OPERATORS OF MEROMORPHIC TYPE WITH MULTIPLE
POLES OF THE RESOLVENT

JOHN DERR AND ANGUS E. TAYLOR

1. Introduction. Let X be a complex Banach space and let A be a
bounded linear operator on X such that the spectrum o(A4) is a denumerable
set of points with A = 0 as the only point of accumulation. Suppose,
also, that each nonzero point of ¢(A) is a pole of the resolvent R,(A).
Then we shall call A an operator of meromorphic type.

Let A\, Ny, -+« be an enumeration of the distinct nonzero points of ¢(4),
and let E, be the residue of R,(A) at »,. Then E?=F, E, +0,FE, + I,
and E,E, =0 if m #= n. Moreover, E, commutes with A. If the order
of the pole at A, is ¢,, then

(A—=2\)"E, =0, (A—\)""E,+0.

When ¢, > 1, the singular part of the Laurent expansion of R,(4) in
the neighborhood of A, is

E KON
K f— n n
@ 500 == w & =N
where
&) F,=A—-)\)E,.

In this case
3) Fintx0, Fir=0,
If ¢, =1, we have

E
= n=0.
(4) 5.0 = ——, F,=0

n

Observe that E.F, = F,E, = F,. For the relevant facts about the
coefficients in the Laurent expansion of R,(A) in the neighborhood of an
isolated singularity, see Taylor [5]. (Numbers in square brackets refer
to the works cited at the end of the paper.)

Throughout this paper we shall be concerned with series expansions of
operator-valued functions of \. All convergence questions are examined
from the point of view of the uniform topology in the space of bounded
linear operators on X. (We shall denote this space of operators by [X].)
Thus, if T, and T are elements of [X], T, » T means || T, — T|| — 0.
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86 JOHN DERR AND ANGUS E. TAYLOR

Because S,(\) is regular when |X\| > |A\,|, it has an expansion in
powers of 1/:n, convergent when |A| > |\,|. If p is a positive integer,
we denote by P”(\) the sum of the terms of degree =< p in 1/\ in this
expansion of S,(A). An explicit formula will be given presently.

It turns out that a sequence {p,} can be chosen in such a way that
the series

(5) 318,00 — Peo()]
converges when X\ is not in g(A4), and such that, moreover, the difference
© R\(4) = 3 [S.0) — PE(V)]

‘has removable singularities at the points A, A,, -+ and coincides in the
resolvent set 0(4) with a function given by a series

- Qn
@) =

which converges for every nonzero . Here Q,, Q,, +-- are bounded linear
operators. The sequence {p,} is not unique. It may be chosen along
with the imposition of rather strong conditions on the mode of convergence
of the series (5). In a paper by one of us (Taylor [6]) a study was made
of the situation when all the poles are of the first order and a uniform
convergence condition was imposed on (5). Subsequently, in a paper
delivered at the Jerusalem Symposium on Linear Spaces, in July 1960,
Taylor discussed the situation when an absolute and uniform convergence
condition is placed on the series

® 28, — Prw (-

Most of the results reported on by Taylor were for the case of simple
poles. The theory for the multiple-pole case was begun by Derr in his
doctoral dissertation [2]. Some contributions to the multiple-pole theory,
especially where the condition of absolute convergence is imposed, were
made by Taylor. In this paper we concentrate on the discussion of the
multiple-pole case.

In Taylor [7] the following theorem was proved. We repeat the
statement here for convenience.

THEOREM 1. If A is of meromorphic type and if the foregoing
notation is established, them there exists a sequence {p,} of positive
integers such that for each 8 > 0, if m 1s so large that |\,| < & when
k = m, then the series

(9) 2 118,00 = Pe()]|
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converges uniformly in the part of the plane for which || = 8. Moreover,
there exists a sequence {Q,} of elements of [X]| such that the series (7)

converges if N # 0, and for each N in P(A) the resolvent of A has the
exPANSION

oo

(10) RBy(4) = 3 8,00 = Peo(V] + S17Q,.

On the basis of this theorem we make the following definitions: A
sequence {p,} of the sort specified in Theorem 1 will be called an absolute
index sequence for A relative to {\,}. If {p,} is an absolute index sequence
such that p, has the same value p for every n, we shall say that A
admits the absolute index p. We do not need to add the phrase ‘‘relative
to {\,}’” in this case, because the terms in the series (9) are nonnegative;
on this account, if the series converges uniformly in the manner described,
it remains thus uniformly convergent after an arbitrary rearrangement
of the order of the terms. If A admits the absolute index p, but no
smaller absolute index, we say that A has minimal absolute index p.
The minimal absolute index depends only on A, not on any particular
order of listing of the poles of R,(4).

Now, it may happen that a sequence {p,} of positive integers has
the property that for each & > 0, if m is chosen so large that |\,| < 8
when k = m, then the series

(1) 318,00 — Pewou]

converges uniformly in the part of the plane for which |A| = 6. Observe
carefully the difference between (9) and (11). The series (9) is numerical,
whereas (11) is a series whose terms are members of [X]. With this
modified condition on the sequence {p,}, it will be true that the operator
function F'(\) defined by

(12) F() = 3 1,00 — Peo (]

is analytic on p(A), regular at » = o, and has a pole at each of the
points A, Ay, +-+, the singular part of the Laurent expansion in the
neighborhood of X, being S,(\). Therefore, under these conditions,
R,(A) — F(\) will have removable singularities at the points A, n, +--,
and will be regular at o. Accordingly, we shall have a representation
of the form (10), where the series involving the @Q,’s converges when
A+ 0.

A sequence {p,} for which we have uniform convergence as specified
in connection with the series (11) will be called a uniform index sequence
for A relative to {\,}. If p,=p for every n, we call p a uniform
index for A relative to {\,}. We can also define a minimal uniform
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index for A relative to {\,}, provided there exists at least one such
uniform index. It is to be emphasized that the notion of a uniform
index for A must be defined in relation to a specified way of enumerating
the poles of R,(A4). This is because there is no guarantee that uniform
convergence of the series (11) is preserved when the order of the term
is rearranged. In fact, an example is known (Berkson [1]) in which A
has the uniform index 1 relative to a certain enumeration {\,}, but the
series (11) can be rearranged in such a way as to be divergent at all
points of ©o(A).

In Theorem 10 (§ 5) we give a necessary and sufficient condition for
A to have minimal uniform index p relative to {\,}. The case p =1 is
handled in Theorem 5 (§ 3). The condition is stated entirely in terms
of \,, E,, and F,. A corresponding necessary and sufficient condition for
A to have minimal absolute index p is given in Theorem 13 (§ 6).

These results are of decisive importance for the theory of operators
of meromorphic type. With the criteria of Theorems 10 and 13 it is
much easier to test for uniform and absolute indices than would be possible
by direct reliance on the definitions. The construction of examples is
enormously facilitated.

Another important part of the paper is in § 4, where we discuss the
decomposition A = B + C for an operator 4 of meromorphic type and
minimal uniform index 1 relative to {\,}. In this decomposition, B is
of the same general character as A, with d(4) = a(B), and B is canonical
in a well-defined sense. Moreover, BC = CB = 0 and C is quasinilpotent.
This decomposition is established in Theorem 8, and its uniqueness is
described in Theorem 9.

2. Some preliminary results. In this section we assemble some
results and formulas for later use.

LEMMA 1. Suppose that E, F, € [X] and that
13) E*P=FE, EF=FE=F, E=+0.
Suppose that there is a positive integer q such that
(14) Fa1£0, Ft=0.

Then, if a # 0 and B = aE + F, the resolvent of B 1s

+ + e e rrr——
N —« (x—oz)2+ +(7x——a)"

(the terms involving F occurring only if q > 1). The spectrum of B
consists of 0 and « if E + I and of a alone if E =1,
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Proof. Let C denote the operator in the right member of formula
(15), where X\ is fixed, with X = 0, » # «. It is an easy matter to verify
that C(x — B) = (A — B)C = I, whence it follows that X\ € p(B) and
R,(B) = C when )\ is thus restricted. We leave the calculations to the
reader. Now, « is an eigenvalue of B. For, if ¢ > 1, choose « so that
y = F''¢ + 0; this is possible, by (14). Then Ey = y because EF = F}
hence By = (a«F + F)F*'x = ay, because F'* = 0. If ¢ =1, choose x so
that ¥y = Fx = 0. We can do this, because E = 0. Thzn, since FF'=0
in this case, By = aEy = ay. Hence it is certain that « € ¢(B), regardless
of the value of q.

If I— FE+0, and if y =2 — Ex #+ 0, we see that By = 0, because
B = BE. Hence 0cog(B) in this case. On the other hand, if =1, a
direct calculation shows that 0 — B has the inverse

I F Fo

cee
o e T T

so that 0€ o(B) in this case. This completes the proof of Lemma 1.
It now follows from general spectral theory that the spectral radius
of aF + F' is |«a|, and that R,(B) is given by the series

(16) R(B) = S (@E+ F)

=0 ch+1

when |A] > |a|. From (15) we then see that

E @ R E | & (aE + F)*
17 P _E (@E + F)*
{an ,\——a+§i(x-—a)’+1 L TR e

provided that |A| > |a].

The foregoing considerations can be applied to obtain a formula for
PP(\), which is, by definition, the sum of the terms of degree < p in
1/x in the expansion of S,(\) in powers of 1/». By comparing (1) and
(17) we see that

(18) Sun =L 4 5 Qalle I

if |N] > [N.|. Therefore

(19) Py = &

(20) Pygy= Lo 4 & Culh £ F)™

The formula (18) could also be obtained from (1) by direct use of binomial
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series. This was dore, in the first instance, by Derr in his thesis (Derr
[2]). The present method, using spectral theory, is rather elegant.

Now that we have the formula (18), it is easy to calculate the
formulas for the operator coefficients @, @,, <+ occurring in (10). For
this calculation it is sufficient to assume that {p,} is a uniform index
sequence for A relative to {\,}. (An absolute index sequence is also a
uniform index sequence of course.) From general spectral theory it is
known that

0 if j<0
1 § MR(A)dN = 1T if j=0
271 en -

47 it 7>0,

where the integration is taken counter clockwise over a large circle
enclosing ¢(A4). From (10), (18), and (20) we find that

(21) QOZO, QJZI)
and
(22) Qin=A4"— > \E,+ F,) if 7=1.

Pp=Jd

The series on the right in (22) is understood to mean

(23) S s, + F)
n=1
where ¢, ;=1 1if p, <j and ¢,; =0 if J < p,.
It is part of the conclusion that the series in (23) is convergent in
[X]. As a consequence, we have the following theorem:
THEOREM 2. If A admits the uniform index p, the series

(24) S B, + B

converges when p < j.
Concerning an absolute index sequence we have:

THEOREM 3. If {p.} is an absolute index sequence for A, the series
(25) S llew O, + Y|
converges for each j = 1.

Proof. We fix 7 and suppose & > 0,& > 0. Choose N so large that
INg] < 8 if k= N and also so large that
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-

(26) 1S, — Pro(V) ]| < e s

n

[

r

if N<r<sand|\|=23d. Since |\, | <8, S,(\) — P(\) can be calculated
from (18) and (20):

i) — w (B, + F)
S,(\) — Pw(\) = /27;‘,, ST

With integration in the counterclockwise sense over the circle on which
IN] =& we have

mm&+ﬂwLL§wmm—mwmm.
2w

Putting N = 8¢ and using (26), we see that

2z
0

s J+1 8 .
S e + FXI = 2278 115,00 — Pevelif do <c.

This proves Theorem 3.

COROLLARY. If A admits the absolute index p, the series
(27) S GE, + FY|
converges if j = p.

3. Generalization of a theorem of Berkson. In this section we
show how to construct an operator which has minimal uniform index 1.
The argument is modelled after the proof of a theorem due to E. R. Berkson
(see §1 of Berkson [1]). Our theorem allows for multiple poles of the
resolvent, whereas in Berkson’s work there are simple poles only. We
also discuss conditions for the operator to have minimal absolute index 1.

THEOREM 4. Let {{,} be a sequence of complex numbers with p, + 0
and ¢, — 0. (We do not assume that t, + tt, if m +n.) Let {P,} and
{R,} be sequences of elements in [X] satisfying the conditions

(28) P,+0,PP,=01 m#=mn,P.:=P,,
(29) PR,=RP,=R,, PR,=R,P,=01 m+mn,
(30) R,R, =01 m=+£mn.

Finally, let {r,} be a sequence of positive integers, and suppose that

(31) R»=0, R #0.
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Now suppose that

(32) B=5 (P, + R),

it teing supposed that the series converges in [X]. Then a(B) consists

of 0 and the distinct points among ph, ttsy +++. The resolvent of B 1is
given by

(33) BB =L+5[1nm- L],
where
P, .
Yy if r,=1
@) T.00=

rp—1
P, R .. R;

et ifr.>1.
A=t (= ) A = ) 4

If § >0 and if m s such that |y¢,| < 8 when m = m, the series

FIEES

converges uniformly when |\| = 8. (This implies, in particular, that
R,(B) has a pole at p,, so that B is of meromorphic type.)

Proof. We write
B,=3 (P + R) .
If \ is fixed, different from 0, z,, ---, ¢,, we define
=L .3 _ B
R0 =1+ S[10 - 3],

The first step is to prove that ¢(B,) is the set {0, £, +--, ¢,} and that
R,(\) is the resolvent of B,. Direct calculations [which we omit—they
are based on (28)—(80)] show that

RN (N —B)=M—B)RMN=1

if A is different from 0, ¢, ---, tt,. Much as in the proof of Lemma 1
in §2 we prove that p; is an eigenvalue of B, if 1<j5=<n. To see
that 0 is also an eigenvalue, let

P=I—-(P+---+P),
and observe that PP,,, = P,,, + 0, whence P+ 0. Choose y = Px so
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that ¥ # 0, and observe that B,y = 0. This concludes the first step in
the proof.

As the second step we apply a theorem of Newburgh [4]; since
BB, = B,B and B,— B, Newburgh’s theorem enables us to conclude
that ¢(B,) converges to g(B) in ths sense that the Hausdorff distance
between the sets ¢(B) and ¢(B,) approaches zero. In the present case
this means that

o(B) = U a(B) = {0, tt tt, -+} -

At the third step we obtain the formula (33) for the resolvent of B.
When \ e p(B) we have

RMMN—B)=RMNMM—-B ) — R,0M\)(B— B,)
=I-RMN > (P + R,

and a short calculation, using (28)—(30), yields

RMO =B =I-L 5 (4P +R).

k=n+1

If we multiply by R.(B) and transpose, we obtain

(36) R\(B) — B,(\) = — RA(B) Z (P + Ry) .

We now pass to the limit as n — . Because of the assumed convergence
of the series (32), we obtain the validity of (33) when \ e o(B).

The last step is the one concerning uniform convergence. Now,
[INIR,\(B)]| is bounded on any subset of o(B) in which the distance of A
from o(B) has a positive lower bound. Consequently, we see from (36)
that the convergence of R.(\) to Ri\(B) is uniform on any such subset
of p(B). This being established, suppose & > 0, and let m be such that
|p,] < 8 if m = m. Consider the operator

S (P R)

We can apply the results proved thus far to it. Its spectrum is the set
{0, tmy t+1s +++}, and its resolvent is the series

37) L s[nom-2].

Hence, when |\| = &8, the distance of A from the spectrum is positive,
and so the series (37) converges uniformly when |A| = 8. This completes
the proof of Theorem 4. (To justify the parenthetical remark at the
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end of the statement of the theorem it suffices to look at formulas (34)
and observe that, for fixed », the number of indices k& such that p, = g,
is finite, because of the fact that y, — 0.)

If we add to the assumptions in Theorem 4 the assumptlon that
U # U, if n#=m, it is evident from the conclusions of the theorem
that the residue of Ri\(B) at p, is P,. It then follows from the definition
in §1 that B is of minimal uniform index 1 relative to {.}.

At this point we can state a theorem giving an alternative criterion
for an operator A of meromorphic type to be of minimal uniform index 1
relative to a given enumeration of its poles.

THEOREM 5. Let A be an operator of meromorphic type, and let
the meanings of \,, E,, F, be as in. § 1. Then a necessary and sufficient
condition that A have minimal uniform index 1 relative to {\,} s that
the series >.7., (\E, + F,) converge in [X].

Proof. The necessity of the condition is stated in Theorem 2. The
sufficiency of the condition follows from Theorem 4, by taking ¢, = \,,
P,=E,R,=F,r,=14q, in Theorem 4. Then, the assertion about the
series (35) shows that the conditions for A to admit the uniform index 1
are satisfied.

We now consider the effect of strengthening the hypotheses of
Theorem 4.

THEOREM 6. To the assumptions of Theorem 4 we add the hypothesis
that the series

(38) S 1P, + B

is convergent. Then we can conclude that, if & > 0 and if m is chosen
so that || when k= m, the series

(39) 3 ‘ T,(\) —

converges uniformly when |\| = 8. Hence, in this case, if (, # [, when
n # m, the operator B defined by (32) has the mintmal absolute index 1.

Proof. From Lemma 1 we see that, When N\ is different from 0
and y,,

N — (P, + R) = I 4 [Tn(x) — in:l )

>

This leads to the identity
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Pn ]- I [rv [),,jl
Tn AN) = = _l,,, A) — —= ,LI),,, -1 n) .
) DY {x % () \ }(ﬂ FR)
Thus
[ P[ 1 1 H P,
40 "Tn \) — ‘_?l"‘ é YT 17 “‘Tn N) — % nd o 7T n | .
“0) [Ty \l m{m*u ) x‘l}””P‘R“

Now, as a consequence of the proven facts about the uniform convergence
of the series (35), we can assert that the factor

At * 7o 5]}

is bounded uniformly with respect to n and N\ if [N =06 and n is
sufficiently large. The asserted uniform convergence of (39) now follows
from (40) and the assumed convergence of (38).

Just as we got Theorem 5 from Theorem 4 and Theorem 2, so we
get the following theorem from Theorem 6 and the corollary of Theorem 3.

THEOREM 7. With A, \,, E,, F, as in §1, A has minimal absolute
index 1 if and only if the series .2 ||\ E, + F,|| converges.

~ With the assumptions of Theorem 6 it is not hard to see that B has
minimal absolute index 1, even if the points f,, £, +++ are not all distinct.
Since p, — 0, there is only a finite set of n’s for which x, = ¢, We
let A, = ¢, E, = the sum of the P,’s for which y, = \,, F; = the sum of
the corresponding R,’s. Then let ), be the first y, different from i,
and continue in the obvious way. It turns out that the pole at A, is of
order q,, where ¢, is the largest of the 7,’s corresponding to p,’s with
M, = N. Likewise for the pole at \,, and so on. Because of the con-
vergence of (38) we see that

B=3 (\ME, + F)
with
i} ”NILE’TL + Fn” < oo,

Theorem 6 now applies, with x,, F,, F',, q,, in place of p,, P,, R,, r,. (We
leave to the reader the verification that the required conditions on FE,
and F,, corresponding to (28)—(31), are satisfied.)

4. Operators of minimal uniform index 1. We return now to the
notations of §31 and 2. Suppose that A is of meromorphic type, with
minimal uniform index 1 relative to {\,}. By (10), (19), (21) and (22) we
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see that

(1) B4) =L + S [5.00 - £+]

+ 3[4 - S 0B+ Ry

7=1 )\,j+1 n=1

Let us define an operator B by the formula
(42) B=3 (\E, +F,).

We know from Theorem 4 that ¢(B) = d(4), that

En]

X ’

and that B is also an operator of meromorphic type with minimal uniform
index 1 relative {»,}. We also see, from Theorem 7, that if A has
minimal absolute index 1, the same is true of B.

When B is related to A by (42) under the circumstances here
described, and when it turns out that B = A, we shall say that A4 is
canonical relative to {\,}. The reader is reminded that £, is the residue
of R,(A) at », and that F, = (A — \,)E,.

Since F,E, = F,, it is clear from (42) that (B — \,)E, = F,. From
(43) we see that the residue of R,(B) at », is £,. Hence the B given
by (42) is canonical relative to {\,}, even if A is not. We may refer

to B as the canonical part of A relative to {\,}. This naturally prompts
us to investigate the nature of the operator A — B, which we denote by C.

(43) BB =L+ 5[50 -

TEEOREM 8. If A has minimal uniform index 1 relative to {\,},
and if B 1is the canonical rart of A relative to {\,}, the operator
C = A — B 1is quasinilpotent [o(C) = (0)], and BC = CB = 0.

Proof. From M, E, + F, = AE, we see that

B=7> AE, and BE, = AE,, .

n=1

Then (because AB = BA)
AB=S AE,, B*=S> ABE, = AB,
n=1 n=1

whence BC = CB = AB — B* = (0. It now follows easily by induction that
A" = B* 4+ C*. It also follows from (42) by induction that

oo

Bj:ZJ()"nEn"'—Fn)jy jzlvzy"

n=1
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On referring back to (41) and (43) we now see that

o Cj
(44) R\(4) = R\(B) + 3 — -

=1 ) It

The series here is convergent if A # 0. This implies that C is quasinil-
potent, i.e. that o(C) consists of 0 alone, or that |[|C”||* — 0. This
completes the proof.

The foregoing considerations raise the question as to whether the
decompsition A = B + C is unique, in the following sense. Is it conceivable
that we could write A = B, + C,, where C, is quasinilpotent, B,C, =
C,B, =0, and B, is an operator of meromorphic type which is of minimal
uniform index 1 and canonical, relative to some enumeration of the poles
of R\(B,), but such that B, is not the canonical part of A relative to
an enumeration of the poles of R,(A)? The answer to this question is
negative, as we now show.

THEOREM 9. Let B, be of meromorphic type, of minimal uniform
index 1 and canonical relative to an enumeration {{,} of the distinct
poles of R,(B,). Let P, be the restdue of R,(B) at t,, and let R, =
(B, — t)P,. Let C, be a quasinilpotent operator such that B,C, =
C,B,=0. Let A, =B, + C,. Then A, is of meromorphic type with
0(A,) = d(B,); A, has minimal uniform index 1 relative to {¢,}, and B,
is the canonical part of A, relative to {,}.

Proof. From B,C,=CB, =0 we deduce that A,B, = B! = B/A,.
From general spectral theory we know that g, is an eigenvalue of B,
so there exists x, for which Bz, = ¢,z, # 0. Then A,Bx, = Bz, =
B(y,x,) = p,Byx,, so that £, is also an eigenvalue of A,. Since the
spectrum is closed, it follows that a(B,) C g(4,). Next, we show that
o(B) C p(4,) and that

(45) Ri(4) = Ry(B) + > EL

n=1 Xn+l

if xep(B,). It will then follow that o(4,) = a(B,).
To begin with, if || > ||B,|| we know that

R(B) =3 Bi

n=0 \PT1

It is then an easy calculation to show that

(46) - a)[RB) + $ G =1

a1 Z\ P
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if || > ||B,||. Because o(B,) is a connected set, and the left member
of (46) is an analytic function on o(B,), it follows that (46) is valid for
each N in p(B;). The same argument applies with the order of the
factors reversed. Hence we conclude that o(B,) C p(4,) and that (45) holds.

From the form of (45) and the assumption on B, it follows that g,
is a pole of R,(A4,), the residue there being the same as the residue of
R\(B,)), namely P,. In fact, we can also see that when we calculate
the Laurent series for each of R,(4,) and R,(B,) in powers of N — f,,
we get the same terms for both in the case of negative powers of A — £,.
In particular, the coefficient of (A — £,)™* in one case is (4, — )P,
and in the other case it is (B, — ¢,)P, = R,. Therefore R, = (4, — 2,)P,.
It is now clear that A, is of minimal uniform index 1 relative to {«,}
and that B, is the canonical part of A,.

5. Operators of minimal uniform index p. Returning once more
to the notation of §1, let us assume that A is of meromorphic type and
that it has minimal uniform index p relative to {\,}. We are now
interested in the case when p > 1, By (10), (21) and (22) we sée that

@) Ry =L do o A2 S s, - PrO)
+3 Mlﬂ |4 = S ouE + R

This formula takes an especially simple form if

o

(48) A* =3 (WE, + F),

because
»E, + F, = AE,, \E, + F,) = A'E,
so that

Ar =3 A'E,
whence it follows that

A =S AE, ifj=

n=1

Y
S

and so (47) becomes, in this special case,

A A e ‘
T S (\) — PP .
S+ 4 S8 - PP

n=1

(49) mw:%+

When A is of minimal uniform index p relative to {\,}, and when
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(48) holds, we say that A is canonical of order p-relative to- {\,}. In

§ 7 we discuss an unsolved problem involving the concept of-a canonical

operator of order p, for-the .case.in which. A itself is-not canonical.
We now present a generalization of Theorem 5.

THEOREM 10. Let A be of meromorphic type, and let \,, E,, F, be
as in §1. Suppose that p is a positive integer, and suppose that the
series >, (\E, + F,)* 1is convergent -in [X]. Then -A admits- the
uniform index p relative to {\,}.- Hence (see Theorem 2), in order that
A have minimal -uniform index p-relative to {x,}, it is mneceseary
and sufficient that 7, (\E, + F)? converge in [X]| and that

< (B, + F,)" not converge in [X].

Proof. Our argument is valid if p = 1. Hence this theorem includes
Theorem 5; the proof is different from that of Theorem 5, however,
even when p = 1. The argument . hinges on two identities. Let
H,=\N,E, + F,. Then

(50) S,(\) — PY(\) = AN?R,(H,)H?
if 'A% 0 and X #= x,. The other identity is
(51) R\(H,)H: = R,(A)H} ;

it is valid if » e p(4). To prove (50) we may assume |A| > |X,|. When
(50) has been proved under this condition the general assertion about
the wvalidity of (50) follows by the principle of analytic continuation,
because the expressions on each side of the equality in (50) are analytic
in » except at 0 and \,. (We see by Lemma 1 in § 2 that o(H,) = {0, \,}.)
Now, from (18) and (20) we see that

e ch .
Sn(k) - P?(lp)(x) = = )\/k: lf I)\’} > l>"n] .

1

From the Neumann series for R,(H,) we see that

o j o ke
R EE = 25 e 5 A

VAL iy W :

Thus (50) is proved.
In proving (51), because of the principle of analytic continuation,
we may restrict ourselves to values of \ so large that [|A — )\, || < Ik = Ayl

With this restriction, noting that x — A4 = (A — ,) — (4 — \,), we can
write
(A =\
(62) R\(A) = Zé m .
PROPERTY OF

UNIV. OF AL~ '~ £ ~RARY
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Now from F, = (A — A)E,, H, =\,E, + F,, and E: = E,, we deduce
that H,F, = (A — \,)H,. It then follows readily that H.F't = (A — \,)*H?,
for all positive integers » and k. Since F* =0 if k = q,, it follows

from (52) that
o % HIFY
3 B = o S

On the other hand, we know from (15) that

I-F B F Fr
R,(H,) = 2 2 " ) —_—
W(H.) A +x—xn+(x—My+ +(N—MW

because H: E, = H?, we see from this and (53) that (51) holds.
We now turn to the proof of Theorem 10. We have to show that
the convergence of the series >.»., H? implies that the series

218,00 — PPV

converges uniformly when |\| = 8, provided merely that & > 0 and that
m is chosen in such a way that [\,| < 8 when k¥ = m. When § and m
are specified, there may perhaps be a finite set of \;’s for which |\;| = é.
We can diminish & slightly, if necessary, so as to have |\;| > & for all
these \'s and still have |N,| <8 if k= m. If we give the proof with
this modified 8, that is certainly sufficient. Choose a positive number «
so small that, if |x;] > 8, the closed circular disk of radius a and center
\; lies entirely outside the circle on which [A]| = 8, and so that any two
such disks do not touch or overlap. Let E(S, ) be the set of \’s such
that M = 6 and |N» — N =« if |N;| > 8. There is some constant M
such that ||V ?Ry(A4)|| £ M if v e E(5, «). Now, suppose that ¢ > 0. By
hypothesis we can choose an integer N so large that

k
>, H:,
if N<j=<k By (50) and (51) we can write

M

< €

S [S,00) — PO = x*Ry(A) 3 H?
n=j n=3
provided that e p(4). Therefore certainly
318,00 = Prvl| | < ¢
n=3

if N<j <k, provided that e E(8, «). In fact, however, (54) holds
whenever |A] = §; that is, it holds even if |A]| =8, || > 8, and
[N —\;] < . For, the function

3 18,00 = PO

(54)
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is holomorphic in » when |» —\;| = @, and its norm is less than ¢ when
v — \;| = a; therefore the norm is also less than ¢ when [N — \;| < a,
by the maximum modulus theorem, which is valid for analytic functions
with values in a complex Banach space (see Taylor [5], Theorem 4. 42-A,
or Hille-Phillips [3], p. 100). This completes the proof of Theorem 10.

In the next theorem we present information about the operator A*
under the assumption that A has minimal uniform index p.

THEOREM 11. Suppose that A 1is of meromorphic type and of
minimal uniform index p relative to {\,}, with p > 1. (We adopt the
notation of §1 as regards \,, E,, F,.) Define operators L, M by the
formulas

(55) L=3(E +Fy, M=A~L.
Let
E, ..
A) =
(57) Vn( ) En Gn + . + G'ln—l
A=A (v — A (v — Ny

Then L is an operator of meromorphic type with (L) consisting of
NN, veo aqud 0. The resolvent of L is

(59) rm =L+ S vo- L],

If § >0 and if m is such that |\2| < & when n = m, then the series

converges uniformly when |\| = 8. The operator M is quasinilpotent,
and LM = ML = 0. Finally, if all the points A2, A%, «++ are distinct,
A* has minimal uniform index 1 relative to (AL}, and L is the canonical
part of AP relative to {\I}.

Proof. By expanding (A, E, + F,)?, we see from (56) that G, can
be expressed in the form G, = F,J, = J,F,, where J,e€[X]. Itis then
easy to see that E,G,=G,E, =G, and G;* = 0. We shall show that
G £ 0if ¢, > I. In fact, from (56) we can write G, = P\~ F, + F2K,,
where K, c¢[X] and F,K, = K,F,. Thus G;*' = 0 would imply

Foolpv? I+ FK 1 =0.
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Since F'i" = 0 and pr2~! = 0, this would imply F,*~' = 0, contrary to fact.
We can now apply Theorem 4, taking ¢, =\, P, =E,, R, =G,, r, =q,.
From (55) and (56) we see that

L=3ME, +G);

therefore we obtain at once our assertions about o(L) and R\(L). The
convergence behavior of the series (58) insures that R,(L) has a pole at AZ.
- Now consider the operator M defined in (55). From (2) we see that
AE, =\, E, + F,, so we can write

ok

L =73 A*E,,

from which it follows that LA? = A°L = I*. Then LM = L(A* — L) =0,
and likewise ML = 0. It follows that A =L"+ M*,n=1,2,---. To
prove that M is quasinilpotent we shall show that the series

converges if X %= 0. Now, from (55) it follows readily that
L'= 3 (WE, +F)" if j=1.
‘Hence, what we wish to prove is that the series

"o AP — S(0LE, + F)”
(59) jz::l,« - n=1 .- - T

)\‘.14—1
is- convergent if N % 0. We know from (47) that the series

A* = 3 (B, + F)
= ?\,j“

o
>
k=p

converges, and from this we can deduce the convergence of the series in (59).
If X # 0, choose a circle of radius ¢ centered at 0, where 0 < ¢, e < |\ .
Then, integration around this circle in the counterclokwise sense yields

1 . L
1 f dt _ e if k=4p,j=12,---
2my (L — tP)EEtt

0 if k is not a multiple of p .
Therefore, if

Dk = Ak - i (x‘nEn—’_ 'F"n)lb ?
o n=1
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we have

j-

1 1 (i D, )dt: & Dy,
omi J n — t2 \i=p ¢ht? =1

the last series on the right being convergent. By comparison with (59),
we see that we have finished the proof that M is quasinilpotent.

It is clear from the situation that L is of minimal uniform index 1
and that L is canonical relative to {\?} when the points A\, A}, -«+ are
all distinct. The final assertion of Theorem 11 is then a consequence
of Theorem 9.

6. Operators of minimal absolute index p. Suppose that A is of
meromorphic type and of minimal absolute index p. We follow the
notation of §1. It is then certainly true that A admits the uniform
index p relative to {\,}, although p is not necessarily the minimal uniform
index. Let L, M, and G, be defined by (565) and (56). By the corollary
of Theorem 3 we know that the series

SN2 B, + Gull

is convergent. From the remarks at the end of §3 we see that L has
minimal absolute index 1, regardless of whether or not the point A?, A%, - -«
are all distinct. Under our present assumptions the operator M defined
in (65) is quasinilpotent, for the reasoning about this in the proof of
Theorem 11 is all applicable. It is obvious that L is of minimal uniform
index 1 and canonical relative to any enumeration of the distinct poles
of R\(L). It then follows as in Theorem 9 and its proof that ¢(A4%) = o(L)
and that

(60) Ri(A") = Ry(D) + 3 ){” if % e g(A) |

From (60) and the definitions in §1 we can then see that A? is of
meromorphic type and minimal absolute index 1. We state all this formally:

THEOREM 12. If A is of meromorphic type and minimal absolute
index p, A® is of meromorphic type and minimal absolute index 1.

The following theorem is analogous to Theorem 10.
THEOREM 13. Let A be of meromorphic type, and let the notation

of §1 be adopted. Then A admits the absolute index p if and only if
the series
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(61) 3 I0WE, + Bl

18 convergent. Hence, A has minimal absolute index p (a positive
integer) if and only if

g |\E, + F,)?|] < o and 2 NOWE, + F.)» = o .

Proof. In view of the corollary of Theorem 3, we have only to
prove that A admits the absolute index p when the series (61) is con-
vergent.

We begin by calling attention once more to (50) and (51), and to
the notation H, = \,E, + F,. We are supposing that

S E < e

Suppose & > 0, and let m be such that |\, <& if k= m. We assert
the existence of a positive number C that

(62) | B\(H)H|| = ClIH} ]

if I[N\ =8 and » = m. Once this is proved, the fact that
IS0 = ProV

converges uniformly when |x| = 8 will follow from (50) and (62), and
our proof will be accomplished. There is only a finite set of k’s for
which [\, | = 8. Choose ¢ > 0 so small that xep(A4) if 0 <N —N | = ¢
for these k’s. We know that ||R,(A)|l is bounded by some positive
constant C, when A\ is at a distance greater than or equal to ¢ from
0(A). Consider the situation if 0 < [» — \;| < eand [\, ]| = 6. We know
there is a function of A with values in [X], call it f,, such that f, is
analytic when | — )\, | < ¢ and

R\(4) = fi(v) + Si(V)

if 0<|v—N]=<e. Now H!E,=H:F,=0 if n»=*k. Therefore, in
view of the definition of S,(\) in section 1, R\(A)H. = f,(\)H?%, and we
see from (51) that ||R\(H,)H:|| = ||f.(\)H?|| will have a bound C, || H:.||
if v —2,] <e. If we choose C at least as large as C, and the largest
of the finite set of Cis, (62) will hold. This ends the proof.

7. An open problem. Suppose that A is of meromorphic type and
of minimal uniform index p relative to {\,}, where » > 1. Suppose
further that A is mot canonical of order p relative to {\,} (see §5). Is
there in this case some uniquely determined operator B which deserves
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to be called the canonical part of A relative to {\,}? For the case p=1
we know that this question has an affirmative answer. The details are
given in §4; the required B is given by (42). For the case p > 1, how-
ever, we have been unable to answer the question. We are even unable
to say with certainty what properties should characterize the required B.
We would certainly want B to have the same spectrum as A, and for each
M, we would want the Laurent expansion of R\(B) in powers of » — 2\,
to consist of S,(\) plus a series of nonnegative powers of » —,. We
would also require that

(63) B =3 (\E, + Fy .

The requirements thus far stated would be sufficient to imply that

B is of minimal uniform index p and canonical of order p relative to
{\.}, with

64 .R B —_— —_— LA —{"
(64 B =<5 A

+ 3 [S.) — PY(V]

when N e o(B). It is not clear, however that there is at most one B
fulfilling all these conditions. Nor is there, so far as we can see, any
method of proving the existence of a B with these properties.

One possible starting point might be to define

B,,, = é()\ukEk + Fk) .
It may be proved that a(B,) = {0, A, ++-, \,} and that

B, B
= + oo + N

RB(B) =1+ + 380 — PYOI]
But, if p>1, B, has no limit in the sense of convergence in [X]. It
18 true that

B — g E, + F)* .

What appears to be needed is some way of assigning a limit B to the
sequence {B,} is some generalized sense, and then proving that this limit
B is the unique operator with the required properties. In particular
cases it may (and does) happen that we can define B by Bx = lim,_.. B,
for each . But we have no general theory.

8. Examples. In this concluding section we show how to construct
an operator A with minimal uniform index 1 or 2 such that A either
admits no absolute index at all, or admits an arbitrarily prescribed
minimal absolute index (greater than or equal to the minimal uniform
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index, of course).

- We also show how to construct an operator A with arbltrarlly
preassigned minimal uniform index k.

In both examples we consider operators A acting in the space I*. If

x=(&, &, -+) and y = (%, 7, +++) are points of I' with y = Az, we
take the defining equations to be

ﬁizgaij‘gj! i:’_l’z’"

Thus A is represented by an infinite matrix. For operators acting in
[* the norm is

1Al = sup e

ExAMPLE 1

For our first example we take the matrix representation of A to
have the form

B,

where the only nonzero matrix entries are in the square blocks
B, C, B, C,, B,, s+ down the main diagonal. The block B, is to be a
two-by-two block

B, :
lLln Xﬂ ’

and the block C, is to have r, rows and columns, with the only nonzero
elements 1’s in the subdiagonal:

0 0

10-. 0
C.:| -

0 .10

We require 0 < r,, sup 7, =r < «, If r, =0 the block C, is to be
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nonexistent, and if r, =1, C, is to be a block with the single entry 0.
We assume {\,} is a sequence of distinet nonzero numbers such that
A, = 0; {¢t,} can be any bounded sequence.

It is not difficult to compute R,(4). Each point A, is a pole of the
second order and all other nonzero points are in p(A4). The block cor-
responding to B, in the matrix representing R,(4) is

1
X — N\, 0

L 1
(>\' - >\‘n)2 A — )“n

The block corresponding to C, is

.9 )
N
1 1 0
A2 N
0
1 1
AT N

The matrices representing E, and F,, respectively, have the blocks

1 0 0 0
0 1 n, 0

in place of B,, and all other entries are 0.
It is now easy to see that, if | < m,

S (B, + F,)
n=1

— sup [P+ o]

Consequently, A admits the uniform index 2 relative to {\,}. It admits
the uniform index 1 if and only if y, — 0.
We can also see that

HOWE, + F)P I = M7+ pIN ]
Therefore A admits the absolute index p if and only if
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S5 Il + ] < oo

From this discussion we see that we can arrange for A to have
any prescribed minimal absolute index (greater than or equal to the
minimal uniform index relative to {\,}). Or, we can also arrange for A
not to admit any absolute index at all. For instance, if 1, = [log(n + 1)]7,
and #, = n', the minimal uniform index is 1 and there is no absolute
index. If k> 1,\, =n®*Y° and g, =1, the minimal uniform index
is 2 and the minimal absolute index is k.

Let us return to the general case of this example. Suppose we
have the situation where the minimal uniform index is 2. The operator
A is not canonical, but we can express it in the form A = B + C, where
B satisfies (63) and (64) with p =2, and C is nilpotent (of order ),
with BC=CB=0. We can define B as the operator whose matrix
representation is like the matrix representation of A except that the

blocks C,, C,, --- have all been replaced by blocks of zeros. It can also
be seen that

Br=3 (\E, + F)e
for each x, so that

B=3 (\E, +F,),

with convergence in the strong (instead of the uniform) operator topology.

EXAMPLE 2

For this example we again use the matrix representation of A and
a scheme of blocks:

A,
A,
A,
The form of the block A4, is to be
x'27&—1 0
A,: .
#n 7\‘27L

We assume that {\,} is a sequence of distinet nonzero numbers such
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that A, > 0. For {«¢,} we take any bounded sequence. This time all
the poles are simple; the block corresponding to A, in the matrix
representation of R,(4) is

A — kJ2n-1

e 1
()" - >\’2n—'1) (>\/ - in) A= >“2n

The matrix representing F,,_, has just one nonzero block; it is in the
position occupied by A,, and it is

1 0
a, 0 ’
where
(65) o, = — Hn
>\‘2n—1 - >"2n

The matrix representing F,, is of the same type, but its sole nonzero
block is

0 0
—a, 11|°

From these facts we can readily see that A admits the absolute
index p if and only if

S Dt P (1 + ) < o0
and

S l? B, < oo

where 8, = max (1, |«,|). Equivalently, the condition is that each of
the following four series must converge:

66) 3 Dwal. Sl Shwallal, 3Dl
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In .investigating. the ‘question of a wuniform index for A relative to
{\.},-it is convenient to begin by calculating A?. The matrix representation
of A? has the same form as that of A, with the block A, replaced by

Agn— 0
#n ng_l _ MZ ng
)\‘211.—1 - >“2n

This block is the same as the sole nonzero block in the matrix represen-
tation of

>“2£L-1E2n—-1 + XzﬁEZn .

It s then- easy to see that the matrix representation of

2n

47 — S E,
k=1

is derived from the matrix representation of A? simply by putting blocks
of zeros in place of the first » blocks down the diagonal. From this it
may be proved that A admits the uniform index p relative to {\,} if
and only if

Ar= 3 \E,
“mw=1

and .that this occurs if and only if

(67) INh By + Aot || = 0
and

(68) (X1 B [ = 0
as-n —oo,

Condition (67) is equivalent to
max {Agu[” + iy — Ml @l N[} >0,
and condition (68) is equivalent to
Manes P (L 4+, [) > 0.
Since. we assumed at the outset that A, — 0, it is. now easy to see that
A admits the uniform index p relative to {\,} if and only if

(69) Dl 1] g gpgDPalllthl g
!)\'z'n—x»_"' )“2nl 'xﬂn—l - inJ
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If we take \, = n7!, it turns out that A admits the uniform index p
relative to {\,} if and only if p,n*”—0, and A admits the absolute
index p if and only if

Lol

1 pP?

In particular, since {¢,} is bounded, A certainly admits the uniform
index 3 and the absolute index 4, but these indices are not necessarily
minimal.

If we take ), = "% (with £ a positive integer) a simple calculation
with the binomial series shows that each of the expressions

B »
| Ny —1| and | o |
|)\’2n—l - >\42m ’ ’>‘42n-—1 - /\zn|

is asymptotically equivalent to

k)

Consequently, A admits the uniform index p relative to {\,} if and only if
n(k'H—p‘,/KJ /lw — 0 .

With p, = n~%*, we can sze that A has minimal uniform index k relative
to {\,}. These same choices of A, and f, give A the minimal absolute
index 2k.
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