NORMAL SUBGROUPS OF MONOMIAL GROUPS

AvrLAaN B. Gray, JR.

1. Introduction. Let U be the set consisting of z, @, x;, «+- ,.
Let H be a fixed group. A monomial substitutton of U over H i3 a
transformation of the form,

y_( Ly y gy Ty yc0e, Ty )xjeU
klle, h2xi2’ k3xi37 ctty hnxin hi eH

where the mapping of the 2’s is one-to-one. The h; are called the
factors’ of  y.% If.

y__(xlrx2’x35°°°r xn)
y =
kller kzszy ksxjs, ctty knxjn

then

yy_( Xy s Ly M Ty, )
1= .
h’lkilxjily hzkizwjtzy hakismjisy ceey hnkinxjin

By this definition of multiplication the set of all substitutions form a
group Y,(H). Denote by V the set of all substitutions of the form

Xyy Loy Lz, 200y Xy
y:

= [hy, hgy By, ==+, B,] .
hlwly hzxm hswzy"‘, h’nxn) [1 v ]

Then V, called the basis group, is a normal subgroup of X, (H). A
permutation is an element of the form

Lyy Loy ooy &y _ 1, 2:"')”
(ewily €Ty 0y exin) B (":1’ Ty o "+, in) .
where e is the identity of H. Cyeclic representation will also be used
for elements of this type. The set S, of all such elements is a sub-
group of X,(H). Furthermore 3,(H) =V US,VNS=FE where E is
the identity of Y,(H). Any element y of X,(H) can be written as y =
vs where ve V and s€S. Ore [1] has studied this group for finite U
and some of his results have been extended in [2] and [3].

The normal subgroups of X, (H) = 2%, for U a finite set have been
determined in [1]. The normal subgroups for o(U) = B = W,, u =0,
where o(U) means the number of elements of U, have been determined
for rather general cases in [2] and [3]. The subset 3,.(H) =2,, of
elements of the form y = vs with s in the alternating group A4, is a
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subgroup of 2,. The normal subgroups of ¥,, are known for all n
except 3 and 4 [2]. This paper determines the normal subgroups of
Y, . for n = 3,4 that are not contained in the basis group, thus filling
a gap in the theory.

2. The normal subgroups of Y, ; not contained in the basis group
V. We shall consider first the normal subgroups M that contain pure
permutations.

THEOREM 1. Let M be normal in 2,,, A, M. Then N=MNV
18 a normal subgroup of 2,,. The subgroup M = N U A,. There exists
a normal subgroup S, of H such that H|S, is Abelian and such that N
consists of all elements v = [hy, hy, hs] for which h.hh, € S,.

Proof. The intersection of two normal subgroups is again normal
go N is normal in ¥, ,.

Clearly M D (N U A;). Let y = vs be arbitrary in M. Then ys™* =
v belongs to M N V=Nso Mc(NUA,).

Let v = [hy, hy, hy] be arbitrary in N. Form y = »(1, 2, 3), which is
in M. All of the elements ¥, = v,yv;*, where v, is arbitrary in V are
in M by M normal in ¥,,. For a proper choice of v, y, = [hhh,, e, €]
(1, 2, 3). Therefore N contains [hh.h,, €, e]. Now consider the set N, U N
of all elements of the form [k, e, e]. This is a normal subgroup of N.
The elements of H that occur as the first factors of multiplications of
N, form a normal subgroup S, of H. We have established that if ve N
the product of the factors is in S,. If k, k,, k; are any elements of H
satisfying k.k.k, = k where k is in S, then [k, ¢, ¢] is in N. Furthermore
[k, e, e] (1,2,8) is in M and by a proper conjugation with a multiplication
[k, Koy k5] (1,2,3) is in M. Hence [k, k,, k] is in N.

Since [ry, 7y, r3'r7Y] i8 in N for arbitrary r, », of H, its inverse
[rt, rit, riry] I8 also in N. Therefore »;'r;'rr, is in S;. This shows
rr, = ryromod S, and H/S, is Abelian.

THEOREM 2. Let N be as described in the last sentence of Theorem
1. Then NU A; = M s normal in 2, ,.

Proof. Ore [1, p. 37] has shown M is normal in X, so it is normal
in Y,,.

We shall now describe those normal subgrous which do not contain
a pure permutation.

THEOREM 3. Let S, C S, be normal subgroups of H satisfying the
conditions H[S, is Abelian and S,/S, is tsomorphic, by 6 say, to A,.
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Let M consist of the sets T; = {vs/s = (1, 2,3)"}, 1 =0 or 1 or 2, where
the factors of substitutions of T; run through H subject to the conditions
that their product, k say, ts in S, and the coset kS, maps onto (1, 2, 3)'.
Then M is a normal subgroup of ¥ ,,. Conversely if M ¢ Vand A, ¢ M,
then M has the above form.

Proof. We ghall establish first that M is a group. Let y, =
|l By, Bols, and y, = |k, ks, k;]s, be arbitrary elements in M. We know
then that hh,h.S,0 = s, and k.k,k,S.0 = s,. Consider the product %y, =
[hik;,, hoke;,, hik;)s.s..  Since H/S, is Abelian and 6 is an isomorphism
hokei hotei ke S,0 = hihohok k:k,S,0 = hihoh,0k ke.k:60 = s,s,.  This shows that
if 4,9, belongs to T; then the coset of the product of the factors maps
onto (1, 2, 3):. We show now that when y, as above is in M that its
inverse is also in M. The inverse of y, is y:' = [k}, hi}, hi']si'. We
must show h;'h;'h;! belongs to S, and h;'h;'h;'S\0 = si'. The first of
these follows from k., in S, and H/S, Abelian. The second follows
from the observation that A;'h,*h 'S0 = s;* and H/S, is Abelian.

It remains to show that M is normal in Y,,. Let y, = [hy, ks, ks,
and ¥, = [g., 05, 9;:]s be arbitrary elements of M and Y,. respectively.
We must show that the product

yyYs ' = [9:hi,95), 9:li,95), 9shi 97 ]ssis™h = vs,

is in M. The product of the factors is in S, since H/S, is Abelian and
hihshy 18 in S,. Finally

9.1, 95,9:h:,95,9:0:,95,7S,0 = hih:h,S\0 = s, .

We now give the proof of the converse. Two elements vs and v;s,
of M are defined to be equivalent if s =s,. This is an equivalence
relation and induces the partition T, = {vs/s = E}, T, = {vs/s = (1, 2, 3)},
T, ={vs[s =(1,83,2)} on M. We note that one of the sets 7, or 7, is
nonempty since M ¢ V. In fact, since at least one of them is not
empty, they are each nonempty.

If an arbitrary element y = vs = [hy, hy, By] (1,2,3) of 7T, is con-
jugated by [h,, h;?, e] the resulting elements [hhh,, e, e] (1,2, 3) is also
in T,. Since sys;i! = swsi's;ss;* =8 i8 in M for all s, of A, we can
show that [k, e, €e](1,2,3) and [h:h;h, e, e](1, 2, 3) also belong to 7.
When y, = [a, ¢, ¢](1, 2, 3) is in T, then (1, 2, 3)y,(1, 3, 2) = [e, ¢, al(1, 2, 3)
and (1, 8, 2)y.(1, 2, 8) = [e, a, €](1, 2, 3) are also in Ti.

Similarly it can be shown that 7T, contains elements of the form
[b, e, ¢,](1, 8, 2) and with every such element [e, b, e](1, 3, 2), [e, e, b](1, 3, 2).
In particular [h.h.h,, e, €](1, 3, 2) is in T, where [h,, hy, hs](1, 8, 2) is arbi-
trary in 7,. When [a,e¢,e] is in T, then [e, a,e] and [e, e, a] are also
in T,.
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Now denote by R the set of elements of the form [a,e,e]s. Let
S; be the set of elements of H that occur as first factors of elements
of R. We shall show that S, is a normal subgroup of H. Choose arbi-
trary elements m, = [a,, ¢, e]s, and m, = [a,, ¢, ¢]s, of R. -If s, = E then
mm, = [a,a,, e, e]s, is again in R and a,a, belongs to S,. If s, = (1, 2, 3)
we work with m, = [e, a,, e]s, and form m,m, = [a.a,, e, €](1, 2, 3)s,. Again
we have shown a,a,€S,. Finally if s, = (1, 3,2) we let m, = [e, e, a,]s,
and consider m,m, = [a.a,, ¢, €](1, 8, 2)s,. In any case we see that S, is
closed. When m,eR then m:* which is [ai? e,e¢], [e, ar?, e]lsi?, or
[e, e, a;]si* also belongs to M. By the earlier argument we see that R
must contain Ja;?, e, e]si’. This shows a;*e€S,. Let aeS, and ke H.
Then, by the definition of %,, and S, [a,e,¢lse€ M and [k, h, h]€ X ;.
Now since M is normal in X, ,, [,k ][a,e,els|h,h~*, h7"] = [hah™,e,e]s €
M. Therefore, hah™™ is in S,. We have just shown S, is normal in H.

Substitutions in RN V = N, are of the form [a,e,e]. The first
factors form a subgroup, S,, of H. That S, is normal in H follows
from M normal in 3,,. By the definition of the two groups S, is a
subgroup of S..

To show that H/S, is Abelian we let h,, h, be arbitrary elements
of H and show h,hhi*h;t i8 in S,. Choose an element [b,, b, b;](1, 2, 3)
from T, and conjugate it by each of the three elements [e, h.h,b;; h;b;b.],
[e, by, b.b,], and [e, hy'hi'D,, h7'bb,]. The resulting elements, which must
be in M, are y, = [hi*hi?, hy, hibD:,](1, 2, 8), ¥, = [e, e, bibb](1, 2, 3), and
Ys = [hih, b7, BD.0.0,](1, 2, 8).  The product y, = vyt = [kl k7Y, BT is
also in M. Now form y, = y,y;* = [h;*hi?, hy, hy]. Finally consider vy, =
[hohihi*hi, e, €] which is in M. Therefore, h,h.h;*h* isin S,. In addition
this also establishes that H/S, is Abelian. Earlier we had [A.h.h;, e, €]
1,3,2) in T,. By H/S, Abelian hhh; € S, also.

We now define a mapping from S, onto A, as follows. For an ele-
ment a of S, which occurs as a first factor of a substitution ¥ = [a, ¢, €]s
we let af = s. Certainly by this definition every element of S, will be
mapped. If any element of S, is assumed to be mapped onto two dif-
ferent elements of A, a computation, using the properties already stated
for R and M, will show that M contains a pure permutation contrary
to the case we are currently investigating. For example, suppose af =
(1,2,3)and ad = (1, 3,2). Then y, = [a, ¢, €](1, 3, 2), ¥, = [a, ¢, €](1, 2, 3),
yit =le,e,a7(1,2,38), and y, =[e, a7, ¢](1, 2, 3) all belong to M. So
[a, e, €](1, 2, )[e, a%e](1, 2, 8) = (1, 8,2) belongs to M. This mapping
also preserves multiplication. For let @0 = s, a,0 = s,. This means
that R contains the elements [a,, ¢, ¢]s,, [a., ¢, €]s,. But M also contains
vs, where v has two factors of ¢ and a, a factor in the position that s,
sends «, into. Therefore, [a,a,, ¢, ¢]s;s, belongs to R and aa.0 = s;8, =
a,0a,0. The definition of the mapping makes it clear that the kernel
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of the homomorphism is precisely S,. Therefore, S,/S, = A..

It has already been pointed out that if ¥y = vs is an element of T,
or T, then the product of the factors h.hh, of v is in S,. If [ay, @, ;]
is in M N V then since y, = [h:*h?, ke, by] is also in M for arbitrary k.,
h, of H it follows that [a,, a,, a;][a.a; @i, a5'] = [@,a.0,, €, €] i3 in M.
This shows that the product of factors of elements in 7T, is in S,. Now
let us assume that b,, b,, b, are elements of H whose product is in S,.
Then (b,b,0;)0 = (1, 2, 8)* for + =0, or 1, or 2. We will show that there
is an element ¥y = vs of T, whose factors are b,, b,, and b,. In the case
where © = 0 we know that M contains an element [bbyp,, e, ¢]. The
element y, = [h.hy, h:Y, hT'] and its inverse y;' = [hT'h;Y, hy, hy] are also
in M for all h, h, of H so choose h, = b, h, = b,. Then the product
[6.0.0, €, €][b5'57, by, bs] = [by, by, 0] is in M. When ¢ =1 we have
[6.0.0s, €, €](1, 2, ) in M and by choosing h, = b;'b;*, h, = b, and computing
[b.b:b., €, €l(1, 2, 3)[bs, b;'b; 7, by] = [by, s, bs](1, 2,8). Finally if ¢ =2 we
have [b,b.0,, ¢, €]l(1, 3,2) in M and by choosing %, = b;, b, = b;'b;* and
computing we have [b, b, b;](1, 3, 2) in T

3. The normal subgroups of 2, , not contained in the basis group V.
All proofs in this section except for the proof of Lemma 1 are similar
to the corresponding proofs for Y, . so will be omitted.

LEmMMA 1. Let M be normal in X,,, MZ V.
Then the Klein group is contained in M.

Proof. We will first show that M contains elements of the form
y = vs where s # E is in the Klein group. Hereafter K will mean the
Klein group.

There is at least one element in M of the form y = vs s # E, s€ A,.
If s is not in K then s is a three cycle, and we assume without loss
of generality that s =(1,3,4). If y is conjugated by (1, 4)(2, 3) the
resulting element ¥, = v,(1, 4, 2) and its inverse are also in M. There-
fore, yyi* = v,(1, 3)}(2,4) is in M. We have just shown that M has an
element of the form y = vs where s is in K and s # E. We assume
without loss of generality that s = (1, 2)(3, 4) and v = [a,, a5, a;, a,]. Form
the elements

Yy, = vyt = le, a;t, e, ajllay, a,, as, a](1, 2)(3, 4)[e, a, e, a;']
= [a,a,, ¢, e, a,a,](1, 2)(3, 4) and ¥, = y:yy;*
= [e, a;t, a;, €], 8, 4)[a,, a,, as, a,](1, 2)(3, 4)[e, a,, e, a,](1, 4, 3)
= [a.a,, e, e, a,, a,](1, 3)(2, 4).

Since M is normal in Y,, v, and ¥y, are in M. Therefore yy;' =
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(1,4)(2,8) is in M. This shows S= M N A, # E. But M is normal in
Y,:80 S is normal in A,. This means S is K or A4,.

We shall now deseribe the normal subgroups N which is the inter-
section of M and the basis group V.

THEOREM 1. Let M be normalin 2, , M & V,A,c M. Then N =
MNYV isa normal subgroup of 3,,, M= NU A, There exists a
normal subgroup S, of H such that H/[S, is Abelian and such that N
consists of all elements v = [hy, hy, s, h,] for which hh.hh, € S..

THEOREM 2. Let N be as described in the last sentence of Theorem
1. Then NU A, = M 1is normal in X ,.

We shall now deseribe those normal subgroups which contain no
elements of the form ¥ = vs where s is a three cycle.

THEOREM 3. Let M be mormal im 2,, MZ V,M contains mo
elements of the form y = vs where s is a three cycle, M N V = N.
Then M = N U K. Furthermore if N, is as described in the last
sentence of Theorem 1 them N, U K is normal in X, ,.

We shall now describe those normal subgroups which contain ele-
ments of the form y = vs, where s is a three cycle, but which do not
contain a pure three cycle.

THEOREM 4. Let S, C S, be normal subgroups of H satisfying the
conditions H|S, is Abelian and S,/S; is isomorphic to A,. Let M con-
sist of the sets

T, ={vs/s =(1,2,8);mod K}, =012

where the factors of substitutions of T; run through H subject to the
condition that their product, k say, is in S, and kS, maps onto (1, 2, 3).
Then M is a normal subgroup of X,,. Conversely, if M is normal
subgroup of 3,, such that M ¢ V and A, & M, M contains elements
of the form y = vs where s is a three cycle, then M has the above form.
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