GENERALIZED GOURSAT PROBLEM

RoBERT P. HOLTEN

1. Introduction. The linear first order system of rartial differential
equations in two independent variables

1) Vi=Sbs@y)Vi+ Ses@ )V + filwy),  i=1--,N

with coefficients that are continuous functions of the independent variables
is hyperbolic at (0, 0) if there is a real matrix T' = (¢,;) non-singular with
continuously differentiable components in some neighborhood of (0, 0)
such that 77'BT is a diagonal matrix and B = (b;;). We consider
problems of the following kind:

(1-2) To find such conditions that the hyperbolic system (1-1) has a
unique solution which satisfies a number of linear equations along several
arcs issuing from the origin.

Picard was probably the first to consider a non-analytic problem of
this type [7]. Two types of hypotheses are needed for (1-2). The first
is geometrical i.e. we require certain curves determined by the functions
b;; (the characteristic curves) to intersect the arcs issuing from (0, 0)
(the data ares) in a manner described in § 2 as Conditions (2.1). The
second group of assumptions concern certain matrices made up from
b;;, t;; and the coefficients of the linear equations mentioned in (1-2)
and the slopes of the data arcs at (0,0). Some of these matrices are
required to be non-singular and others to have eigenvalues with modulus
Isss than one. In §3 we consider the case that all the data arcs lie
between two consecutive characteristic curves through (0,0). In this
case we generalize the theorem proved in § 2 by giving conditions for
there to be a unique solution which is C". In §5 we state conditions
under which the hypotheses of Theorem 3.1 can always be satisfied for
sufficiently large n. We show at the end of §5 that if some of the
hypotheses of Theorem 3.1 are omitted the solution (if it exists) is no
longer unique. In §6 we solve a mixed problem for the general second
order hyperbolic equation.

The equations (1-1) are simplified by the linear transformation

. N
U= StV

Without loss of generality we consider the problem (1-2) in the reduced
form.
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2. Data arcs and characteristic curves. Under what conditions does
a system of N linear first order equations of the sort

N
Uj-l—Ai(ac,y)U;':Z_‘.E'“(x,y)Uf—|—G1'(x,y) i=1,+++, N

)
and some linear combinations of U?, .-, U” given along arcs issuing
\from a point

determine U*, ---, UY uniquely?

We are concerned with real valued functions of real variables. Suppose
the functions Af are C*' (actually all the conditions we will impose need
only hold in some neighborhood of (0,0)). Let 7v,(x,y) be the curve
passing through the point (x,y) and which has slope A(&, 7)) at every
point (£, ) on it. These are called the characteristic curves of (S). The
equation for v,(x,y) is ¥ = y*(; ©, y) Where

YiE; x, y) = AYE, ¥(E; x, v))
¥ &) =7.

We come to the arcs along which we specify linear combinations of
U, ..., U". Let N, be any positive integer less than N + 1 and let
Cy, +++, Cy, C‘l, cee, C’NQ,1 be curves issuing from (0,0) which have con-
tinuously turning tangents. Let these curves be given non-parametrically

by

Ci: y=ix) ?0) =0 1=1,++, N
Ci: y=d(x) ?,0)=0 k=1,---,N,— 1.

The conditions (2-1) below help determine whether the range for x is
either = 0 or « = 0. Our problem (S) may be started more explicitly
in terms of data arcs:

N
Ui+ A(x, y)U; = }; E@, y) U’ + Gz, y)

2

®) | Sau@U @ p@) = Hw), =1+, N
3 0@ U@, $@) = B(w),  k=1,--+, Ny—1.

We seek solutions of (S) on closed domains, Ry, satisfying the
following:

1. The boundary of Ry, is a piecewise smooth simply closed curve.

2. The origin is on the boundary of Ry and Ry, contains a nonzero
length segment of each data arc issuing from (0, 0).
(2-1) 3. For every (z,¥) in Ry, and 7 < N, 7, y) intersects C; or CA’i
just once at a point we denote by Pi(x,y). If v(x,y) intersects both
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C; and CA'i, then the point of intersection is (0, 0). For ¢ = N, and every
(v, y) in Ry, 7:(x,y) intersects C; just once at Pi(x, y).

4. For each (x,¥) in Ry, the entire segment of v(z, y) from (x, y)
to Pj(x,y) lies in Ry,

We assume temporarily that there are domains R, which satisfy
these conditions and which have small as we please diameter. Later in
this paper we discuss the existence of these domains. Loosely speaking
the subscript N, has the significance that N, — 1 characteristic curves
issue from (0, 0) into the interior of R, and as we will see consequently
linearly combinations must be given along N + N, — 1 arcs.

Notice that if N, > 1, (S) over determines the values of a solution
at (0,0). We suppose (S) is consistent at (0,0). That is, there are
numbers b;, ¢;, d; (to be interpreted as U0, 0), Ui(0, 0), U;(0, 0)) which
satisfy the equations:

S a0, = H(0)
S5 ,,(0; = H,(0)
and
S a0 — 40, 0)1d; = — 32O 3 B0, 0, + G0, 0) |
— $5aL(0)b; + HI(0)

and same equation with 7, a, ¢, H replaced respectively by k, @, @, H

and

¢; + A0, 0)d; = S E¥(0, 0)b, + G0, 0) .

=1

Certain matrices play an important role in what follows. Let Q(n)
be the square N x N matrix such that

Q(n); =0
Q) = max | L0 | 20 = 4100/ 8,0 70) — 40,0
a;(0)1 1 9(0) — A(0,0)!5 | @::(0)! |9;(0) — A%0, 0)
t=1,+-+,Ny—1 and j=1,.-+, N

@) [P 0) — A0, 0)
Q(n)u 1 a“(O)] ’@11(0) __ Al(O, 0)

’

n

t=DN,++,N and j=1,.--, N,



210 ROBERT P. HOLTEN

We assume that the slopes of C; and C‘,- differ from the slope of v,(0, 0)
at (0,0). That is, ®}(0) # A0, 0) and ®}(0) + A*(0,0). We also assume
that a,;(0) = 0.

Let M(n) be the N x N matrix such that

M(n);; = a:;(0) - (#i(0) — A%0, 0)) .

Let M(n) be the N x (N, — 1) matrix such that
M(n),; = G:,0)(@40) — A%, 0))", i=1,---,N,— 1L

Let M(n) be the compound N x (N, — 1) matrix

M (n))

M) = (M (n)

For any matrix P let X(P) be the maximum modulus of all the eigen-
values of P.

LeEmMMA 2.1. If MQ(n)) < 1, them M(n) 1is nonsingular.

Proof. Suppose M(n) is singular. There is then a nonzero vector
x such that M(n)x = 0. That is

i a,(O)[#H0) — A0, 0)]"x; = 0

| a.:(0) | - | i(0)A%(0, 0) | | | éélan(o)H‘Pi(O) — A0, 0) [ &, ] .

JFL

Dividing by |au(0)| - |P40) — 40, 0)|" we get
N
EAEP T OMEND

Let | x| be the vector whose ith component is |x;| then |z| = Q(n)| x|
the inequality is understood to hold for each pair of corresponding com-
ponents. Hence

(P + 1)z = 5 Q0] al

so that i Q*(n) | x| diverges as p — oo . Therefore MQ(n)) = 1.
k=0

THEOREM 2.1. If (S) is consistent at (0, 0) and all its given func-
tions are C* and NMQ(0)) < 1 and MQ(1)) < 1, then on some R, there
18 a unqiue C* solution of (S).

Proof. We construct the solution by iteration. Let °Ui(x, y) =
b, + ¢;x + d;y and obtain U, ..., ' U¥ from *UY, ..., *U" using
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(2-2) sHUF + Az, w)' M U} = le“ Eix, y) U’ + Gi(x, y)
and

U, i) = >; 8D 17, () + - H (@)

4.(@) )
and
U, Pu() = —z“kfix))svm P@) + )Hmu).
Equivalently,

(2-3) 511 Ui(x, y) = 1 U"(Pi(x, y)) n g:v?f) )[i EU(E: 77)8 UJ(E’ 77)

e vlg=

G, ) |ae

|Where the integral isA taken along v.(x, %) and Pi(z, ¥) is the intersection
of v.(x,y) with C; U C;] and for P(z,y) on C,

@) UPEy) = ~ 528D gp e, y) ¢ H (@)
"_ a’u(a( )) ii(at(xv y))

and for P(x,y) an C;

(2-5) TP, ) = — 3, WD) ) 4 - H(c)

"-'i m( ) )

where a‘(x, y) is the abscissa of P.(x, y).

From the assumption that (S) is consistent at (0, 0) we can conclude
that "' U%(Pi(x, y)) is properly defined when Py(x,y) is the origin [i.e.
when (2, ) lies on v,(0, 0)]. It is easy to see that

” s+2 [T sHUi” < i T“-H SHLITI sUJ“

where | T;; — Q(0);;| can be made as small as we please by taking the
diameter of Ry, small enough. Since MQ(0)) < 1 we conclude that °U",
gk, ..., 50U, - -« converges uniformly for each ¢ =1, --., N. That there
is at most one solution follows also immediately. The proof that the
first partial derivatives also converge uniformly depends in the following
way on the fact that M(Q(1)) < 1:

By taking the y-partial derivative of (2-3) and (2-4) and using (2-2)
to eliminate **' U} we have

[Pi(x) — Aix, p:i(@))]* " Ujx, Pi(x))
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o i (%) J STTi
= >, = pl(w) — Az, 2i(2))PUj (2, »i(x))
o (%)
+ terms not involving derivatives of U

and
MU, y) = [Pi@)) — Alx, y)] - ay(@, v) - U@, pia))
+ | SEE U v v ) - de
+ lower order terms.
It is not hard to show that

1

a;(0,0) = P0) — A¥0, 0)

therefore
[Pi(@’) — Ai(z, y)]a;

has the limit 1 as (z, ) approaches (0, 0). Consequently considering both
(2-4) and (2-5) we have

1705 = Uil £ 5, @Qu()) + &)1 + &) |°Tf — *U{ |
+85 01U = 0|

where ¢, and ¢, approach zero as the diameter of R, approaches zero.
B is some fixed constant. Since MQ(1)) < 1 by selecting Ry, with small
enough diameter the eigenvalues of the matrix L where

Li; = (Qi(1) + &)1 + &)
also have modulus less than one. Let
vi='Ui — Uil and wi=|'U'—°U|
them
Vo = L, + BTu

where the inequality must hold between pairs of corresponding com-
ponents. It is easily seen that

S0, = (1= D)7, + A1 — L)L — T)~u

and our convergence is assured.
In [4] Meltzer assumed that there are only two data arcs. The
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method used in [5] by Mihailow permits the characteristic curves and
data arcs only to be straight lines. In [3] the author obtained results
in the large by making more assumptions relating the slopes of the data
arcs and the characteristic curves. In [6] Peyser in effect requires that
N — 1 of the data arcs be identical and consequently the matrices Q(0)
and Q(1) are nilpotent. Finally in [9] Yosida assumes that the matrix
M(0) is diagonal and consequently Q(0) is the zero matrix.

3. Higher order solutions. In this section we prove a generalization
of Theorem 2.1 for N, = 1. This is the case that all the data arcs lie
between two consecutive characteristic curves through the origin. With
the addition of a consistency hypothesis for higher order derivatives at
(0, 0) the generalization when N, > 1 is also true., We begin by proving
a lemma about

U: + Az, y) U; = Fi(x, y)
S 4@ U, pu@) = H(@), =1+, N
[this is (S) with N, =1 and E% = 0]

(So)

LEMMA 8.1. If n is any monnegative integer and Af, Fi, H', a;;, P;
are C** and MQ(1n)) <1 and MQn + 1)) <1 and M), ---, M(n — 1)
each have rank N (i.e., are nonsingular), then on some R, (we assume
that such domains exist) there is exactly one C™** solution of (S,).
Moreover R, depends on meither F* nor H,.

Proof. As we did before we perform the iteration:

WU+ A, ) Uy = Fi(w, y)

SHLTTE — & aq,(%) s ) 1 i
Ui(x, pi(x)) = %_aﬁ(x) Uz, pi(x)) + @) Hyx) .

Taking the nth derivative of the second equation we get
ST @, 2. @), ™ iR
p=0

= =3 % 5oy @, @), " @]

= a2
+ terms involving derivatives of order less than n of ***U and *U, where

. _ U 0 Y
Up,n—p - W and <7L "‘p) - m |

Using the first equation we have
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’U;,n—ﬁ = ['—Ai(xy y)]p sU‘;;’n

4+ terms involving derivatives of *U of order less than =,
Consequently,

[Pi(@) — A2, px)]" " Ui (2, Pi(x))

= 3 8 (010) — As(a, p@)]* * Ui oo, 2i(e))
5 a;;(x)

+ terms of order less than n.

Since M(0), -++, M(n — 1) and M(n), M(n + 1) are nonsingular (see
Lemma 2.1) the values of any solution of (S,) and all their derivatives
up to and including order (n + 1) are uniquely determined at (0, 0). Let
¢.(p,, ;) be the value determined for U , (0,0). We begin our iter-
ation with

1?2

. P, ny
Ui, y) = 3 cepy,p) Y,

0=py+pgsntl pl!pgl

It follows that
SU;LM(O, 0) = ci(pu pz) for 0=p,+p,=n+1,5s>0.

Now since MQ(n)) < 1 we see that all the nth order derivatives of
the sequence °U?, --.,*U? -+. converge uniformly on some R, of suf-
ficiently small diameter. Also it is clear that the functions F'* and G*
are not involved in how small the diameter must be chosen. That there
is at most one solution which is C" follows in the customary way. It
remains to see that we have a C™"' solution to (S,).

Since

sUg.n-{»l—p = [’—Al(xx ?/)]p oni,n-H
+ terms involving derivatives of *U of order less than n + 1, we need
consider only the convergence of

[y . sTTi
Uo‘n+1, * Y UO,n"r-l) cte

Now

. . (2,9) X
U@, y) = CUPG, ) + | FE
Pylz.y

[Pi(z, y) = the point (a'(x, y), P.(a‘(z, ¥)))]
. X n+1 .
S = [a;]nﬂgé [@i]r+1-» s+ ;.n+1—p<n 2)— 1)

+ terms of order less than n + 1.

Since
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1

Pi(0) — 4%0,0) ’

[a;['/r}l[@: — Ai]n+1

O.’;(O, 0) =

can be made as near 1 as we please by taking the diameter of R, small
enough. From this observation and the assumption X(Q(n + 1)) < 1 the
series

0 3 E
l]ot,n—#l' Tty ‘Uol.n-t-lv v

converge uniformly. Consequently we have indeed the unique C**! so-
lution of (S,).
For the system

U: + Az, ) U = ﬁ Ex, y)U? + Gix, y)
() N it
2 ai(@) U, pi(x)) = Hi(x), i=1,---,N

we have

THEOREM 3.1. If n is a nonnegative integer and Af, EV, G, a,;, P;,
H, are C**' and N(Q(n)) < 1 and X(Q(n + 1)) < 1 and M(0), +-+, M(n —1)
each are monsingular, then on some R, there is exactly one C""* solution

of (Sy).

Proof. Using Lemma 3.1 we can define a sequence of functions
which are C"*' on some R, as follows:

N

U+ A,y Uy = 3 BV, y)' U 4 G, )

i=1

S 4@ U, 9.0) = Hi@) .

We can show that all the (n + 1)th order derivatives converge on some
possibly smaller R,. Using the same kind of calculations as before it is
easy to see that

. . N . .
12 Ubwin = Uil S 3 T 112 Uass = Ui |
=
N 1 . .
+ ZISNH o UOJ nt+1 T onl,n+l “
=

where XN(T) < 1, T;; = 0 and by taking the diameter of R, small enough
each S;; can be made arbitrarily close to zero. We have in vectors

Vo2 T-V,,,+ S- V, (the inequality must hold for each component).
I-TV,u=8-V.
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Since({—T)*'=1+T+ T+ ---,—-T);7#=20, V,,, = — T)SV.,.
By choosing R, small enough

MI—-T)'S)< 1.

Except for this the proof of Theorem 3.1 is like Lemma 3.1.

4. Constructing the domains of dependence. We discuss this topic
only for the case that the data arcs and characteristic curves are straight
lines. The subject has been treated more completely in [3].

Suppose @,(x) = m;x, P,(x) = 7,z and A’ are constant. By possibly
renaming the variables we can assume

A=A AV

Let RNO be the region lying below both the line v,(0,0) and the line
7#,(0,0). Ry, will be a part of Ry,

Assume that all the data arcs lie in Ry. Let the first ! data arcs
lie to the left of the y-axis (i.e. ®,, +++, ®, defined only for z <0, of
course ! may be zero) and suppose

ANgmlg e gml'
We suppose the remaining data arcs are ordered so that

< A%,

-1 =

My S Myyy S 20r S My S W S ov0 = mNn
We further assume that

m; > AL 1=1,---,1
m, < A,1=1+1,---,N
W, > A% k=1,--+-, N,— 1.
These last assumptions assure us that C; lies below 7,(0,0) and C. lies
above 7,(0, 0).
Our final assumption excludes the possibility that by omitting some

data arcs a domain R, satisfying conditions (2.1) can be constructed
with M, < N,. This final assumption is: For N, # 1 assume

my > A and m, > A, k=1,-+, Ny— 2.

We construct the domains Ry, for N, # 1. The case N, =1 offers
no new difficulties. We begin by choosing a point P, with negative
abscissa on vy(0,0) (we exclude the special case that C,_, lies along
7.(0, 0)). Define points p,, + -+, py as follows:

p; = the intersection of 7v,(p;_,) with C;,+=1, .-+, N.

Since C, lies above <v,(0,0) and C‘k above 7,.,(0,0), we can continue
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with points D, ««+, D,

©, = the intersection of v,(py) With 6‘1
P, = the intersection of v,(p,_,) with ¢,k, =2,+-+, N, — 1
Dy, = the intersection of vz(Py, — 1) with 7y,(0, 0)

where A < A% < A™ and no A° exists such that A¥ < A* <A™,

The boundary of Ry, consists of 7y(0,0) from (0,0) to p,, Vi(00)
from p, to P, +++, Yu(Py-) from py_, to Dy, v:(py) from py to Py, V()
from p, to p,, «--, '7N0—1(13N0—2) from ﬁNO—Z to ﬁNO—ly 717(ﬁ1v0~1) from ﬁNo—l to
Dy Tw,(0,0) from Py, to (0,0). The domains Ry constructed in this
way satisfy conditions (2.1). Also, if we let p, approach (0, 0)_lalong
75(0, 0) the diameter of R, approaches zero.

v 7,(0,0)

750, 0)

Cy

7,00, 0)
c,

Fig.

5. Certain special systems. We turn our attention to the hypo-
theses of Theorem 8.1. We have N, = 1, that is, all the data arcs lie
between two consecutive characteristic curves through (0,0). In this
case we call a system (S,) regular if
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A0, 0) # A(0, 0) and ®}(0) # @}(0) for 7 + J .
For a regular system we can suppose without loss of generality that

A'(0, 0) = 93(0) < P3(0) < -+ < Pi(0) < Pi(0)
=< A%0,0) < A%0,0) < +++ < A¥(0,0) .
We can show, in case (S,) is regular, that there is always an 7 such

that M(Q(n)) < 1 whenever n > 7.
Reecall that for © # J

_ a,0)] | 10) — 4%0, 0)|"
A, ‘ ai,-<0)| 1 P1(0) — A0, 0)

Q(n); =0 .
The eigenvalues of Q(n) satisfy the equation Det (Q(n) — NI) = 0.

LEMMA 5.1, Ifd, <dy, < -+ <dy=e <e, <+ -+ <ey, then each
term (except the diagonal which is one) in the expansion of determinant,
D, of the matrix (c;lc:;), c.; = |d; — e;]|, has absolute value less than one.

Proof. We proceed by induction. The lemma is vacuously true in
case N=1. Suppose N >1 and let us look at a typical nonzero term
of D. Let this term, =, contain as a factor ¢,y/c,, from the Nth column
and c¢y,/cyy from the Nth row. Suppose that p # N, then we have ¢ # N
and except possibly for sign [7(c,,/c,))/[(Con/Ci)(CxolCxr)] is a term in the
expansion of the (N — 1) x (N — 1) determinant and hence its absolute
value is no larger than one. To show |7 | < 1 we need only show that

Conw * Cnp <1
Cqp * Cyw
Cow * Cnp __ (ex — d,)(e, — dy) <1
Cop * Cywy (6,, - dq)(eN - dN)

if and only if

—de, — dyey < —dey — dye,
dy —dye, < (dy — d,)ey

e, < ey which is one of our assumptions. If p = N, then 7 is a term
of the (N — 1) x (N — 1) determinant. This completes the induction.

When we have established the following lemma we can immediately
conclude that lim,_.. Det (Q(n) — \I) = (—\)".

LEMMA 5.2. For a regular system (S,) each term (except the diagonal
term which is one) in the expansion of the determinant of (b;;/b;;) where
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b;; = | Pi(0) — A0, 0)| has absolute value less than one.

Proof. We delete the first column and row of (b;;/b;) and use
Lemma 5.1. Suppose 7 is any term of Det (b;;/b;;). Let 7 contain b,,/b,
from the 1st row and b,/b,, from the 1st column. Suppose p # 1, then
q + 1. Use Lemma 5.1 to see that

| 7| _b'l_ﬂ
beq
e
blﬂ . bql
b by

blp : bql — Ap(O, 0) — #i(0) . @é(O) — AY0, 0)
by + by A%(0,0) — 93(0)  i(0) — A0, 0)

if and only if

A0, 0)2(0) + A'(0, 0)pi(0) < A”(D, 0)pi(0) + A'(D, 0)Pi(0)
[A7(0, 0) — A'(0, 0)],(0) < [A*(0, 0) — A'(0, 0)]#3(0)
P4(0) < #1(0).

In case p =1 Lemma 5.1 yields our result immediately.

THEOREM 5.1. If (S,) is regular, then for any & > 0 there 1s an #
such that

MQn) <e for all n>n.
Let us consider systems with constant coefficients of the form

Ui+ A'U; = Fi(z, y)

S . | |
(S,) liauU’(x, max) = Hyx), 1 =1, -+, N.

\j=1
We suppose that the constants m,, -+, my, A', ---, A¥ are ordered so
that

Algmzémzé"'émuém1§A2§"'éAn-

We have shown that (S,) has at most one C**' solution on R, if M(0),
«++, M(n — 1) are nonsingular and F‘, H® are C"*' and X\Q(n)) < 1.
We will now investigate to what extent these conditions for uniqueness
are necessary.

In (S, suppose M(p) is singular for some integer » = 0. Let ¢ be
a nonzero vector such that M(p)e = 0. Then

Uiz, y) = (y — A'x)e,, 1=1,+-+, N

is a nontrivial polynomial solution of
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Ui + AU =0

Sw y
() > @ U, ma) =0 .

We express this in

~ THEOREM 5.2. If M(p) 1s singular for some integer p =0, theh
(Se) has a montrivial polynomial solution.

It is harder to show that the condition \(Q(n)) < 1 is needed. With-
out loss of generality we can suppose that a,, = ¢y, = +++ = ayy = 1, then
Lemma 5.2 shows us that

lim Det M(n) _q
e [21(0) — AY(0, 0)]" - - - [P(0) — A7(0, 0)]"

We define for all real numbers » = 0:

M(’r)il = a’il(mi - Al)r’ 7: = 1v cty N

M(Ir)ij = aij(Aj - mi)ry 1= ly M) Nyj =2, -, N.
Then

. Det I(r)
1 = +1.
TI—VIE |ml—A1|T...|mN_AN|7' +

Let
Q) =1,Qm)y; = —Q(n),;, 1 # 3§ .

Since Q(n);; > 0, @(n);; < 0,7 + j, if each principal minor of Q(n) is

positive, then each component of C)(n)’1 is nonnegative. Using this fact
we prove

LEMMA 5.3. If each principal minor of Q(n) 18 positive, then

MQ(n)) < 1.

Proof. We suppose MQ(n)) = 1 and deduce that @(n)™* has at least
one negative component. Let ¢ be a nonzero vector and |A| =1 and
Q(n)e = re. Then

N
Ml < 5 Qe
N
le:] "g.:aQ(n)iﬂeﬂ S —(M=1]e
N o
JZ:lQ(n)ulejl =—(x—-1Dle|=0.

Let
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fi= ﬁ Q) e

Since —f; = 0, if Q(n) had no negative components each component
of Q(n)(—f) would be nonnegative. But then Q(n)"'f = |e| < 0 implies
that e = 0. This is countrary to our assumption that e = 0.

We call a system (S,) uniform if each term (except the diagonal
which is one) in the expansion of Det (M(0)) is either negative or zero.
We have assumed that a,, = 1. Any (S, with N = 3 satisfying a, <
0,0, =0,0,=0,0, =0,a, =0, a;, =0 is uniform.

LEMMA 5.4. If (8)) is uniform and Det (M(n)) > 0, then each princi-
pal minor of Q(n) 1s positive.

Combining the last two lemmas we have

LEMMA 5.5.  If (8,) ts uniform and MQ(n)) = 1, then Det (M(n)) = 0.
Now Det (M(n)) is eventually positive and Det (M(r)) is a continuous
Sunction of r.

If Det (M(r)) = 0, then I(r)e = 0 for some ¢ # 0 and
Ullx,y) = (y — A'w)e,
Ulx,y) = (A’ — yye, 1 =2, -+, N
is a C™ solution of (S,). We have proved

THEOREM 5.3. If (S,) is unmiform and XN(Q(n)) = 1, then (S,) has a
nontrivial solutton which 1s C™.

We can give a more complete analysis of (S,) when N = 2:
Ui+ AU =0,1=1,2
(SOO) Ul(xy mlx) + Q,Uz(w, mlx) = 0
U'(x, myx) + Uz, myx) =0

where A' < m, < m, < A%
The eigenvalues of M(n) satisfy the equation

A —m, m, — A

M =|a|p" where p:m—Al T
1 - 2

Since (S, is regular, o < 1.

If we had allowed m, = A' or m, = A*> we would have had p = 0.
Let r be the real number such that |a|p” = 1. Suppose that » = 1.
As we know, if |a| <1, then (S,) has only the trivial solution. Let
[r] be the greatest integer less than or equal to ». Two cases arise.
First if @ > 0, then a - p” = +1. In this case
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Uz, y) = — (A" — my)"(y — A'z)

Uz, y) = (m, — AY)'(A%x — y)"
is a nontrivial CT golution of (S,). If r is an integer these functions
are polynomials. In this connection we notice that M(n) is singular

just in case 1 — ap” = 0 which can happen only if r is an integer and
a > 0. Now suppose a is negative, then ap"=— 1 and

log._y_.;filﬁ
Ul(xr y) = (A2 - mz)r(y — 141&?)7~ sin m; — Al T
log o
]ogﬁu
U2(x, y) = (mg - AI)T(AQQ? — y)T sin A — m, |\r
log 0

is a nontrivial C™ solution of (S,,).

6. Application to second order equations. We apply our results
to the 2nd order system (S,). Our method is however equally suited for
the nth order case.

The system

Ly — Zyy = Alm, Y)Z, + Bz, nZ, + C(z, y)Z + D(z, y)
(8)1ba(@) Z (2, P(x)) + bu(x)Z (2, Pi(®)) + bin(x)Z(z, pi(x)) = Hi(x), ¢ = 1,2
1Z(0,0) = ¢

is transformed into the equivalent system

U, —U,=12A+ B)U+12(—-A+ B)V+ CZ+ D
V.+ V,= —1/24 + B)U — 1/2(-A + B)V—-CZ - D
(b1 + b)) U@, @i(®)) + (b + b)) Vi(x, @i(%))
= — 2byZ(w, P(x)) + 2H(x) 1 =1,2
Z,=12(U+ V), Z,=1/2(U—- V)
Z0,0)=c

(8

by the substitution U=Z2, + Z, and V= —Z, + Z,.
If we iterate as follows:

u:— Ut =1/2(A + B)U* + 1/2(—A + B)V* + CZ* + D
Vet 4 Vit = —1/2(A 4+ B)U® — 1/2(—A + B)V: — CZ* — D
(b + b)) Uz, () + (—biy + b)) Voi(x, 9i())

= —2b,,Z°(x, Pi(%)) + 2H(x)
Z: = 1/2(U™ + V), Z;7 = 1/2(Us — Vet
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Z*0,0) =c¢

and let @y = bn + b12y Ay = "’bn + b127 My = bZl + bzzy Qgy = _b21 + bzzy A =
—1, A* = +1 we have using the same methods as in §3 .

LEMMA 6.1. If n is any mnonnegative integer and A, B, C, D,b,;,
H;, p; are C""' and NMQn)) <1 and NMQn + 1)) <1 and M(0), +--,
M — 1) are monsingular, then on some R, there is exactly one C**!
solution of (S,).

If we assume that —1 =< 9i(0) < ®](0) <1 and let

o = ""‘bu(o) + bu(o) b — bzl(o) + bzz(o)
bu(0) + b1,(0) —b,,(0) + 5,,(0)

r=1=200 1+ P40 Ngtice that 0 < r < 1]
1+ @10) 1—9x(0)

we have immediately

THEOREM 6.1. If n is a nonnegative integer and |ab|r" <1 and
abr®* =1 for k=0,---,n—1 and A, B,C, D,b;;,, H,, », are C"'', then
on some R, there is exactly one C"'' solution of (S,).

Since 0 < r < 1 there always is a nonnegative integer such that
lab| - r < 1.
It is interesting to notice that if

ab - r? =1 for some p = 1 which need not be an integer, then
Z@,y) =01 —m p(flf?‘f‘?/)wl_*_bl_i_7,,1‘21)(415-—-1/)1”I
(%, 9) = ( 2) e ( ) R

is a non-trivial solution of

Zo — Zyy =0
buZ(x, mx) + bpZ(x, mx) =0,v=1,2
Z0,0)=0.
This Z is a polynomial in case p is an integer.
We finish by applying our theorem to a problem solved by Goursat
[2]:
Ly — Liyy=AZ, + BZ,+ D
Z(x, mx) = H(x),1=1,2 where
H(0) = H)(0), =1 =m, <m, =1.

An equivalent problem is



224 ROBERT P. HOLTEN

Zzz_Zyy:AZx—{-BZy—}—CZ_,_D
Zz(x’ mzw) + miZy(w, mix) = Hi,(w), /i — 1, 2

We have in this case

Iab]= 1—’m1 . 1+m2

= 1.
1+m 1—m, "<

Consequently according to Theorem 6.1 this problem has exactly one C!
solution.

In [1] the authors treat a somewhat more general system the func-
tions of which satisfy certain Lipschitz conditions. They make in our
notation the hypotheses [ab| <1 and r < 1. In [8] Szmydt solves the
same problem with the hypothesis that some of the Lipschitz constants
are small. The result is essentially the same.
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