INSTABILITY AND ASYMPTOTICITY
IN TOPOLOGICAL DYNAMICS

JoHN D. Baum

It is the purpose of this paper to sharpen some results obtained by
the author [1] and to extend to more general groups results obtained by
Schwartzman [4, 10,36] and Bryant [3]. The original source from which
many of these notions spring is Utz [8]. The principal result of the
paper is this: If X is a compact Hausdorff space, T a generative group,
(X, T, 7) an unstable (i.e. expansive) transformation group, and P a
replete semigroup in 7, then there exists a replete semigroup @ in P
and a pair of distinet points of X which are Q-asymptotic. In one sense
this is the best result that can be hoped for, since under the above
hypotheses it is not necessarily the case that there exist a pair of distinet
points of X which are P-asymptotic. A study of the symbolic transfor-
mation group over the lattice points of the plane [1, § 3] shows that there
does not exist a pair of distinct points of the space N which are asymptotic
relative to the replete semigroup P = {(x, ¥) |z, y integers, x > y} or to
any of its translates, pp, pe p.

The pertinent definitions for what follows are contained in either
[4] or [1]. In §1 we prove some general results about instability and
asymptoticity; in §2 we prove the principal result mentioned above.
Throughout the paper we assume that X is a Hausdorff space, and more
often than not, compact. We feel free to use the fact that X is a uniform
space, if it is compact; and we assume tacitly that the (Hausdorff) topology
of X is the one induced by the uniformity.

1. Theorems on instability and asymptoticity.

1.01 THEOREM [Inheritance of instability]l. Let X be a compact
space, (X, T,w) a transformation group. Let S be a left syndetic
subgroup of T, then (X, T, 7) is unstable if and only if (X, S, w) is
unstable.

Proof. Let (X, T, ) be unstable. There is a compact set K< T
such that 7= SK. Let & be the index of instability of (X, T, w), then
there is an index 8 of X such that (x,y)€ & (the complement of 3§),
ke K- implies (zk*, yk*)e 8 forall ke K [4, 1.21]. Now let 2, ye X,
then there exists te T such that (wt, yt) € &’; further ¢t = sk for some
se Sand ke K, whence (xsk, ysk)c & and (ws, ys) = (wskk™, yskk")e 8.
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Thus (X, S, ) is unstable with instability index 3.

Conversely let (X, S, ) be unstable with instability index «a. Let
x, y € X, then there exists se€ S < T such that (xs, ys)e &, i.e. (X, T, x)
is unstable with instability index «.

1.02 LEMMA. Let S be a closed syndetic subgroup of T, an abelian
topological group, and let P be a replete semigroup in T. Then there
exists a compact subset K of T and an element re P such that

(1) T=SK=SK",
@ KcP,
B (PNnS)K>rP.

Proof. Since S is syndetic, there exists a compact set K, T such
that 7 = SK,. Since P is replete, so also is P~ and there exists te T
such that tK, c P~*. Further there exists » € T such that r{tK, U ¢} C P.
Let K= r{tK, U e}, then it is clear that K P, r¢ P, and T = SK =
SK™* = SK™.

Let pe P, then since T = PP [4, 6.04] there exist ¢,, ¢,€ P such
that p = ¢,¢,”*. Further since S is syndetic ¢,¢.t7*K,™* N S # ¢, and we
may select k= € K, such that q,q,t 'k~ S. We remark that since tke P,
t7k e P, thus q,9.t k'€ P. Now rp = rq,q.,”* = rtk(g,q,;t7* k™) and rtke K
and q¢t7'%k*e PN S. Thus rPC (PN S)K.

1.03. THEOREM [Inheritance of Asymptoticity]. Let X be a compact
space, T an abelian topological group, S a closed syndetic subgroup of
T and (X, T, ©) a transformation group, then

I. If A is a closed imvariant set in X, x],A if and only if

%] pnsA.
0. 21,y if and only if 2T,0sY.

Proof. 1. Suppose x{,A. Let U be a neighborhood of A, then
there is a ge P such that xgP < U. Select K according to Lemma 1.02,
then there isan se€ Sand a k€ K C Psuch that ¢ = sk™, i.e. s = qgke P,
whence sP = qkP c qP, and zsP < xqP c U. Thus thereisanse PN S
such that xs(P N S) C asP C U and «15.54.

Conversely, let #]p0sA. Let U be a neighborhood of 4 and let K
and 7 be selected according to Lemma 1.02. Then since A is invariant
AK = A, and since A is compact, there is a neighborhood V of A such
that VK c U. Let qePN S such that 2PN S)c V, let t =
gre PP C P, then xtP = xqrP C xq(P N S)K Cc VK < U. Thus z],A.

II. Let 21,y, Let a be an index of X, then there exists ge P
such that (xqp, yqv) € @ for all pe P. Select K according to Lemma 1.02,
then q = sk, where se S and ke K, whence s=qke PN S. Since
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kP c P, it follows that (xqkp, ygkp) € a for all pe P. Thus there is an
se PN S such that (xsp, ysp)e« for all pe PN S P, and 2] ,n4Y.
Conversely, let 2],.s4. Let o be an index of X and select K and
r according to Lemma 1.02. Let B be an index of X such that xe X
and ke K implies 28k c xka. Let qe PN S such that ygsexzqsB for
allse PN S. Let t=qre PPCPand let pe P. Then since (PNS)KD7P,
rp = sk, where se PN Sand ke K. Then yitp = yqrp = yqsk € xqsBk
xqska = xqrpa = xtpa and (xtp, ytp) € @ for each pe P, whence z],y.

1.04 LEMMA. Let X be compact and let (X, T, w) be unstable, then
the set of fixed points of (X, T, ) is finite.

Proof. Suppose the set of fixed points is infinite. Let y be a limit
point of the set of fixed points, then clearly ¥ is also a fixed point. Let
& be the index of instability of (X, T, @), then there exists a fixed point
2 # y such that (z, y)e€ d; and since z and ¥y are both fixed («t, yt) =
(%, y)ed for all te T. This contradicts the instability of (X, T, 7).

1.05. LEMMA. Let X be compact, and let (X, T, ) be unstable,
then the set of points with period P 1is finite.

Proof. Let « be a point with period P, i.e. xP = «x and P is syndetic.
We remark that P is a subgroup of 7. Consider (X, P, ), then by 1.01
(X, P, ) is unstable and by 1.04 the set of fixed points of (X, P, @) is
finite. However, the set of fixed points of (X, P, w) contains the set of
points of period P of (X, T, n).

1.06. COROLLARY. Let X be compact, let T have at most countably
many syndetic subgroups, and let (X, T, 7) be unstable, then the set of
periodic points 1s at most countable.

1.07. THEOREM. Let X be compact and dense-in-itself, and let
(X, T, ) be unstable. Let T have at most countably many syndetic
subgroups, then
(1) T is not pointwise periodic and
(2) T s mot almost periodic.

Proof. (1) Follows from Lemma 1.05. (2) Follows from [4, 4.3
and 4.38].

1.08. REMARK. Let (X, T, ) be a transformation group, P a replete
semigroup in T, and let & = {(x, y)| 2|5y}, then
(1) &7 is a relation in X x X,
(2) <7 is symmetric and nonreflexive,
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(8) if T is abelian &7 is transitive.
2. The relation of instability and asymptoticity.

2.01. REMARK. Throughout what follows we make frequent use of
the fact that if T is abelian and P is a replete semigroup in 7, then

T = PP [4, 6.04]. We feel free to use this fact without further
explicit mention.

2.02. LEMMA. Let P be a replete semigroup in T, abelian. Let
X be uniform, (X, T, ) be a transformation group and let x + y, then
the following statements are pairwise equivalent:

(1) «1py

(2) For all pe P, 1,y

(83) There is a pe P such that x1,py

(4) There is a te T such that xt]pyt

(5) For all te T, xt],yt.

Proof. The following implications are clear: (1)—(2)—(3)—(1)—(4)
and (5)—>(1). We prove (4)—>(5). Let se T, then t = pg¢~* and s = ru™"
where p,q,r,u€ P. Let a be an index of X, then there exists ve P
such that (xtvw, ytvw)e a for all we P. Then (xtvwrg, ytvwrq) € a for
all we P, since wrq e P. But tvwrq = pg™ vwrquu™ = (ru™) (pru)w =
s(pvu)w, Let pvu = v,€ P, then (zsv,w, ysv,w) € @ for all we P, whence
xs | pyYs.

2.03. LEMMA. Let X be compact, let T be a generative separable
group, and let (X, T,7) be unstable. Let v be the instability index
of X, and let N(4) be a mneighborhood of 4, the diagonal of X x X, such
that the closure of N(4) < v. Then if there exists pe P, a replete
semigroup in T, such that (xpq, ypq) <€ N(4) for all qe P, then x1y,
provided that x =+ y.

Proof. Use 2.02 and [1, 2.16]

2.04. REMARK. If T is generative, T=C x R" x I*, m =0, n =0,
where C is a compact abelian group, R is the reals, and I the integers
|9, pg. 110]. Let e be the identity of C, then S=¢ x R™ x I" is a
syndetic invariant subgroup of T. Since asymptoticity is inherited from
S to T and vice versa [cf. 1.03] we may assume that T has the structure
R™ x I™; however, in order to shorten proofs we shall agsume that 7' =

R*, > 0. Minor modifications will adapt the proofs to the cases T =
R™ x I* and T = I".
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2.05. Standing Notation. T = R*, n > 0. We use additive vector
notation and assume an inner product a-b and a norm |a| have been
defined in T such that |a| = (a-a)"* and that the norm is consistent with
the topology of 7. 0 denotes the null vector in T, and Greek letters,
«, B, --- denote scalars.

2.06. DEFINITION. Let p* be a unit vector in 7, let 0 < @ < 1, then
C,={pl(pp*/lp]) =1 —a} is called a solid cone with vertex at the

origin and axis p*. Let C = C, + p, where pe C,, then C is called a
solid cone.

2.07. REMARK. A solid cone is a convex set and is a replete semi-
group. Furthermore any replete semigroup Pin T = R” contains a solid
cone. The notion of solid cone is intimately related to the notion of a

wedge [5, 3.4]; in fact in view of [5, 8.5 and 3.6] every solid cone contains
a wedge and conversely.

2.08. LEMMA. Let A be a closed invariant set in X, a compact
space, let {V,|n=1,2, -++} be a sequence of open sets and let U be an
open set such that AcC V,cCc V,, < U for n>1 and such that
N, V.= A. Let N;={t|te T,vt¢ U for some v, V;} be nonvacuous
and let n; = inf.ey, [t], then lim; .. n; = o and in fact monotonically.

Proof. Let S(n;) = {t||t] < n;}, then te S(n;) implies v;t€ U for all
v;,€ V;. Now S(n;) D S(n,_,), since V,c V,_,, hence te S(n;_,) implies
vite U for each v;€ V, since V; C V,,. Thus t¢ N, and infey, [t] = 7,
and the sequence {n;} is monotonically increasing.

Suppose n; — o is false, then there exists and » > 0 such that
n, < m for all . Let S(n) = {t||t| <n}, then AS(n) = A, thus there is
a neighborhood W of A such that WS(n) € U, and there is an ¢ such
that V; c W, whence V;S(n) € WS(n) < U. Thus te S(n) implies v;te U
for all v;e V;, whence ¢¢ N; and this implies n; = inf,cy, [¢| = n. This
is a contradiction, therefore n;, — oo.

2.09. REMARK. Since we are considering asymptoticity, and since
this property is invariant under translation [cf. 2.02] of asymptotic points,
and since we shall be discussing solid cones in relation to asymptoticity,
we may assume that all solid cones have their vertices at the origin.

2.10. LEMMA. Let P be a solid cone in R"™ with vertex at the
origin and axis P*, let Q be a solid cone with vertex at the origin and
axts p*, lying except for 0, in the interior of P. Let {—q;} C Q" be
a sequence of points such that | —q;| — o and —q;/|q¢;| > —q¢* as © — oo,
where —q* is some unit vector. Let R,=1{q; —qlqeQ,|q] =|ql}.
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Then there exists a solid cone R C P, such that if S(m) = {s||s| < m},
there exists a subsequence of {q;} which we again call {q.;} and an integer
N = N(m) such that 1 > N implies R; D R N S(m).

Proof. Let P={p|(p-p*/|p]) =1 — a}, where 0 < a < 1, and let
0<B<aand@={ql(@r*ql) =1— B}. We assume without loss that
|g;| = © hence that lim;_. ¢;/|¢;| = lim,;_.. ¢;/t = ¢*. We wish to show that
there exists a solid cone B P and an integer N = N(m) such that
S(m) N RcC R; for ¢ > N. There are two cases.

Case 1. q*-p*>1—28.

Let T be a solid cone with vertex 0, with axis ¢* and lying except
for 0, interior to P. Let R be a solid cone with vertex 0, with axis ¢¥*,
and lying except for 0, interior to T. Let te T, and consider q; — t.
Then for ¢ sufficiently large |q; — t| > 0 and

- . * 3 . .
lim(qi t)-p = lim 9| (ql — t>.p*:q*.p*>1_3_
e g — t] ime gy —t| \[qil [q;]

Thus for ¢ sufficiently large (¢, — t) € Q.

We show that for ¢ sufficiently large |q; — t] < |q;l.

This will follow if t-%<2q,-t, or if t-t < 2|q;|(q; - t/lq;]), but
since lim;_.. |q;| = o and lim,_.. q; « t/|q;| = ¢* + t > 0, we have the desired
result. Thus ¢t e R, for ¢ sufficiently large.

The set R; is a convex set. Given any compact subset C of R there
exists a finite set F ' T whose convex hull contains C. This finite set
will be contained in R; for ¢ sufficiently large and thus C will be contained
in R; for ¢ sufficiently large. Thus there exists N = N(m) such that
7 > N implies S(m) N R C R,.

Case II. ¢* - p*=1-— 5.

Consider t* = p* + 8(¢* — p*). We can choose & > 1 so that t* lies
interior to P and let 8 be so chosen. Then
(p* . p*) (q* . t*) — p* . t*
=@ )@ -p*+8—8¢g"-p*)—1—05®*-q")+3d
=@-1)A—-(@" -¢))>0.

Thus there exists a cone 7, with axis t*/[t*|, with vertex at 0,
which, except for 0, lies interior to P, such that if ¢e T then

) (»* - g*)(@* - t) > (p* - 1) .

Let te T, and consider ¢, —t. We show that for ¢ sufficiently large
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2) (@ —t) - p* > p* - q*lq; — t].
This will follow if
(3 (q: - P*)Y — 2(q; - p*) (t - D¥) + (¢ - P*)

z@ ¢Vl — 20t +1t-t].
This will follow if both of the following are true:
) (¢: - P*) = (0 + ") (¢: - ),
(5) (t-p*) —2(q-p)(t-p) = (" - ¢*)[t-t —2q:-¢].

Now (4) is equivalent to

.(4') q . p* = p* . q*
ra

but since ¢; € Q

L pr=1 - B=p*.q*.
1q;]

Thus (4) is valid.
Now (5) is equivalent to

(5! 1 s ) 9, . ¥
6) ey =2 e )
1 ) *\2 * *\2 qz
>~ (p* - t-1) — 2p* - L),
S AR AR R ‘”<|qu )

As 1 become infinite, the left side of (5’) approaches
—2(q" - p*) (¢ - pY)
and the right side of (5') approaches
—2(p" - ") (" - 1) .

Thus, in view of (1) it follows that (5') is wvalid for < sufficiently
large; and thus (2) is valid for sufficiently large <.

We show that for 7 sufficiently large |g; — t| < |q;|. This follows
if t-t<2q;-t, orif

t.ot<2lg) Lt
lq;]

Now lim; .. |q;| = o, and lim;... ¢q; - ¢/|q;| = ¢* + ¢, but by (1)

p* -t
p* - q*

q* -t >
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and further

p* -t l—«
P > 15 >0.

Thus te R; for ¢ sufficiently large. Now choose a cone R interior
to T and argue by convexity as in Case I. This completes the proof.

The author wishes to thank Professor G. A. Hedlund for the sug-
gestion for the preceding lemma and its proof.

At this point we drop the additive notation in T.

2.11. THEOREM. Let X be a compact Hausdorff space, T = R",
(X, T, m) a transformation group, and let P be a replete semigroup in
T. Let AC X be a closed invariant set, U open in X, and A cC U.
Then there exists a replete semigroup R C P such that either

1. There exists E closed in X, Ac Ec U,E ¢ U, and ERC E, or

2. There exists V open in X, Ac Vc Uand VR U.

Proof. By 2.07 we may assume P is a solid cone with vertex 0.
Assume 2. fails, then since X is compact Hausdorff, we may select a
sequence of open sets {V.} such that Ac V,c V., for all + and

o, V,=A. Let Q be a solid cone with vertex 0 lying, except for 0,
interior to P. Define @, = {g7'|qe Q, v;g7*¢ U for some v;€ V;}. By
assumption @, # ¢, thus let d; = infq—leei—llq‘ll. Let n; be such that
ViS(n;) c U, where S(n;) = {t||t| < m;}, and such that there is a
t € Closure (S(n;)) and a v,€ V; such that v;t¢ U. Now by Lemma 2.08,
n; — o, and since n; < d;, d; > . Select ¢;7'€Q;~* N Closure (S(d,))
and v;€ V; such that v, ¢ U, and by choosing appropriate subse-
quences we may assume v,q;'— x€ X and ¢,7'/|q;| - q¢**. Let R be
the solid cone determined by Lemma 2.10, so that RC P and R; =
{2:.97'1¢* e S(d;) N @} > RN S(m) for prescribed m > 0 and ¢ sufficient-
ly large. Let E = A U Closure (xR) U z, then clearly E is closed and
further A C E.

Now since A c U, A c U. Also xzc U, for suppose not, then there
is an open set W such that xc W and W N U= ¢, and there exists
v;€ V; and ¢, such that v,g;~'€ W and a spherical neighborhood S of ¢,
such that v,S c W. Select ¢7'e S N Q! such that |¢!| < |q;*|, then
v;,97'¢ U, and this contradicts the choice of ¢,™*.

Now let € R with || = m, then there exists an integer ¢ such
that j = ¢ implies reR N S(m + 1) € R; by Lemma 2.10. Now
(e ) N Q@ S(g, ") N @™ for j=i. Let j>i, then =g,
for some ¢, 7€ S(l¢;,7*) N @'. Then v,q, ™ = v,¢,7'¢,¢,,7 = (v;9,7)r > ar
and since v,q,,7 € U for each j > 4, wre U. Thus =R C U, whence also
Closure (xR) c U. Thus all told we have E c U.
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E ¢ U, for x as a limit point of {v,9;7'} all of which are in the
complement of U is also in the complement of U.

ERC E, forlet re R, then if ye A,yre A C E, if ye Closure (zR),
yr € (Closure (zR))r = Closure (xrR) C Closure (xR) c E, and if y = x,
yr = xr € Closure (xR) C E.

Thus R 1is the desired replete semigroup, and E the desired closed
set which satisfy 1. This completes the proof.

The preceding theorem has a rather interesting history. The above
is a modification of a theorem due to Montgomery [7], which occurs also
in [4, 10.29], though in quite a different form. In this connection see
also Kerékjarto [6].

2.12. THEOREM. Let X be a compact infinite metric space, T a
generative group, (X, T, ) an unstable transformation group. Let P
be a replete semigroup in T, then there is a replete semigroup Q C P
and there are distinet points, x, y, such that x1yy.

Proof. By 2.04 we may assume T = R”. Consider the transformation
group (X x X, T, 0), where o[(x,y), t] = (xt, yt). The diagonal 4 of
X x X is a closed invariant set of X x X. Let U, = {(z, )| o(x, v) < 1/n}
where p is the metric of X, then U, is an open set such that U, D 4.
If conclusion 2. of Theorem 2.11 holds for all # = N and if « is an index
of X, then there exists n such that » = N and U, € «. By Theorem
2.11, there is an open set V, 4 < V < U, and a replete semigroup R c P
such that VR c U, c a. Let B be an index of X such that B cC V,
then BR~* C a. This, however, implies that T is equicontinuous [2], and
this contradicts the instability of (X, T, ).

Thus conclusion 1. of Theorem 2.11 holds for arbitrarily large values
of m, i.e. for each n > 0, there exists an integer m > n for which there
exists a closed set E, and a replete semigroup R, C P such that
1cE,cU, E,zU,, and E,R, C E,. Let  be the index of instability
of X; select n so large that n > 1/8, and m > n for which conclusion 1.
of Theorem 2.11 holds. Select (z,y)e€ E,, such that (z,y)¢ U,, whence
x # y, and a replete semigroup Q = R, C P, then (z,%)Q = (z, ¥)R, C
E.R,c E, c U, c 8, whence (zq,yq) e for all ge Q. By Lemma 2.02
this implies z{oy. This completes the proof.
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