TORSION-FREE MODULES OVER K|z, y]

STEPHEN U. CHASE

1. Introduction. Let R = K[z, y] be the ring of polynomials in
two variables £ and y over a field K. In this note we shall consider
the following question: What conditions must be satisfied by two torsion-
free R-modules' A and B in order that there exist a third R-module C
such that A C~ B@ C? Our principal result is the following theorem.

THEOREM. The following statements are equivalent:

(a) There exists an R-module C (not necessarily torsion-free) such
that A C~ B C.

(b) AR~ B®DR.

(¢) For any maximal ideal M in R, A, ~ By, as Ry~modules.

(d) For any maximal ideal M in R, Ay, ~ B, as R,-modules.

In (¢) and (d) above, R, is the ring of quotients of R with respect
to the maximal ideal M, R, is the completion of the local ring R,, and
Ay, A, are the R, and R,-modules, respectively, constructed from A
in the standard way. We shall adhere to this notation throughout the
paper.

It is natural to ask whether the conditions of the above theorem
imply that A~ B, as is trivially the case for the ring of polynomials
in one variable. It is perhaps curious that the answer here depends
upon the field K. We show that, if K is algebraicly closed of charac-
teristic zero, then A and B satisfy conditions (a) — (d) above if and
only if A~ B. However, we provide an example to show that this
is not the case if K is the real number field.

The proofs of the preceding statements are based primarily upon
the theorem of Seshadri [6] that projective R-modules are free, together
with some results of Auslander-Buchsbaum-Goldman ([1], [2]) on duality
of modules over commutative Noetherian domains. These will be ex-
plained in the next section.

2. Some remarks on duality. Throughout this section R may be
any commutative Noetherian normal domain. If A4 is an R-module, we
define A* = Homg (A4, R); A* will be called the dual of A. If Bis a
second R-module and f: A — B is a homomorphism, we shall denote by
f* the induced homomorphism of B* into A*. For the basic properties

Received May 8, 1961.
1 Throughout this note, all modules which we consider will be assumed to be finitely
generated.
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of this functor we refer the reader to [4], p. 476. We shall denote
the natural mapping of A** by 4,. If A is torsion-free, then 7, is a
monomorphism. In this case we shall consistently identify A with its
image in A**, A will be called reflexive in case A = A**, It is not
hard to show that every dual is reflexive; this follows essentially from
the fact that, if A is torsion-free, then A and A* have the same rank.

The following proposition is essentially due to Auslander-Buchshaum-
Goldman ([1], Proposition 3.4, p. 758.)

ProrosITION 2.1. Let A, B be torsion-free R-modules with the same
rank, and assume AS A** & B, A+ B. Let I be the annihilator of B/4
(note that I = 0, since A and B have the same rank.) Then

(a) If A** = B, rank (I) > 1.

(b) If A** &= B, rank (I) = 1.

Proof. Assume rank (I) =1, in which case there exists a prime
ideal P in R of rank one such that IS P. Then A,& B,. Since R is
normal and rank (P) =1, R, is a Dedekind ring. Then A,, being a
torgion-free R.-module, is projective, and therefore trivially reflexive.
It then follows from an easy localization argument that (A4**), =
(Ap)** = Ap & Bp, and therefore A** & B. Hence, if A** = B, then
rank (I) > 1, completing the proof of (a).

Suppose now that A** = B, and let J be the annihilator of B/A**.
We may then apply Proposition 3.4 of [1] (p. 758) to conclude that
rank (J) = 1. Since 0 & I < J, it follows that rank () =1, completing
the proof of (b).

COROLLARY. Let B be a reflexive R-module, and A, A, be sub-
modules of B with same rank as B. Let I, and I, be the annihilators
of B|A, and B[A,, respectively. If the ranks of both ideals are greater
than ome, then any isomorphism between A, and A, can be extended to
an automorphism of B.

Proof. Since B is reflexive, we have that A,SA,**< B, A, A,**SB.
But since rank(I) > 1, we obtain from Proposition 2.1 that A,** = B,
and similarly 4,** = B. Hence, if 6,: A,— A, is an isomorphism, then
07* is an endomorphism of B. Let 6, = 6,7'; then 6;* is likewise an
endomorphism of B. Also, 6*0;* = (6,0,)** induces the identity auto-
morphism on A,. Since B is torsion-free and BJA, is a torsion module,
it then follows trivially that 6;*6f* is the identity on all of B. So is
0F*65*, by similar reasoning. Therefore 6;* is the desired extension of
0, to an automorphism of B.
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3. Torsion-free modules over regular rings of dimension two. We
shall begin this section with a few preliminary results which will
prepare the ground for the proof of the theorem mentioned in the
introduction.

A square matrix over a ring R will be called a transvection if its
diagonal entries are all “ones” and there is at most one nonzero entry
off the diagonal.

LEmMMmA 8.1. Let R= R, P -+ P R,, where each R, is a local ring.
Then any unimodular matrixz over R is a product of transvections.

Proof. Let A = (a;;) be a unimodular n-by-n matrix over B. We
first consider the special case » =1; i.e., R is a local ring. Then every
row and column of A must contain a unit. From this we see easily
that A may be reduced to a diagonal matrix by means of standard row
and column operations which are equivalent to multiplication by trans-

vections. That is, A = TDU, where T, U are products of transvections
and—

d, 0
D= L d,;eR dyeeod,=1.
0 d,
We may then apply a well-known trick and write—
d, 0\ /1 0 1 0
d? d.d, 1
D= 1 (dldz)_l *
. 1 dl cee dn_l
0 < /\0 . 0

n

But it is trivial to verify that each of the factors of the above expres-
gion is a product of transvections. Thus A is a product of transvections,
and the lemma is true for r = 1.

Proceed by induction on r; assume r > 1 and the lemma is true for
k>r. Let RR=R, -+ PR,_,; then R= R, D R,. Let ¢, e, be the
units of R, R,, respectively; then ¢, +¢,=1. Also A= A4,+ A,, where
A,, A, are unimodular matrices over R,, R,, respectively. We have from
the induction assumption that 4, = [, 7§" and A, = [17, T¥’, where
T and TY are transvections over R, and R,, respectively. But then
e.] + T and eI + T are transvections over R, and it is easy to see
that—

el + A= ﬁ(erl + T) e + A = ﬁ(%[ + T9) .
Jj=1

=1

Since A = A, + A, = (e, + A)e, ] + A,), it is clear that A is a product



440 STEPHEN U. CHASE
of transvections, completing the proof.

LEMMA 3.2. Let R be a direct sum of a finite number of local
rings, and F be a free R-module. Let A, B be submodules of F such
that F|A~ F|B. Then there exists an automorphism 0 of F such that
0(A) = B.

Proof. If R is a local ring, the lemma follows directly from stand-
ard facts concerning minimal epimorphisms ([4], p. 471.) The general case
may be deduced from this special case by an easy direct sum argument.

LEMMA 3.3. Let R be a commutative Noetherian domain. Let F
be a free R-module, and A, B be submodules of F, both having the
same rank as F. Assume F[A~ F|B, and every prime tdeal of R
belonging to A (as a submodule of F') is maximal. Then there exists
an automorphism 6 of FD R such that (AP R) = BE R.

Proof. Let I be the annihilator of F/A (hence also of F/B). Then
IFS AN B, and we have the following exact sequences of modules over
the ring R/I.

00— A/IF— F[IF— F[A— 0
0— BJ/IF F|IF F|B 0.

Now, it follows from our hypotheses that Rad(I) = M, N --- N M,, where
M, is a maximal ideal in R. Hence we obtain from a direct application
of the Chinese Remainder Theorem that R/I is a direct sum of local
rings. Therefore, by Lemma 3.2, there exists an automorphism « of
F|IF such that +(A/IF) = B/IF. It is easy to see that + may be
extended to a unimodular automorphism +, of (F/IF)@ (R/I) such that
v {(AIIF)® (R/I)} = (B/IF) & (R/I). By Lemma 3.1, 4, is a product of
transvections, and thus it is clear that there exists an R-automorphism
0 of FEP R such that f0 =+, f, where f: FEP R— (F/IF)P (R/I) is the
canonical mapping. It then follows immediately that 6(A & R) = BPR,
completing the proof of the lemma.

We shall also have use for the following proposition, which was
communicated to me by R. Swan.

ProrosITION 3.4. If R is a complete local ring, then the Krull-
Schmidt-Remak Theorem [3] is satisfied by finitely-generated R-modules.

Proof. According to Azumaya’s generalization of Krull-Schmidt-
Remak Theorem [3], we need only show that, if A is an indecomposable
R-module, then the nonunits in S = Homg (4, A) form an ideal. Sis a
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finitely generated R-algebra, and S/MS is an R/M-algebra of finite degree,
where M is the maximal ideal in R. If € is an idempotent in S/MS,
then since R is complete it follows from a standard argument that
there exists an idempotent ¢ in S mapping on €. But ¢ =1 because A
is indecomposable, and therefore & is the identity of S/MS. We have
thus shown that S/MS has a single maximal ideal. Since MS is con-
tained in every maximal ideal of S, we have shown that S itself has a
single maximal ideal, and the proposition follows immediately.

Swan, in unpublished work, has shown that Proposition 3.4 does
not necessarily hold for incomplete local rings. However, all local rings
satisfy a weaker form of the proposition, a fact which is implicit in [3].
For completeness we shall exhibit a proof here.

ProPoOSITION 3.5. Let R be a local ring with maximal ideal M,
and A and B be R-modules. If there exists a (finitely-generated) free
R-module F' such that A F~ B F, then A~ B.

If A is an R-module, define d(4) to be the dimension of A/MA
over the residue class field R/M. Let & be the class of all R-modules
A with the property that there exist R-modules B and F', with F free,
such that A@Q F~ B@ F but A+ B. The proposition simply asserts
that & is empty. Assume the proposition is false; then we may select
A from the class & such that d(A4) is minimal. Having fixed A and
its companion B, we may then choose F' to have minimal rank n > 0.
Set C = A@ F; then we may assume that A, B < C and there exist
free submodules Fj, F, of C such that Fi~ F~F,and AQQF,=C=B@F,.
Let 2, «++, 2, and ¥, +-+, ¥, be bases of F, and F,, respectively. Then
there exist homomorphisms f and g of C into R such that f(4)=9(B)=0,
Sfx,) =9(y,) =1, and f(x;)=9g(y;) =0 for © <n. Suppose that f(F,) & M,
g(F\) & M; then, since R is a local ring, it is clear that f(B) = g(4) = R.
That is, there exist x € A, y € B, such that f(y) =g(x) =1, in which case
there exist submodules A’ A, B’ B such that A= A'@ Rx, B= B'@ Ry.
From this it follows that AP RPF~APF~BPHF~B'GRPF. But
d(A’) = d(A) — 1, and hence A’ ~ B’, since A was chosen from the class
& so that d(A) is minimal. But then A~ A'P R~ B’ P R~ B, a con-
tradiction. Therefore we may assume that either f(F,) = R or g(F,) = R;
let us say that f(F},) = B. Then f(y;) is a unit for some 2 < n, say ¢ = 1.
Define a homomorphism j: R— C by j(a) = a(f(y)) %, where a € R; then
it is clear that fj is the identity map on R. We leave to the reader
the trivial verification of the resulting fact that A @ F' ~ ker(f) ~
coker(j) ~ B F’, where F' i3 a free R-module of rank n — 1. But
this contradicts the fact that F' was chosen to be the free module of
minimal rank with the property that A F~ B@ F. The proof of
the proposition is hence complete.
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We are now ready to prove a slight generalization of the theorem
stated in the introduction.

THEOREM 3.6. Let R be a commutative Noetherian domain. As-
sume that the global dimension of R is less than or equal to two, and
every projective R-module is free. Let A, B be torsion-free R-modules.
Then the following statements are equivalemt—

(a) There exists an R-module C such that A C~ BPC.

(b) A® R~ B®R.

(c¢) Ay~ By as R,modules for every maximal ideal M in R.

(d) A,~ B, as R,-modules for every maximal ideal M in R.

Proof. (a)=>(d): If A@®C~ B@®C, then certainly 4, HC, ~
B, ®C, for any maximal ideal M in R. It then follows from Proposi-
tion 3.4 that 4, ~ B,.

(b)=(a): Obvious.

(e¢)=(d): Obvious.

(b)=>(c): If AQR~ B®D R, then A, P R, ~ B, D R, for any
maximal ideal M in B. We may then apply Proposition 3.5 to conclude
that A, ~ B,.

(d)=(b); If (d) holds, we have immediately that A and B have
the same rank. If A is projective, it follows from a standard result of
homological algebra that B is likewise projective, in which case both
are free by hypothesis and (b) follows trivially. Thus we may assume
that neither A nor B is projective. Since gl.dim.(R) < 2, we obtain
from the Corollary to Proposition 4.7 of {2] (p. 17) that A** and B**
are projective (the hypothesis given there that R be local is easily seen
to be unnecessary. This fact also follows, perhaps more simply, from
(4.4) of {4], p. 477.) Our hypotheses then imply that A** and B** are
free; and, of course, they have the same rank. We may then identify
A** and B**, and write A** = B** = F, a free R-module. A S F,
BZ F, and if I and J are the annihilators of F/A and F/B, respec-
tively, then it follows from Proposition 2.1 that both ideals have rank
greater than one (we should remark at this point that R is normal,
gince it has finite global dimension; hence the hypotheses of Proposition
2.1 are satisfied.)

Let M be a maximal ideal in R; then by hypothesis A, ~ B,. IR,
and JR, are the annijhilators of F,/A, and F,/B,, respectively, and
both of these ideals in R, have rank greater than one. Furthermore,
since R has finite global dimension, B, is a regular local ring, and so
we may apply the Corollary to Proposition 2.1 to conclude that there
exists an R,-automorphism ¢ of F, such that ¢(4,) = B,. In particular,
(FlA)y ~ Fy|Ay ~ Fy|B, ~ (F|B),. Now, since rank(Z) > 1 and Krull
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dim.(R) = gl.dim.(R) =< 2, we obtain eagily from the Chinese Remainder
Theorem that R/I is a direct sum of local rings, each with nilpotent
maximal ideal. Then, since (FJA), and (F/B), may be viewed as modules
over R,/IR,~ R,/IR,, it follows from standard properties of comple-
tions of local rings that (F/A), ~ (F/B),. This is true for every maximal
ideal M in R, and hence F/A ~ F/B as R-modules, since both may be
viewed as modules over R/I, a direct sum of local rings. Since every
prime ideal in R belonging to A or B (as a submodule of F') is maximal,
we may apply Lemma 3.3 to conclude that there exists an automorphism
6 of FFP R such that 6(APD R) = B R. In particular, AQ R~ B®@R,
completing the proof of the theorem.

COROLLARY. If R= K|xz,y], K a field, then R satisfies the condi-
tions of Theorem 3.6.

Proof. The well-known fact that gl.dim.(®) = 2 ([5], p. 180), to-
gether with Seshadri’s result [6] that projective R-modules are free,
imply that R satisfies the hypotheses, and hence the conclusions, of
Theorem 3.6.

As mentioned in the introduction, we are able to improve Theorem

3.6 for R = K[x,y] if certain assumptions are made concerning the
field K.

THEOREM 3.7. Let R = K|x, y], where K is an algebraicly closed
field of characteristic p. Let A, B be torsion-free R-modules of the
same rank n. If p does not divide n, then A and B satisfy the con-
ditions of Theorem 3.6 if and only 1f A~ B.

Proof. As in Theorem 3.6, we may assume that neither A nor B
is projective, but both are contained in a free R-module F in such a
way that F/A~ F/B. Furthermore, if I is the annihilator of F/A
(hence also of F/B) then R/I=R,H--- P R,, where R, is a local ring
with nilpotent maximal ideal M,;. Let e; be the unit of R; and e; be
the unit of R;/M;. Since K is algebraicly closed, R,/M, = Ke,.

Now, F/IF' is a free R/I-module, and so we may apply Lemma 3.2
to obtain an automorphism 6 of F/IF such that 6(A/IF) = B/IF. Write
0, =e0; then § =0, + -+« +6,. If d,=det(d,), then d, + -+ +d, =
d = det(d). dis a unitin R/I, and d, is a unit in R;,. Since R;,/M; = Ke,,
we may write d; = a;(e; + u4;), where a,€ K and u;c M,. Since K is
algebraicly closed, there exist b,€ K such that b? = a;'. Since M, is
nilpotent, we see immediately that the multiplicative group of units of
R, which map on &; has exponent a power of p, and therefore, since p
does not divide %, there exist ¢;e€ R, such that ¢ = (e; + u;)™*. Set
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0 = b0, + +++ + b0, = (be, + ++- + b,c,)0; then 6’ is a unimodular
automorphism of F/IF' and ¢'(A/IF) = B/IF. By Lemma 3.1, ¢’ is a
product of transvections, and thus there exists an R-automorphism ¢
of F' such that 6'f = fo, where f: F— F|IF is the canonical mapping.
Since IFFS AN B, it follows easily that ¢@(4) = B. Therefore A ~ B,
completing the proof of the theorem.?

4. Examples. In this section we shall show that R = K][x, y] does
not satisfy Theorem 3.7 if K is the field of real numbers.

LEMMA 4.1. Let S = K|z, y]/(x* — 1)}, (x* — 1), ¥°), where K is
the real number field. Set F=S@ S, and define submodules A and
B of F to be generated by the rows of the following matrices—

(x* — 1) 0 x(x? — 1) 0
A ( 0 Y B: 0 v
Yy 2 —1 xy 2 —1

Then there exists no automorphism 6 of F such that 6(A) = B and
det(d) e K.

Proof. Set PL=(x—1,9)ES, P,=(x+1,9=S,and @ =P,NP,=
(x* — 1, y); then @ is easily seen to be the radical of S, and S/Q ~
SIP,B S|P~ KPP K. 1+ 2)/2 and (1 — x)/2 are orthogonal idempotents
modulo @, and therefore it is clear that any u in S can be expressed
in the form u = Mz + 1) + #(x — 1) + «/, where #' €@ and )\, € K.

We assert first that {(xz + 1)(x* — 1), 0}, {(& — L) (=*— 1)y, 0},
{0, (x + 1)(«* — 1)%}, and {0, (x — 1)(* — 1)’y} are not in A. For suppose
{(x + 1)(x* — 1)y, 0} is in A; then

{( + (@ — 1)y, 0} = p{(&* — 1), 0} + {0, ¥’} + r{y, «* — 1}
= {p(@® — 1)’ + ry, qy* + r(@’ — 1)}
for some p, q,r in S. Then (x + 1)(2* — 1)y* = p(x® — 1)’ + ry, from
which it follows that r = — (x + 1)(@* — 1)y + #'(¢* — 1)’ + »”, where
eS8 and " €@’ But then
O=qy* +r@@ —1)=qy — (& + 1)(@* — 1y + '(&* — 1) + r"(2* — 1)
=qy' — (z + 1)(@* — 1)y,

since (2* — 1)’ = @* = 0. But this equation is eagily seen to be impos-
gible, and so we have that {(z + 1)(«* — 1)»? 0} is not in A. The other
2 The proof of Theorem 3.7 has been phrased for p>0. However, the theorem is also

true if p=0, since then the binomial theorem may be used to obtain ¢;€ R; such that
ci®=(e;+uqs) L.
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assertions can be proved in similar fashion.

Suppose now that there exists an automorphism # of F such that
0(A) = B and det(d) =te K. Define a mapping 7: FF— F by t({u, v}) =
{xu,v}. 7 i3 an endomorphism of F' with determinant x. But z =
1+ 2)2—1—x)2 is a unit modulo Q, and hence is a unit in S,
gince @ is the radical of S. Therefore 7 is an automorphism of F.
Clearly 7(A) = B. Set ¢ = 67't; then, replacing ¢t by ¢, we get that ¢
is an automorphism of F' with determinant ¢z, and d(4) = A. Relative
to the given basis of F, ¢ may be represented by a matrix—

(a b) a,bc,deS  ad—be =tz
c d

From the equation—

(-1 0 . a(z — 1) b(a — 1)
e e )

Y 2 —1 ay +c(x* —1) by + d(x* — 1)

it follows that {0, b(2* — 1)} and {cy?, 0} are in A. Write b=
Mz + 1) 4 p(x — 1) + o', where ), £€ K and b’ € Q; then, since @* = 0 and
((z +1)/2)(x +1)=2x + 1 (mod Q), we have that {0, Mz + 1)(x* — 1)y} =
{0, (x + 1)/2)b(x* — 1y’y}e A. If N+ 0, then {0, (x + 1)(=* — 1)y} A4,
contradicting our previous remarks. Hence A = 0. A similar argument
shows that ¢ = 0. Therefore be @, in which case b = b(x* — 1) + by,
where b, b,€ S. It follows from similar reasoning that ¢ = ¢,y + ¢,(x* — 1),
where ¢, ¢, € S.
We then see that

{ay + e(x* — 1), by + d(2* — 1)}
= {ay + c(x* — 1)y + co(x® — 1), b(x* — )y + by + d(x* — 1)}

is in A, and then {y[a + c(2* —1)], («* —1)[by + d]} is in A, since
{(z* — 1)}, 0} and {0, ¥*} are in A. Therefore

w = {0, (xz - 1) [bly - 01(362 - 1) + (d - a)]}
= {yla + c(a® — 1)), (#* — Dby + d)} — [a + e(x* — Dl{y, * — 1}

is in A. Write d —a =Mz + 1) + #(x — 1) + u, where )\, z#c K and
%€ Q. Then, using once again the facts that (x + 1)/2 and (xz — 1)/2
are orthogonal idempotents modulo @ and Q*=0, we obtain that
{0, Mz + 1)(2* — 1)y} = (1 + x)/2)(x* — 1)we A, and hence N = 0, since
{0, (x + 1)(«* — 1)’y} is not in A. ¢ = 0 for similar reasons, and therefore
d—ac@; i.e.,, a =d(mod Q). But then tx =ad — bc = ad = a*(mod Q),
gince b,ce Q. Recall now that S/Q = K, P K,, where K,~ K~ K,.
Let ¢, ¢, be the units of K, K,, respectively; then, under the isomor-



446 STEPHEN U. CHASE

phism just mentioned, (1 + #)/2 maps onto ¢, and (1 — 2)/2 maps onto
&, in which case x = (1 + x)/2 — (1 — x)/2 maps onto ¢, — &,. We have
thus shown that there exists a e K, P K, such that a® = te, — te,. This
can be true only if both ¢ and — ¢ have square roots in K. But this
is impossible unless ¢t = 0, and so we have reached a contradiction.
Therefore 6 cannot exist, and the proof of the lemma is complete.

PropoSITION 4.2. Let R = K|z, y], where K is the field of real
numbers, and set I = ((x*— 1)’ («* — 1) 9°), an ideal in R. Let
F=R@®R, and define submodules A’, B’ of F to be generated by the
rows of the following matrices—

(x* — 1) 0 x(x? — 1) 0
A’ 0 Y B: 0 Y?
Y x?—1 xY 2 —1
and let A=A"+ IF, B=B' + IF. Then AQ R~ B® R, but A » B.

Proof. Set S = R/I; then F/IF~S@ S, a free S-module. Define a
mapping @: F/IF — F|/IF by o({u, v}) = {xu, v}. ® is an endomorphism of
F/IF, and det(®) = «, which is a unit of S; hence @ is an automorphism.
Furthermore, ®(A/IF) = B|IF, from which it follows that F/A ~ F|B.
Therefore, A@ F~ B@ F, by the the theorem of Schanuel [7]. We
may then apply Theorem 3.6 to conclude that AP R~ B R.

Suppose now that A~ B. It is easy to see that rank(l) = 2; hence,
gince IFS AN B, we have from the corollary to Proposition 2.1 that
the isomorphism between A and B can be extended to an automorphism
0 of F. Then det(d) =te K, since K contains every unit of E. Re-
ducing modulo I, we obtain an automorphism & of F/IF such that
0'(A/IF) = B/IF and det(¢’) =t. But this contradicts Lemma 4.1 as
applied to S, F/IF, A/IF, and B/IF. Hence A s B, completing the
proof of the proposition.

In closing, we remark that it is not difficult to see that Theorems
3.6 and 3.7 do not hold for a ring of polynomials in more than two
variables.

REFERENCES

1. M. Auslander and D. A. Buchsbaum, Ramification theory in Noetheriam rings, Amer,
J. Math., 81 (1959), 749-765.

2. M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc., 97 (1960),
1-24.

3. G. Azumaya, Correction and supplements to my paper concerning Krull-Remak-
Schmidt’s theorem, Nagoya Math. J., 1 (1950), 117-124.

4. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings,
Trans. Amer. Math. Soc., 95 (1960), 466-488.



TORSION-FREE MODULES OVER Kz, y] 447

5. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.

6. C.S. Seshadri, Triviality of vector bundles over the affine space K2, Proc. Nat. Acad.
Sciences, 44 (1958), 456-458.

7. R.G. Swan, Groups with periodic cohomology, Bull. Amer. Math. Soc., 65 (1959), 368-370.

PRINCETON UNIVERSITY








