is the (g, v) entry of (¥,1,_, — C,)”'. Now
('7zIn—r - Cz)_l = (Wz’(’—len—r - Pz) I/V‘z).1 .

Therefore

(7 _ﬁ WagWoo
= — Tm

~z|

Combining (13), (14), (15), (16), and (17), we find at T =0

(18) g = 2B, — BB, — B 3y 3 Lollululln

=1 m=r+1 Yi— Tm

- 28%}(8;} - Bq) ’
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where 622 =1 when (p, 9) = (4, v), and = 0 otherwise.

We must now determine the index of the matrix G = (679*),-, of
order r(n — r) whose rows and columns are indexed by pairs (p, q) and
(u, v) satisfying (12).

The double sum on the right of (18) is the (pq, uv) entry of

(W x W) (@ ID) (W x W) = (W, x W)Y, L) (W, x W)™ .
By (7) this reduces to

COC)"'=((A+B)oA +B) ' =(404) +(B.OB)™".
Therefore by (18)

%G = (B,© B)(4: © 4,) + (B.© B))™(B: — B) © (B, © B)

= (B.© B((A.© 4) + (B.O B))" — (B.© B)7)(B.©O By -

Thus G has the same index as ((A,© A, + (B,® B,)))! — (B,© B)™.
Applying Lemma 1 with M = (4,0 4,) + (B.© B)), N= —(B,©O B),

index G = index ((C, & C,)' — (B,©® B,)™)
= index (C; © C,) + index —(B,© B,) — index (4, © 4,)
= r(n — r) + index (C, © C,) — index (B, © B,)
—index (4,0 A,) .
Thus G is positive definite if and only index (C, ® C,) = index (4, ©A4,) +
index (B, ©® B,), and G is negative definite if and only if neg (C;® C,) =

neg (4, © A,) + neg (B,© B,), where neg H is the number of negative
eigenvalues of H. Next we determine

neg (B, © B,) = neg diag (8;, — By,.,, ***, Bi, — Bips *+ 2 Bi, — Bi,) -

Among the numbers 7,.,, « -+, j., there are j, — 1terms < j,, J, — 2 terms <
Jnetc. Hence neg(BiOB) =43, + +++ + 34, —r(r+1)2. Similarly
neg (A, 04)=1%4+ --- +1, —r(r+1)/2, and neg(C.OC)=Fk, + +++ +
k., — r(r + 1)/2. Thus G is negative definite if and only if

19) Gt d GG =kt e+ R+ r(r + D)2,
and G is positive definite if and only if

(20) iru"f""+7:n+’l:r+1+~~°—|—jn=kr+l+...+kn
+Mm—rnm—r+1)2.

By Theorem 1 the boundary points of E’ lie on a finite number of
hyperplanes of the form

(21) 7"‘1+"'+7’°r=a +"'+air+'8i1+"'+18ir-

iy
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The hyperplane
71;{ + e +7k;»—r :ai{, + e +ai'n~r +B;i + M /3]"

n-—r

intersects the hyperplane (1) in the same set. If v lies on only one
of these hyperplanes (21) and does not satisfy (19) or (20), then in every
small sphere about 7 there exist points of E’ on both sides of the hyper-
plane (21). Therefore K’ must fill the sphere, for otherwise there would
be boundary points of E’ inside the sphere and off the hyperplane (21).
This being impossible, A must satisfy (19) or (20). Now suppose v lies
on several hyperplanes (21), and (19) and (20) both fail for each of these
hyperplanes. By continuity the quadratic form G is not definite for all
points near v which satisfy the conclusion of Theorem 1. Therefore in
a neighborhood of v all points of E’ lying on only one hyperplane (21)
are interior points of E’. Therefore v cannot be a boundary point of
E’, since E’ is the closure of its interior, and a finite union of linear
varieties of deficiency = 2 cannot separate the interior of a sphere.
The proof is complete.

2. Inequalities. This section is independent of §1. If 4,7 and k
are increasing sequences of integers of order  and (2) holds for the
eigenvalues of A + B for any Hermitian A, B with arbitrary eigenvalues
a=z-+za,and B, =+ =8, we write (4;7;k)eSr. If

Yy T e TV, 20+ e @, B+ e 8

1

for any such A4, B we write (i; 7; k) € S™.

THEOREM 3. The following conditions are equivalent:
(i) (i;5;k)eS
(i) m—1,+1,«,n—t, +L;n—3.+1, e, m—75 +Ln—k +1,
cee,m—Fk +1)eSr
(i) (b v kim —g, +1,--o,m — g, + 14, -+, 4,) e Sy
(iv) (@55 Kk)eSr,, where i',5, k' are the complements of 1,7,k with
respect to n.

Proof. The equation A + B = C may be written —4A — B= —C
or A =C — B. This proves the equivalence of (i) with (ii) and (iii).
The equivalence of (i) and (iv) is immediate by the trace Condition (1).

If A is a Hermitian matrix with eigenvalues a;, = -+ = «, and M
is a linear subspace of dimension n — 1, let A, be the transformation
PA with domain restricted to M, where P is the orthogonal projection
on M. A, is a Hermitian transformation on M to M and (A + B), =
Ay + By. It is well known that the eigenvalues «) of A, separate
those of A, that is a,, =a, <«a, for 1<p<n-—1. If (x,) is an
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orthonormal sequence of eigenvectors corresponding to («,) and if M
contains x,, ---, #,, then &, = a, for 1 < p < m. This is an immediate
consequence of the minimax principle, since (Ayx, ) = (Azx, x) for x € M.
Dually if M contains «,,,, *++,%,, then a, =a,,;, for m <p <n — 1.
The next theorem shows that S is essentially independent of .

THEOREM 4. If(3;35;k)eS! for some n, then v, <k, and j, <k,
Jor all p, and (i;7; k) e S} for all n = k,.

Proof. Suppose (1; J; k) € SP* for some n. Considering the case 8 = 0,
it is clear that 7, < k, and j, < k, for all p. If A and B are of order
k., the identity diag (A4, — AI) + diag (B, — \I) = diag (A + B, — 2\I)
for large N shows that (¢; j; k) € S¥». It remains to prove (¢; J; k) € S»*+.
Let A and B be of order » 4 1 with eigenvalues («,), (8,), and let (2,)
be an orthonormal sequence of eigenvectors of A 4+ B corresponding to
the eigenvalues (v,). Let M be the subspace spanned by z, :--,2,.
Letting («;}), (8;) and (7)) be the eigenvalues of A,, By, and (A + B)y,
we have by hypothesis

Vit et Sal+ e+l + B8+ e 8

But v, =7, a, =« and B =8; for 1=p=r. Therefore
(1; 55 k) e Sp+.

THEOREM 5. If (4;5;k)e Sy and u,v and w are integers such that
r+l1lzu=zl,r+1=zv=1land r=w=1, and if i, + 75, = kp_ +
kr+2 then (il!""iu—l’iu"i"ly"'y/l:r+1;j1"'rjv—1’ju+1y"'yjr""
1k, by +1, .-k, +1)eS*. Here k, =0 and 4,01 = J,0n =
k. + 1 by definition.® In particular, (¢, + 1, +++, %, + 1;7, -+, 5.5 k, +
1, -,k +1)eSr.

Proof. By Theorem 4 we may assume n =k,. Let (x,),(y,) and
(2,), 1 = p £n + 1, be orthonormal sequences of eigenvectors correspond-
ing to the eigenvalues («,),(8,) and (v,) of A, B and A + B. Since
Ty + Jo = kp_y + 1 + 2, there exists an n dimensional subspace M contain-
ing the vectors «,, %, + 1 = p = n + 1, the vectors y,,J, + 1 =p =n+1,
and the vectors z,,1 < p < k,,. Let (a}), (8;), and (v,) be the eigen-
values of A,, By, and (A + B),. By hypothesis

S R e A I o <Y A U o Y

The theorem now follows because v, =7, for 1 < p < k,,—,, Vpu = 7, for

kn=p=ma,<a, for 1<p=<i,,a,=a,, for i, <p=n,B,<8,
for 1 =p < j,-, and B, = B,., for j, = p =n.

8 This theorem was suggested by a special case which was pointed out to me by Alan
J. Hoffman.
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Theorem 5 yields a simple proof of the following theorem due to
Lidskii.

THEOREM 6 [3]. Ifl1=p, < -+ <p, =m,then (p, -, p;1, -+, 7;
pl!...’pf)esf'

Proof. Obviously (1, -+, 7;1,--+,7;1, ---,7)eS?. Using Theorem
5 p, — 1 times with u=w=1, v=7r +1, we find (p, 0, + 1, +++, 0, +
r—1,;1, <, 0,0, +1, -, p, + r — 1) € S7**"'. Such use of Theorem
5 is justified since %, + j,.u =14, + k. +1=k, +2=Fk,+ k., + 2 at each
stage. We may now apply Theorem 5 p, — (p, + 1) times with v = w = 2,
v =17 +1 since at each stage %, +ju=t+k +1=% +k +2=
k., + k., + 2. The result is

(pl’p2fp2+1’ e, D+ — 251, e, 15Dy, Dy Dy
+1,-00,p,+1r—2)eSP7,

Continuing in this way we find

(ply LR 19 RPN S PR pr)ES,‘.”' .
By Theorem 4 the proof is complete.

THEOREM 7. (137 k)eS? for n =k, if and only of 1 <1, =k,
1< =5k, and 1, +3, =k, + 1.

Proof. The sufficiency of the conditions, due to Weyl, is usually
proved by the minimax principle. It can also be proved using Theorem
5. We have already seen the necessity of ¢, <&k, and 5, < k&, in the
proof of Theorem 4. Now suppose ¢, + 7, =k, +2. Let A = diag(1,
«++,1,0,+-+,0) with ¢, — 1 ones, and B = diag (0, -+-,0,1, --+, 1) with
J1 — 1 ones, where the orders of A and B are k,. Since k, —j, +1=
1, — 1, all the eigenvalues of A + B are =1. Therefore v,, = 1, while
a; = B;, = 0, contradicting (%,; J;; k1) € Sf.

THEOREM 8. If 1,7 and k are ordered pairs of integers satisfying

@) 1=<i<i=n, 1<j<ji<n, 1<k<k<n
23) WSk 41
i .
24) R Y A
1+ N
(25) i1+1:2+.7.1+.7.2=k1+k2+3y

then (t;3;k)e Sy .

Proof. By Theorem 4 we may assume n =k, We proceed by
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induction on n. If » = 2 the theorem follows from (1). Suppose the
theorem holds for all » < N, where N > 2. By (22), (23) and (24),
1, <k, and j, <k, p=1,2. Suppose %, >1. Then the pairs (¢, —
1,4, — 1), (41, J.) and (k, — 1, k, — 1) satisfy (22)-(25). Therefore by the
induction hypothesis (4, — 1,4, — 1;5, 5k, — 1, k, — 1) e SF. If we
apply Theorem 5 with v = w =1, v = 3, we find (¢;7; k) € S¥. A similar
method takes care of the case j, > 1. Therefore we may assume

(26) Lh=5=1.

If

27 (% —1;9,0,— 1,k —1,k, —1)e SH?
and if

(28) W+, z3+k,

then Theorem 5 with u = v = 2, w = 1 allows us to conclude (¢; j; k) € SF.
But the Condition (28) which is needed for the application of Theorem
5 will also guarantee (27). To see this, first note that (27) can fail only
when

(i) =1 +1=2
or

(i) Lh=h+1=2
or

(iii) k=1

or

(iv) Wtgh=k+1.

If (i) holds then ¢, + 7, =2 + J, < 2 + k,, contradicting (28). Similarly
(ii) cannot hold. If (iii) holds, then by (26), 7, + %, + 7. + 7, =2 + %, + J, =
k,+k,+3=Fk,+4, or %, +J,=k,+ 2, contradicting (28). Condition
(iv) implies (iii) by (26). Therefore we may assume

(29) Lt h=2+k.

If 1,2k +2, it is easy to show by the induction hypothesis that
(%, % — 1551, J0s iy by — 1) € S¥* and Theorem 5 with u =w =2,v =38
implies (¢;7; k) € S¥. Hence we assume

(30) Ww<k +1land j,<k +1.
Now (25) and (26) imply ¢, + j, = k, + k, + 1, which with (29) implies
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k, = 1. Therefore by (30) and (22), 7, =37, =2 and hence 7, =3, = 1.
Using (25) we find k, = 2, contradicting N > 2. The proof is complete.

If in (25) we replace the equality sign by =, Theorem 8 remains
true. For if 4,7 and k& satisfy (22)-(24) and the modified (25), there
exists a pair k' = (k}, k}) such that k <Fk,k, <k, and ¢, 7, k' satisfy
(22)-(25). However Theorem 2 suggests that we consider only cases
where (19) holds. Conditions (23) and (24) combined may be expressed
as follows:

Ty + 7o =k,+ 1 whenever 1=u =<2, 1=v=2 1=w=2, and
%+ v=w+ 1. This suggests the following conjecture. Let us define
inductively the following sequence of sets of triples of sequences of
integers: Let (i k)eTr if 154, =n,1=55,=n,15k <n, and
G+ g=k +1, and let (¢, =+, %370, co, I by, oo, k)eTrif 1 =54, <
e <, =nl=5< <4 =015k < - <k =m, and
B  w+eet i +ht e+ g =kt e + B+ r(r + 12,

and
(B2)  dyy v A, T Ty o Ty Sy e+ Ry, +8(8 + 1)/2
whenever

wv,wyeTr,1<s<r—1.

Theorem 7 and 8 show that T c S? for » =1, 2. It seems reasonable
to conjecture T < S for all . I cannot prove this in general and I
know no counterexamples. The case r = 8 is the following.

THEOREM 9. If 4,7 and k are ordered triples of integers such that

B3 1=2u<iu<u=n1=i<iH<is=nlskh<k<k=s=n

(34) LWL =k+1
95 .
(35) 7:1+.7.2}§k2+1
1’2+-71
(36) i+
iz“"‘jzjéka‘*'l
1:3+j1
37) Uttt h+LSk+k+3
(38) B+ 1 + 1 + s
. . . =k +k +3
%l+za+31+92} P
(39) Wi+ g+ Js

bttt dap Sk + ki +3
4+ %+, + Js
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(40) bt tb+b+h+h+d=k+k+k+6,
then (i;7; k) e Sy

Proof. The proof begins along the same lines as the proof of
Theorem 8 and will only be sketched. We may assume = = k;, and
proceed by induction on n. When n=38,1, =7, =k =1,19,=7, =k, =
2,1, = J, = k, = 3, and the result follows from (1). Assume the theorem
for all » < N, where N > 3. As in Theorem 8, we may assume

(41) il = .7'1 =1.
If
(42) (?:1! ’L.2 - 1; 7;3 - 1)7 (.7'1.7.2! js - 1): (k1 - 1! kz - 1; ks - 1)

satisfies (33)-(40) and if
(43) B+ s =k, + 3

then the induction hypothesis and Theorem 5 with v =2, v =3, w =1
yield the theorem. Again the condition (43) which is needed for the
application of Theorem 5 will guarantee (42). For example %k, —1 =1,
because if k, = 1, then by (38) and (41), 4, + J; =< k, + 2, contradicting

(43). The second inequality of (36) together with (43) and j; < k, (which

follows from (36)) ensure j;, — 1 > j,. We may therefore assume

44 ly + J

4 AT TS
%+ 7,

Next we show that we may assume

by showing that if 4, =k, + 2, then (¢, ¢, — 1, % — 1; 74, 75, Jo; ko, By — 1,

ks — 1) e SF* and Theorem 5 with u = 2, v = 3, w = 2 gives (¢;7; k) € S5.
In a similar manner we may assume

(46) s+ g =k 4+ by + 2
(47) =k +1,5=k+1.

Now (33)—(41) together with (44)-(47) are easily seen to imply k, +
ky=Fkyt, =43, =k,+1,%,=5,=k,+1and k, +1 =k, < 2k,. Therefore
the theorem will be proved if we can show that

Lrp+L,p+e+L1L,p+L,p+q+1;p,p+4q,20+qeSs

whenever 1<¢g=<pand 2p+qg=mn.
Let A, B and A + B be of order n with eigenvalues («,), (8,) and
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(71:)' We have a7, = R i + Yo—r+15 @7 p1q = Vp+q + e + T p+1s
and q72p+q é 72p+q + e + 721;4._1- Hence

97y + Ypig + Vaprg) < trace (A + B)
— (N F o F Vot Vg o+ Yap) -
Similarly

q(al + ap+1 + ap-i—q+1)
= trace A — (aq—H 4o + Ap 4 Oyiggig + oo+ a2p+q)

and we have a similar statement for the B’s. Therefore we need only
prove

¢+1,---,p,p+2p+1,--,2p+qq+1,-+,p0,p+2q
+1y"'72p+q;17""p—qvp+Q+1”"’219)682"53—241'

This will follows from Theorem 3 (ii) if we can show

(48) aQ--p—qgv+q+1,---,2p;1,---,p—¢q¢, D+ q
+1y""2p;q+1:°"yprp+2q+1’ "'!2p+q)eS2’;:—2q0

By Theorem 6 we have

(1’ “'y2p_2Q;1, ’“,p_Q;p‘i‘l, ""2p_q;
19"'7p—'qyp+1r"'72p——Q)es22::;q'

‘We may apply Theorem 5 ¢ times withu =w=p—q +1,v =2p — 2¢ +
1 to obtain

(1y"';p_q’p—l_ly'"yzp_Q;l’"'ypﬁqr
p+1,,20—q;1, -, p—q,p+q+1,--+,2p) S, .

Theorem 5 applied ¢ times with u =v=p —q+ 1, w =1 yields (48).
The proof is now complete.

A proof of T} c S along the same lines runs into the following
difficulty. The first half of the proof, that is, the application of Theorem
5 in all possible ways, carries through. However the cases left untouched
turn out to be too numerous to handle by the methods of the second
half of the proof of Theorem 9. I have verified T < S? for n < 8.

As for the statement S < T, it is possible to show by a consider-
ation of diagonal matrices that if (¢; j; k) € S then (32) holds for s = 1, 2.
This together with the remark following Theorem 8 determines S . But
the general statement S c T is false even if we weaken the definition
of T by replacing the equality sign in (81) by <. For example a con-
sideration of the trace condition shows that (1, 5,9, 12;1, 5,9, 12; 4, 8, 12,
16) e Sk.

Guided by Theorem 3 (ii), the dual set T may be defined inductively
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as follows: (4, ji, k) e Trif 4, + 4, =k, +n, and (¢;5;k) e Trif 4, + -+ +
Lt i e +5. =k + o +k +nr—r(r—1)2 and

Gy £y Gy e oy Z b e Ky, s — s(s — 1)/2

whenever (u; v; w) € Tr. It is easily seen that (¢;4; k) e Tr if and only
if(n—zr_i‘ 11 ”"/n_?:l +1;’n—'"),+ 17 "',n—jl_l— 1;n—kr+1y M)
n —k, +1)e Tr. Hence by Theorem 3, T* c S’ is equivalent to 7" c
Sr. 1 have been unable to prove the analogue of the last transformation
rule of Theorem 3. However I can prove that if (i;7; k)e T, then
@7 k)e Tr.,, where 4',7, and k' are the complements with respect
to n.

3. The set E. We return to the problem of determining the set
FE defined in the introduction. Let F' be the set of points v defined by
M= =V,

Yy e v, =0+ e+, B+ e By,

and

Vg b o Y, S A et B+ e+ B,

‘whenever
(G5 k)eT/,1=r<mn—1.

In §2 we have shown that E cC F for n < 4. In this section we will
prove that E = F for n < 4.

There is no loss of generality in assuming a; > -+ > «a, and B, >
«++ >0, The set E’ defined in §1 is a closed subset of E. Since F
is closed and convex, it will follow that E’' = F, and therefore E = F|,
if the boundary of E’ is contained in the boundary of F. To see this,
let v be an interior point of E’ and suppose v’ is any point of F. If
v' is not in E’' there must be a boundary point of E’ in the open
segment joining v and ¥’. But all points of this open segment are
interior points of F.

A boundary points of E’ with at least two equal coordinates is
.obviously a boundary point of F. If v is a boundary point of E’ with
distinet coordinates, there is associated with v a triple (¢; j; k) satisfying
the conditions of Theorem 2. All that remains to prove is that (i;7; k)
e Tr. To this end we first prove the following theorem.

THEOREM 10. If v is a boundary point of E' with associated
sequences (i;3; k) of order r, then for any (x;y;z)e€ Sr, there cannot
exist a triple (w; v; w) e Sp™" such that i, < @, +u, — 1,0y, £ Y, + v, —
1, and k., = 2z, + w,, for 1 < p =m.



240 ALFRED HORN

Proof. For convenience, we write a(p) instead of «,. By hypothesis
there exist Hermitian matrices A,, B,, and A, + B, with eigenvalues
(a(%,)), (B(,), and (v(k,)),» =1, -+, r, and Hermitian matrices A4,, B,,
and A, + B, with eigenvalues (a(t})), (8(4})), and (v(k})),»p =1, -+, n — 7,
where 4’ is complement of 7 with respect to n. If there exists a triple
(u; v, w)e Sy~ such that ixp < i;p,jyp < j{,p, and k;p > k;p, 1<p=<m,
then we have

S ain,) + 3180,,) = 3v(k,) < 3v(k.,) < S a@) + 56 -

This is impossible since a(i,)) > a(il) and B(j,,) < B8(j;,). Therefore it
remains only to show that ¢, < 4, is implied by 7, <p +q¢—1. If¢, <
p + q — 1, then at least p terms of the sequence 7 are <p +q — 1.
Therefore at most ¢ — 1 positive integers < p +q¢ — 1 are not in <.
Hence 7, >p +q —1 = 1,.

THEOREM 11. If v is a boundary point of E' with associated
sequences 1, j, k of order r, then i, + j, = k, + r whenever (z, y, z) € Ty.

More generally, of ©* +y=z+1r, the i, —x+Jj,—y=k, — 2.

Proof. We have n=r + 1= 2. Since (x;y;% +y — 7)€ Trc 8r,
it follows that (x;y;2)e Sr. Let u=4,—2+1,v= Jj,—y+1, and
w==k,—2 Clearly, u=1,v=1, and w<n— 17 since k,— 1=k, —
2=k, —r=n—r. Wemust prove u +v=w+2. Ifu+v=
w+1, then w = 1,u < w, and v < w. Therefore (u;v; w)e T". This
contradicts Theorem 10.

THEOREM 12. Under the same hypothesis as Theorem 11, if n = r +
2, then i, + 1., + Jy, + 3y, = k., + k., + 2r — 1 whenever (z,y,2)e T;.

21

Proof. We are given o, + 4, =z 4+ 7,2+ Y =2 + 7,0, + Y, =
Zz+7r,and o, + @+ + Y. =2 +2+2r —1. Let a,=1,, — 2, +1,
b, =Jy, — ¥, +1, and ¢, = w, — 2, » = 1,2. By Theorem 11, a, + b, =
& +2,a,+b=¢ +2 and a, + b, = ¢, + 2. Suppose the theorem fails.

Then a, + a, + b, + b, < ¢, + ¢, + 3. Therefore

(49) a+b =<¢ +1
(50) a, +b,=¢,+1
1) 4+ b, < e+ 1.

Also1<a,<0a,1<b,<b,, and ¢; <n —r. By 49), ¢, =1. Moreover
a+2=a;,+b,=¢,+1, so that ¢, +1=¢,. Now let u, =a,u, =
max (a,, @, + 1), v, = b, v, = max (b,, b, + 1), w, = ¢;, and w, =c¢c,. It is
easy toseethat w, + v, <w, + 1L, u, +v, <w, + 1, u, + v, < w, + 1, and
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U+ Uy +V, + v, < w, + w, + 3. As previously remarked there exists
a pair (wj, w}) such that w; < w, w; < w,, and (u;v; w)e T»". This
contradicts Theorem 10.

Using a generalized version of Theorem 12, it is possible to show
that

Uy Oy F Uy + 0y, + Iyt Iy 2k ko + ke, tr+r—1+7r—2

whenever (z;y;2)e Ty, n = r + 2.

THEOREM 13. If v is a boundary point of E’' with associated
sequences 1,3,k of order r =1,2,3 or n — 1, then (v;7;k)e Tr.

Proof. For v = 1 this is obvious. For r = n — 1, the complementary
sequences with respect to n are of order 1 and satisfy 4 + 71 = k! + n.
Therefore (i';5’; k') e T*. By the last sentence of §2, it follows that
(2;75;k)e Tr,. For the cases m = 3,4 this can be easily verified by
listing cases. Now suppose r = 2. We must prove that (23) and (24)
hold. In view of (25), this means we must show that ¢, +J, =k, + 2
whenever (x;y;2)e T2 But this follows from Theorem 11. Suppose
r =3. We may assume n = 5. By (40) and Theorems 11 and 12 we
have (34)-(39), since if (2;¥;2)e T then (&;y;2)e T¢,, »p=1,2.

Theorem 13 completes the proof that £ = F for n < 4. It is possible
to extend the proof to n < 8. But the general case remains open.

REFERENCES

1. A. R. Amir-Moez, Extreme properties of eigenvalues of a Hermitian transformation
and singular values of the sum and product of linear tramsformations, 23 (1955), 463-476.
2. G. R. Gantmacher, Matrizenrechnung II, VEB Deutcher Verlag der Wissenschaften,
Berlin 1959.

3. V. B. Lidskii, On the characteristic numbers of the sum and product of symmetric
matrices (in Russian), Doklady Akad. Nauk SSSR, 72 (1950), 769-772.

4. H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Dif-
Jferentialgleichungen, Math. Annalen, 71 (1912), 441-479.

5. W. Wielandt, An extremum property of sums of eigenvalues, Proc. Amer. Math.,
Soc., 6 (1955), 106-110.

UNIVERSITY OF CALIFORNIA
L0osS ANGELES, CALIFORNIA








