CLOSED LINEAR OPERATORS AND ASSOCIATED
CONTINUOUS LINEAR OPERATORS

SEYMOUR GOLDBERG

Introduction. Suppose X and Y are normed linear spaces. Through-
out this paper, T shall be a closed linear operator with domain D(T')
dense in X and range R(T)C Y. For the sake of completeness, we
present the clagsification scheme devised in [7].

As regards R(T), there are the following three possibilities:

I. R(T)=Y,
II: R(T)+ Y but R(T) =7,
L &7 + Y.

If R(T) =Y, we say that T is in state I, written T € 1. Analogous
notation is used regarding II and III.
As regards T, there are the following there possibilities:
1: T exists and is continuous,
2: T-! exists but is not continuous,
3: T~ does not exist.
Here we say that T is in state 1, written 7€ 1, to indicate that T has
continuous inverse, with analogous usage concerning 2 and 3.

By combining the various possibilities from the two lists, we obtain
nine possible states for T, e.g., Te I, shall mean that R(T) =Y and
that T has no inverse.

This classification scheme may now be applied to the conjugate T’
of T. A corresponding “state diagram” was constructed in [3] which
exhibits the states which can occur for T together with 7.

The purpose of this paper is to give some insight into the reasons
why the state diagram for closed linear operators is the same as that
for continuous linear operators (cf. [3]). It is shown that given T
closed, there corresponds a continuous linear operator T such that T
and 7' are in the same states as T and 7", respectively.

In the sequel, we shall adopt the following convention: if E is
a linear space and /" is a set of linear functionals on FE, then (E,I)
is the set F with the weak topology induced by I" (cf. [2, p. 419]).
For any set K E, K" gshall denote the closure of K in (E, I).
The set " will be called total if f(x) =0 for all feI" implies x =0. If
I" is a total subspace, then (E, I') is a locally convex topological linear
space which is also Hausdorff.

DEFINITION. Let D(T’), denote the linear space D(T') with norm
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defined by [|¥' |l =1l¥' |l + | T’y ||. It was noted by Sz.-Nagy [5], that
D(T"), is a Banach space. Define T'; as the operator 7" mapping D(T'),
into X'.

Theorem 1 shows that, with the appropriate identifications, D(T"), is
not only complete, but is in fact a conjugate space. Moreover, the
corresponding operator T'; is the conjugate of a bounded linear operator.

The following lemma is due to I. Singer [6, Theorem 1].

LEMMA. Let E be a normed linear space, V a subspace of E' and
_Z the “canonical mapping” of E into V' defined by

[.Z @)y = v(x) for every ve V.

Denote by S, and S,. the closed unit spheres in E and V', respectively.
Then _7 8, is dense im S, with respect to the w* topology, (V', V).

THEOREM 1. Define J:Y— (D(T").) by (Jyy =y'y. Let _#:
D(T"), — (JY) be defined by (_7y)Jy = (Jy)y'. Then

(i) D(T"), is linearly isometric to (JY) under the map # and
Ny 1l = sup sy Y'Y

(ii) JT s a continuous linear map from mnormed linear space
D(T) into normed linear space JY. Moreover, T, = (JT)Y %

(iii) The states of T and T’ are the same as those of continuous
linear operators JT and (JT) respectively.

Proof of (i). For convenience, Let E denote D(T’), and let V
denote JY. Since |(Jy)y'| = |v'y| Z|¥' |l.lly]l for all ¥’ € E, it follows
that VC E’ and ||J]|| £1. Obviously V is a total subspace of E’ and
both _# and J are one-to-one. We now prove that the image of _#
is V'. By [4], the closed unit sphere S, in E is a compact subset of
(Y',Y), ie.,, Y with the w* topology. Since (¥, V) is E with the
relative topology inherited from (Y’, Y), S, is also a compact subset of
(E, V). Thus S, =S"”" since (E, V) is Hausdorff. It is easy to see
that _# is a homeomorphism from (E, V) onto .# E with respect to
the relative topology inherited from (V’, V). Hence by the lemma,

(*) Sg = 780" = 78¢"n sE=8, N_~7E.

Therefore, S, N.#E is compact and thus closed in Hausdorff space
(V', V). Suppose that .7 E + V’. Then there exists some v’ € V' such
that ||v'|| =1 and v' ¢ E, i.e., v i3 not a member of the convex set
S,, N _# E which we have shown closed in (V’, V). By [2, theorem V.
2.10], there exists a linear functional f which is continuous on (V’, V)
and a constant ¢ such that

Rf(v') > ¢ =z Rf(S,, N .7 E).
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Thus

(**) ¢ =z sup | f(z")],
2ESy N _gB

for if ue S, N _ZE, and f(u) = |f(u)] e®, then e®ucS,.N.#E. Hence
¢ = Rf(e ®u) = | f(u)|. Since f is continuous on (V’, V), it follows from
[2, Theorem V. 3.9] that there exists some ve V such that f(z') = 2'(v)
for all z’e V'. Consequently, by (*) and (**) we infer that
|v'v| = Rv'(v) = Rf(v') > ¢ = sup | f(z')| = sup | f(_7@)| = sup |v(x)| = [|v]] ,

€Sy /N £E zE€ES 2€ES gy
where ||v]|| is the norm of ve E’. Hence v'(v/||v]||) > 1. This, however,
is a contradiction since ||v'|| =1. We have therefore shown that _#

must map E onto V’. Now from (*), S, = _#'S,.. Therefore, given
any y' € K,

Nyl =172yl =Il2yI =¥
which shows that _# is an isometry and

Nyl =17y || =sup|(~y)Jy| =sup|yy].
1Tyli=1 11Jy] =1

REMARK. By examining closely [1, Theorem 19], one can conclude
that (i) is valid after obsgerving that S, is compact in (E, V) [4]. The
proof given above, however, is quite different from the proof given by
Dixmier, and indeed, may be used to prove Theorems 19 and 17" of
Dixmer.

Proof of (ii). JT is continuous from D(T') into E’ since
T2y | = |y Te| = |Tyx| = | T'Y x|l = 1 T LTy L 2]l
implies that ||JT|| < ||T:||. For « in D(T) and ¥ in E,

[(JTY(F ) = ( 7y NI Tx) = (JTz)y’
=y'Te = Ty'(x) = (Tir N7y .

Hence (JTY(7y) = T. 7 (7Yy) or (JT) =T, 7"

From the above result it is obvious that 7| and (J7T) are in the
same state. We assert that 7’ and T are in the same state and
therefore so are T and (JT). It suffices to show that 7'el if and
only if Tiel. If T'el, then T) has an inverse and R(T}) = R(T’) is
closed since 7" is closed. However, T is a continuous linear operator
on Banach space E. Therefore, as a consequence of the interior map-
ping principle, T, e1. Conversely, if T.c1, then 7" has an inverse and
R(T') is closed. By the closed graph theorem, it follows that T" e 1.
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It is easy to verify that T and JT are in the same “range state”.
Finally, to prove that T and JT are in the same state, it remains only
to show that T el if and only if JTel. By inspecting the state dia-
gram in [3], and recalling that 7’ and (JT) are in the same state, we
can conclude that Tel, T'e I and JT €1 are equivalent statements.

2. Let JY be the closure of JY in E’. JY is therefore a Banach

A\ __
space. Suppose X and Y are Banach spaces. Define JT: X — JY as
the continuous linear extension of J7. We now compare the states of

T and with those of J//\% and (J/E’)' respectively.

Clearly, (JT') = (JT). This implies, by the preceding results, that
T’ and (JT) are in the same state. An inspection of the state diagram
in [3] verifies the following assertions: ~

(a) Telif and only if T'€1 if and only if JT e L. ~

(b) TelIl if and only if T'/S II, or III, if and only if JT e II.

(¢) Telll if and only if JT e IIl.

/\
(d) Telif and only if T'eI if and only if JT € 1.
(e) If X is reflexive, then T €2 if and only if T € I, or II; if and

N\
only if JTe?2.

A\
(f) If X reflexive, then 7€ 3 if and only if JT 3.
We thus obtain the following

THEOREM 2. Suppose X and Y are complete. Then
(i) The states of T' and (JT) are the same.
(ii) T and JT are in the same “range state.”
(i) Tel if and only if JTel.
(iv) If X 1is reflexive, then the state d"ﬁ'ggmm SJor T and T'
A
18 the same as that for JT and (JT).
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