
THE DIMENSION OF INTERSECTIONS

OF CONVEX SETS

BRANKO GRUNBAUM

l The following problem was raised by V. Klee in a seminar on
convex sets :

How are the assumptions of Helly's [5] theorem on intersections of
convex sets to be modified in order to guarantee that the intersection
of all the members of a finite family of convex sets in En be of di-
mension at least k ?

In this note we shall prove the following variant of Helly's theorem :

THEOREM. Let k and n, 0 ^ k g n, be integers, and let h(n, k) be
the least integer rendering true the following statement:

For every finite family 3£~ of convex sets in En, containing at least
h(n, k) members, the intersection Π^Γ of all members of SΓ has di-
mension dim Π3ί^ at least k provided the intersection of every h(n, k)
members of 5ίf" is of dimension k at least.

Then
(i) h(n, 0) = n + 1
(ii) h(n, 1) = 2n
(iii) h(n, k) — 2n — k f or 1 < k < n
(iv) h(n, n) — n + 1 .

Proof. Essentially, only the assertion (iii) is new. The first state-
ment, h(n, 0) = n + 1, is Helly's well-known theorem [5]. The assertion
h(n, n) = n + 1 is a theorem due to Vincensini [14], generalized by the
following result of Klee [9] (which, in turn, follows easily from Helly's
theorem): If JίΓ is a finite family of convex sets (or an infinite family
of compact convex sets) in En and if C is a convex set such that for
every n + 1 members of ^Γ there exists a translate of C contained in
their intersection, then a suitable translate of C is contained in ΠSt~.

The statement h(n, 1) = 2n, or facts equivalent to it, have been
proved many times in a different terminology (Steinitz's [13] " irreduci-
ble all-sided families of rays", Dines-McCoy's [2] theorem on intersections
of half-spaces through the origin (see also [11]) Gustin's [4] variant
of Caratheodory's theorem Robinson's [12] theorem on intersections of
spherical convex sets). To derive (ii) from, e.g., the theorem of Dines-
McCoy (" A family of closed half-spaces in En, each containing the
origin in its boundary, has a common point different from 0 provided
this is true for every 2^-membered subfamily") we observe first that it
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is sufficient to prove the theorem for families of polyhedra. (In each
intersection of h(n, k) members of the given family we choose an arbi-
trary point each of the original sets is replaced by the convex hull of
the (finitely many) chosen points belonging to it. See [11] for a more
elaborate discussion of this procedure.) Next, assuming that the inter-
section of all the polyhedra Ke^Γ (nonempty by Helly's theorem)
consists of one point only (which we take as the origin 0), we may
assume (because of (iv)) that 0 belongs to the boundary of each Ke 3Γ.
Replacing 3ίΓ by the family 3(? of all closed half-spaces which contain
some Ke J>Γ and have 0 in their boundary, it follows from the theorem
of Dines-McCoy that the intersection of some 2n members of £ίf is
the single point 0 the intersection of the 2n or less members of 3Z~
contained respectively in these members of Sίf is then a fortiori re-
duced to 0.

Before proceeding to prove (iii), we shall establish a few auxiliary
results, which are also of some independent interest.

2. A subset of the n — 1 dimensional sphere Sn~λ = {x e En: || x|| = 1}
is called convex if and only if it is the intersection of closed hemi-
spheres. (In particular, a pair of antipodal points, or any " great Sk"
for k <Z n — 1, is a convex set). Sets " convex " in this sense have been
studied, e.g., by Favard [3] and Robinson [12]; in some connections other
definitions of spherically convex sets seem to be more appropriate (see,
e.g. Horn [7]).

LEMMA 1. If ^ is a finite family of convex subsets of Sn such
that the intersection of each n + 1 members of ctf has a nonempty
interior and such that Π^ Φ 0 , then Int ΐl^ Φ 0 .

Proof. Let Pe Wg7 and let H be the open hemisphere of Sn c En+1

centered at P. Project H centrally onto the En tangent to Sn at P.
Let C c En be the projection of Hf]C for Ce <g=\ Then the intersec-
tion of each n + 1 of the sets C has a nonempty interior and therefore,
by the theorem of Vincensini [14] mentioned before, Int Π C ' ΐ 0 . This
obviously implies the assertion of the lemma, Int Π^ Φ 0 .

LEMMA 2. If Ca Sn is convex, Int C Φ 0 and C Φ Sn, then C is
contractible (to any point in its interior).

Proof. If Po e Int C, each point P of C is at a spherical distance
< π from Po therefore the smaller arc of the great circle joining Po

and P is contained in C.

REMARK. In the terminology of Helly [6], each convex set CcSn,



THE DIMENSION OF INTERSECTIONS OF CONVEX SETS 199

with nonempty interior and different from Sn, is a " cell". In the
proof of the next lemma we shall use the following topological theorem
of Helly [6] (see [1] for a similar result): " If a family of cells is given
in En, such that the intersection of each n or less of them is a cell,
and the intersection of each n + 1 nonempty, then the intersection of
all the members of the family is nonempty."

LEMMA 3. Let c^ be a finite family of convex subsets of Sn, such
that the intersection of every n + 1 members of & has interior points,
but Πc^ = 0 . Then the intersection of some n + 2 members of c^ is
empty.

Proof. The lemma is trivially true for families consisting of n + 2
sets. Assume, by induction, that k ^ n + 2, that the lemma is proved
for all families consisting of k sets, and that <& = {Ci: 0 ^ i ^ k} sat-
isfies Πc^ — 0 . If the intersection of some n + 2 or less members of
^ is empty, there is nothing to be proved thus we may assume that
all such intersections are nonempty. Consider the fc-membered family
<gf0 = {C\ = C0U Ci: 1 ^ i ^ k}. Because of Lemmas 1 and 2 the family
<̂f0 satisfies the assumptions of the present lemma. Since Π^o= 0 ,
the intersection of some n + 2-membered subfamily of ^ 0 is empty
assume Π?ίi2 C\ — 0 . This is a contradiction to Helly's theorem on
intersections of cells: on applying a stereographic projection of Sn onto
En, with center at a point of Sn not in Co, the sets C , 1 ^ i ^ n + 2
yield a family of n + 2 cells in En which has an empty intersection
although the intersection of any n + 1 or less of them is, by Lemmas
1 and 2, a cell and nonempty.

REMARK. Lemma 3 is easily seen to yield the finite case of Theorem
4 of Karlin and Shapley [8] which, in turn, implies results of Vincensini
[14] and Molnar [10] for subsets of Sn convex in yet another sense.
(In [14] and [10] no precise definition of the term " convex " is given,
but the results are valid only if " convex " means that the set is the
intersection of open hemispheres.) The above proof of Lemma 3 is an
adaptation of the reasoning in Molnar [10]. It would be nice to have
an elementary proof (avoiding the use of Helly's topological theorem)
for Lemma 3 and the theorems on convex sets or systems of inequali-
ties related to it.

LEMMA 4. Let Sf be a finite family of convex polyhedra in En

and let 1 ^ k rg n. If every intersection of k members of 3ΐ~ is of
dimension n, but dim Π^>ίΓ — n — k, then there exist k + 1 members
of 3ίί such that their intersection is (n — k)-dimensional.
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Proof. Let En~k be the subspace of En generated by 77.3^ and let
E* be an orthogonal complement of En~* in En. Let & be the pro-
jection of En onto E* along En~h. As easily seen, the family .3Γ' =
{J5Γ' = ^ ( i f ) : iΓe J?"} has the following properties: (a) each K' is a
fc-dimensional polyhedron containing the origin 0 (b) the intersection of
every k sets K9 is of dimension k (c) /7.2Γ' is the single point 0. The
subfamily JfΓ" c 3fΓ* consisting of those members of JfΓ* which con-
tain 0 in their boundary, has the same properties. For each K" e 3T"
let d c S*-1 be the set of all points PeS76'1 for which the open half-
line through P with end-point 0 intersects K". Then the family 9^ =
{Ci} consists of convex sets, such that the intersection of every k of
them has interior points while Π&* — 0 . By Lemma 3, with n = k — 1,
it follows that there exist k + 1 sets C* with an empty intersection.
The intersection of the corresponding sets K" is then reduced to 0, and
that of the corresponding originate ts^if; is (n— rfc)-dimensional.

3 We now return to the proof of assertion (iii) of the Theorem.
We first prove h(n, n — 1) = n + 1 for n ^ 3. Since obviously h(n,
n — l)*£n + l, only the opposite inequality has to be proved. Let ,JΓ*
be a finite family of convex polyhedra in En, such that each n + 1 of
them have an intersection of dimension }> n — 1. If each such inter-
section has dimension n9 then dim Π.yΓ = n since h(n, n) = n + 1. In
the other case, let j % " c %5>Γ be a minimal subfamily of 3fΓ whose
members have an intersection of dimension less than n. The family
contains at most n + 1 members and thus dim Π^Γf = n — 1. By
Lemma 4, there exist Klf K2e 3?~f such that άimiK^Kt) — n — 1. (The
case that JίΓ* contains a member of dimension n — 1 is trivially reduci-
ble to fe(n — 1, n — 1) = w.) Let £'n~1 be the subspace of En spanned by
Kx Π K2, and let 3T* = {iΓ? = iΓ; Π ί'^1: K{ e ,^T}. If every n members
of 3f* have an (n — l)-dimensional intersection, we are through since
h(n — 1, n — 1) = n. Assuming the other case, let ^ t be a minimal
subfamily of JΓ** such that its members have an intersection of dimen-
sion less than n — 1. Let ^ " 0 be the subfamily of 3>f consisting of
those sets whose intersections with £Γn"1 constitute J3ΓO*. Then J^"o (and
w^o*) must contain exactly w members, since otherwise 3^* U {Klf K2}
would have at most n + 1 members, with an intersection of dimension
less than n — 1. If dim(/7^"0π£rw~1) = w — 2 a contradiction results :
by Lemma 4 it follows that the intersection of some two members of
3ίΓ* has dimension n — 2, while the minimality of ^Γ7 then implies
n = 2; but n ̂  3 was assumed. Thus dim (Πo n S"1"1) ^w — 3, and
again a contradiction results: The sets Kλ and K2, and hence the sets
Kx ΠΠSTo and K2f) Π^ΓQy are separated by En~\ and dim (^Π/Z^^o)
^ n — 1. Therefore ϋ?""1 has to intersect ΠSΓ0 in a set of dimension



THE DIMENSION OF INTERSECTIONS OF CONVEX SETS 201

n — 2 at least. Thus a contradiction is reached in this case, too, and
h(n, n — 1) = n + 1 is proved.

Next, we shall establish h{n, k) ^ 2n — k for 1 < k ^ n — 1, using
induction on n. In view of the above, we may assume n ^ k + 2.
Starting, without loss of generality, with a family J ^ of convex poly-
hedra of dimension n, each 2n — k of which have an intersection of
dimension ^ k, the assertion is again trivial if the intersection of every
2n — k members of ,JΓ is w-dimensional. Let therefore JfΓ* be a mini-
mal subfamily of whose members have an intersection of dimension
less than n. If . Γ' contains m members then, by Lemma 4, r = dim
Π,yf^r ^ n — m + 1 with r ^ k. Applying the inductive assumption to
the family .2T* = {#* = if n£7 r: Ke ,5T}, where # r is the subspace of
En spanned by Π.3Γ', the assertion dim Π.3Γ ^ k follows : if r > fc, then
h(r, k) ^ 2r — k and thus h{r, k) + m ^ 2(w — m + 1) — fc + m^2?ι — fc;
therefore the intersection of every h(r, k) members of . ^"* contains the
at least /b-dimensional intersection of some 2n — k members of ,3>Γ but
/7.5T -D ΠJίT*. On the other hand, if r = fc then fe(fc, fc) = fc + 1 and
h(k, k) + m ^ n + 2 ^ 2n — k; since /b g n — 2 was assumed, the result
follows in this case as well.

Thus h(n, k) ^ 2n — k is proved for all n > k > 1. The converse
inequality, and with it the theorem, may be established by easy ex-
amples.

REMARKS. It seems to be hard to extend the results of the present
note to infinite families ..SΓ". (Vincensini's assertion in [14] that h(n, n)
= n + 1 holds for infinite families is incorrect.)

Professor F. A. Valentine has found alternative proofs for some of
the results of the present paper, as well as related results.
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