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1. Among a number of interesting results in a paper of I. Fary
(see [2]) appears the following. Let C be a rectifiable closed curve of
length L(C) and total curvature κ(C) enclosed by a sphere S of radius
r in Euclidean 3-space. Then

<1) L(C) rg ± rκ(C) .
π

The proof of (1) rests upon the corresponding inequality for plane closed
curves, which states that if C is enclosed by a circle of radius r, then

The latter inequality gives a sharp result, with equality obtained in case
C is a circle of radius r.

In this paper we sharpen (1) to the following result. Let C be a
rectifiable closed curve enclosed by a k — 1 dimensional sphere S of
radius r in Euclidean A -space, k ^ 2. Then

( 3 ) L(C) ^ r/c(C) .

The proof of (3) again depends on the plane case and is motivated by
the following construction. We form the cone T over the curve C with
apex at the center of S, slit along a longest generator and develop the
result in a plane. The resulting plane arc C" is completed to a closed
plane curve C" by attaching an arc of a circle. It is noted that the
curvature of C is equal pointwise to the geodesic curvature of C with
respect to T, which in turn is not greater, pointwise, than the curva-
ture of C. The length of C" is the same as that of C. The inequality
(2) applied to C" now gives (3).

2. In this section we prove some lemmas which lead directly to
the main theorem.

LEMMA 1. Let C be a rectifiable plane arc of length L. For any
line G, let n(p, θ) be the number of intersections of G with C, where
{p, θ), p ^ 0, 0 ^ θ < 2π, are the normal coordinates of G. Then

(4) L = h\2Vn(p,θ) dpdθ .
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This striking formula of Crofton is proved by Blaschke, [1], page 46.

LEMMA 2. Let C be a closed plane curve parametrized by arc
length s. Let r = r(s), 0 ^ s ^ L, be the tracing vector of, C, and
assume r" exists and is continuous except at a finite number of points
^(Si), , r(sm)9 where there are corners with "exterior" angles oclf , am

respectively. Given any direction θ, 0 ^ θ < 2π, let n{θ) be the number
of tangents to C orthogonal to that direction, where a tangent to C at
r(8i), i = 1, 2, •••, m, means a line through the point but not crossing
C at that point. Then

( 5 ) i\**n(θ) dθ=\\ r"(s) \ ds + I X = total curvature of C ,
Jo J %=i

where the integral on the right is extended over the smooth part of C

Proof. We may write n(θ) = ΣΓ=o %(#), where no(θ) counts the
number of tangents to the smooth part of C and n^θ), i Φ 0, counts
the number of tangents at rfe). Clearly nt takes only the values 0 or
1, for i Φ 0, and

(6)

Finally, we have that

(7)

since the left hand side is just the measure of the spherical image
(counting multiplicity) of the smooth part of C.

LEMMA 3. Let x0, xu •• , δ Λ , be the successive vertices of a plane
polygon P enclosed by a circle S of radius r0. Suppose further that
the " initial " and " end " points, xQ and xn respectively, lie on S. Let
ai9 0 ^ a{ ^ π, be the angle between xi+1 — xt and xt — x^u i = 1, f

n — 1. If XOΦ xn, let a0, 0 ^ a0 ^ π, be the angle between xx — x0 and
the unit tangent vector to S (with counterclockwise orientation) at x0τ

and let an, 0 ^ an g π, be the angle between xn — xn-x and the unit
tangent vector to S (with counterclockwise orientation) at xn. If x0 = xn,
then simply let ao(= an), 0 ^ a0 ^ π, be the angle between xλ — x0 and
So — Xn-i Let L(P) be the length of P.

Then if x0 Φ xn, we have that

(8) UP) ^ n Σ ^ .
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// x0 = xn, we have

(8')
i = 0

(This lemma is a special case of Fary's theorem for the plane. See
[2], page 121. The proof we give here is essentially that of Fary.)

Proof, We consider first the case where x0 Φ xn. Let S be the arc
of S traversed in a counterclockwise direction in going along S from
xn to 20. Let C — P U S. Let δ be the angle subtended at the center
of S by S. Then Lemma 1 gives,

(9 ) L(P) + ro8 = L(C) = i Γ T W , θ) dVdθ

Jo Jo

It is easy to see, however, that n(p, θ) ̂  n{θ) for 0 g θ < 2τr. Hence,
by (9) and (5), we have

(10) L(P) + roδ g irΓn(θ) dθ = ro(± a, + δ ) .
Jo \i=o /

This gives the assertion for x0 Φ xn. The case x0 = xn is now clear.

LEMMA 4. Let P be a closed polygon enclosed by a k — 1 dimen-
sional sphere S of radius r in Euclidean k-space. Let y0, ylf , yn=Voy
be the successive vertices of P. Let βif 0 ^ β{ ^ π9 be the angle between
2/ίi-i — Vi and y{ — y^19 i = 0, 1, , n — 1, where y^ is defined to be
yn-λ. Defi,ne the total curvature, tc(P), of P, by

(11) κ(P) = £ f t , (See Milnor, [3], p. 249.)
t=0

Lei L(P) 6β ίfee length of P. Then

(12) L(P) :S r Λ ( P ) .

Proof. Let 3 be the center of S. Assume that the vertices of P
are labeled so that y0 is no closer to o than any other vertex. Let β'i9
0 ^ β ^ π, be the angle between ^ — o and ̂ < — yi+1 let /5 ', 0 ^β'/ tί π,
be the angle between y{ — o and yi — y^, i = 0,1, , n — 1. The
triangle inequality applied to a spherical triangle cut out of a sphere
centered at y{ shows that

β't + β'/^π- βi9 and (π - β[) + (TΓ - # ' ) ̂  π - βζ .

Hence,

(13) | π - G 8 5 + # ' ) | ^ & , i = 0,l, . . . , w - l .
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We now form the cone over P with apex at o, cut along the edge
connecting 3 to yQ and develop the result in a plane as follows. Let p
be a fixed point in the plane R\ We map y0 into any point x0 e R2

satisfying | xQ — p | = | y0 — o | — r0. We next map yx into a point xx e R2

satisfying | xx — p | = | yx — o \ = ru and such that the angle Slf from
xQ — p to xλ — p, measured in a counterclockwise direction, is equal to
the angle 819 0 ^ Sλ <* π, between y0 — o and & — o. In general we
map y{ into 5̂  e R2 so that | 3̂  — p \ — | y{ — o | = r{ and the angle δ̂
from x^ — p to Xi — p, measured counterclockwise, is equal to the angle
δ^ 0 ^ S{ ^ π, between ^i_! — o and ^^ — o. This construction gives us
a polygon P in i?2. Construct the circle Sr of radius r0 centered at p.
Then P is enclosed by S', and x0 and δw (in general x0 ^ xrί) are o n S ' .
It is easily seen that the angle ait 0 ^ a{ ^ π, between xf — ^_!
and 3 ί + 1 — xi9 is | π — (/3 + /3 ') | , i = 1, 2, , w — 1. It is also seen
that the angles α0 and an described in Lemma 3 are equal to (π/2) —
β'o > 0 and (π/2) — /8" > 0 respectively if x0 Φ xn and are both equal to
π-(β'0 + β'Q') > 0 if xQ = xn. Hence if xQ Φ xn,

(14) ±a, = ^ - β'Q + Σ 17Γ - (β\ + /9-) | + ^ - / 9 -
ι = 0 2 i=-l 2

and if x0 = xn,

(14') Σ α i = Σ I π ~~ (β't + β'ΐ) I

Therefore, by (8), (8'), (14), and (14'),

L(P) = L(P) g r 0 Σ | JΓ - W + /3Γ) I S r0Σ)S< = M P ) g rκ(P) .

3. THEOREM 1. Let C be a rectifiable closed curve enclosed by a
k — 1 dimensional sphere S of radius r in Euclidean k-spacef k Ξ> 2.
Let L(C) be the length of C and tc(C) be the total curvature of C.
(κ(C) = l.u.b. ιc(P), where P runs over all polygons inscribed in C.
See Milnor, [3].) Then

L(C) g rκ(C) .

Proof. Given any ε > 0, there is a polygon P inscribed in C such
that L(C) - L{P) ^ ε. We have that tc(P) S ιc{C). Hence

L(C) - ε g L(P) ^ rtc(P) ^ rtc(C) .

The theorem follows.
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COROLLARY. Let C be a closed curve of class C" enclosed by a
unit k — 1 dimensional sphere in Euclidean k-space. Let κ(s) — | r"(s) | =
curvature of C at r(s), 0 ^ s ^ L(C). Then

(15) max fc ̂  1 .

Proo/.

S Z(ί7)

φ)ds ^ max Λ: L ( C ) .
0

Note that we have used the fact that the above integral form for
the total curvature coincides with the previous definition. This is proved
by Milnor in [3].

REFERENCES

1. W. Blaschke, Vorlesungen ύber Integralgeometrίe, Chelsea, 1949.
2. I. Fary, Sur certaίnes inegalites geometriques, Acta Sci. Math., Szeged, 12 (1950),
117-124.
3. J. W. Milnor, On the total curvature of knots, Ann. of Math., 52 (1950), 248-257.






