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Introduction, The connection between complex function theory and
the theory of partial differential equations as developed by Bergman
[4] allows one to translate many properties of functions of complex
variables into corresponding properties of solutions of partial differential
equations.

Integral operators introduced and studied by Bergman transform
analytic functions into solutions of elliptic partial differential equations
with analytic coefficients. Under the Bergman integral operator, there
is a one-to-one correspondence between harmonic functions of three real
variables defined in a neighborhood of the origin and analytic functions
of two complex variables. This is a correspondence in a sufficiently
small neighborhood. By applying the method of continuation one passes
to a correspondence in the large. In this way some singularities of
analytic functions are translated into singularties of harmonic functions
in the global sense. Investigations in this direction were conducted by
Bergman [2], [3], [5], Kreyszig [9], [10], Mitchell [12], Gilbert [7] and
the author [14].

The present paper is concerned with further relations between
singularities of harmonic functions and the analytic functions with which
they are associated. By means of the operator, criteria for a harmonic
function to have certain singularities are found by considering subse-
quences of coefficients of a series development of the harmonic function.

The Bergman operator is introduced in § 1. In § 2 some theorems
relating subsequences of coefficients of a series development and possible
singularity curves are proved. It is proved in § 3 that the harmonic
function represented by a Bergman operator of a certain general form
also satisfies a system of ordinary linear differential equations. A special
case of this result is discussed in § 4.

3L The Whittaker*Bergman operator for harmonic functions. The
operator

(1.1) H(x, V,z) = 3^ \f(u, e^dt

transforms an analytic function f(u, eu) of e{t and
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(1.2) n = x + ί(y cos t + z sin t)

into a harmonic function of three real variables x, y, z [4].
Setting eu = ξ and

X=x,Z=i(* + iv), Z* = -hi* ~ iy)

we have

(1.3) u = x + zζ + z*ς-1

and (1.1) becomes

(1.4) H(X, Z, Z*) = ±\ f(u, ζ) *L .
2 τ π J \ζ\=i ζ

The generated function H{X, Z, Z*) is complex valued. Taking the
real part, we obtain a real harmonic function [3], [5].

2. Some relations between subsequences of coefficients of a series
development of a harmonic function and its singularities* Bergman [2]
has shown that every (complex) harmonic function of three variables
defined in a neighborhood of the origin can be represented in a sufficiently
small neighborhood of the origin in a series of the form

(2.1)

where

(2.1a)
27Γ̂  J ifι=i f (fc + m)!

Pf(cosί) are associated Legendre polynomials ([15], p. 392) and r, 0, φ
are spherical coordinates ([4], p. 42).

In a sufficiently small neighborhood of the origin the series (2.1)
converges absolutely and uniformly. The coefficients {am+k>m} form a
triangular array

(2.2) α 0 2 α 1 2 α 2 2 α 3 2 α 4 2

^ 0 3 ^ Ί 3 ^ 2 3 ^ 3 3 ^ 4 3 ^ 5 3

Information about the character and the location of the singularities
of the harmonic function can be obtained from the coefficients (2.2) of
the representation (2.1).
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For future reference, Hadamard's theorem on polar singularities
will be stated [8], [6].

Let

Define

(2.3)

where

lv = Mm I VAl 3" I ,

(2.4)
Cn+P+1

'n+p

Necessary and sufficient conditions that f(z) = Σ c

nz
n should have

at most p poles and no other singularities on the circumference of its
circle of convergence are that

ί = _ L , i = 0, 1, 2, •• , 3 > - 1 and lp < — L .

It is then possible to determine a polynomial

(2.5) P(z) - 1 + axz + - - + apz*

such that the radius of P(z)f{z) is >r and the poles of f(z) are the
roots of P(z) = 0.

By considering subseries of (2.1) summed over a single index it is
possible to apply Hadamard's theorem and relate subsequences of coef-
ficients of a series development to singularities of the harmonic function.

THEOREM 2.1. Let

(2.6) H(X, Z,Z

(2.7) F4X, z, z*) = £

£ Σ *.
m=0 fc = - w

With the coefficients {am+k0,m} associate the numbers

(2.8)

where

lj* ' = Ίίm p = 0, 1, 2,
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(2.9)

am+ko+p,m+p

m+ko+p,m+p ^m+ko+p+l,m+p am+kQ+2p,m+2p

If JW — i/r i+1, % = 0,1, 2, , p — 1, cmd ϊ^o) < l/rp+1 then it is possible
to determine a polynomial Pko(u) of degree p see (2.5). If Pko(u) = 0 has no
multiple roots and [H — Fko] is an entire harmonic function then (2.6)
has p branch line singularities [4] on the sphere x2 + y2 + z2 = r2. T7&e
branch lines lie in the planes x = xv, where \ xv \ > | xv+11 ^ = r cos 1̂

| v can be determined from the coefficients {am+k m} see [3].

Proof. In a sufficiently small neighborhood (2.7) can be written as

(2.7)'

where

(2.10)

FkQ(X, Z, Z*) =

qkQ(u) =

The necessary and sufficient conditions that qko(u) should have at
most p poles and no other singularities on its circle of convergence are
that

for i = if 2, - 1 and Vp

kQ) [6], [8] .

Denote the poles on the circle of convergence by

(2.11) auai9 -- ,ap .

By hypothesis, the poles are simple. qko(u) can then be written in
the form

(2.12)
P h

— 2iι
V=I (^ — av)

Q(u)

where Q(u) is a power series with radius of convergence greater than
r. If qkQ(u) has singularities only at al9 , aPf then Q(u) is an entire
function.

Carrying out the integration as in (2.7)' obtain

(2.13) Ϊ^§L + 1 f Q{u)ζk^dζ.
ι=i ^ — av 2πι )\ζ\=i

When k0 = 0 the first term (for fixed v) is



SINGULARITIES OF A HARMONIC FUNCTION 325

(2.14) A- [ # = 1

2πi J \ζ\=i (u - av)ξ V(x - a,)2 + y2 + z2

where the square root must be chosen so that the quantity

-(a - O + V(x - Q 2 + y2 + z2

(iy + z)

(one of the two zeros of the denominator of the integrand) lies within
the unit circle. The integral is well-defined for those points where
x Φ (Reav), and for the plane x = (Reav) those points which also satisfy
y2 + z2 < (Imavγ. The function (2.14) constitutes one branch of a two
valued function which becomes infinite along the circle.

(2.15) x2 + y2 + z2 = r2 , x = (Reav) = r cos ξv .

The circle is a "branch-line" analogous to a branch-point of multiple
valued functions of a complex variable.

The poles (2.11) all lie on the same circle of radius r and can be
denoted as

(2.16) α v = r(cos ξv + i sin | v ) .

For k0 > 0, the branch lines are the same ([4], p. 47).
The value of \ξ1\ such that \ξx \ < | £ v | , ^ Φ 1, can be determined

by applying the following theorem of Mandelbrojt [11]:
Without loss of generality, suppose the circle of convergence of

/(z) = Σ a>»z* is unity. Put dn(h) = aoh
n + Cla.h^1 + - αn, (h ^ 0),

and d are the binomial coefficients.

R(h) = lim # | dn(h) \ , [22(0) = JB = 1] .
ίi = oo

The function R(h) possesses, for h = 0, a derivative from the right

R+'(0) = limh =+0

and I R+'(0) \ ̂  1.
Putting R+f(0) = cos φ, one o/ ίfee points e±iφ is the singular point

°f f(z) which is on the circle of convergence nearest the point 1.
llxl can be found by setting

(2.17) ^ a m + k Q > m = a n

and applying Mandelbrojt's theorem. To obtain the argument of (aσ)9

that is, the value of \ξσ\, apply the same procedure to

(2.18) Ίl (u - ajqk(u) .
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A special case of Theorem 2.1 was proved by Bergman [3], [5].
The series (2.1) representing a harmonic function can be summed

according to various arrangements. In Theorem 2.1 the distinguished
subseries correspond to vertical columns in the array (2.2).

The branch lines corresponding to polar singularities of these dis-
tinguished subseries are circles with centers on the #-axis lying in planes
normal to the #-axis.

Developing our considerations, it is of interest to introduce a new
operator (suggested by Bergman)

H = W(H) = W(F*) + W(H - F*) ,

(2.19) F*(XfZ9Z*)=^±a^Λ u^ψ ,

generating harmonic functions of such nature that to some properties
of {a2n,n} correspond singularities of H = H{X, Z, Z*) of a certain type.

One can obtain an operator W as follows: let h(τ) — ̂ a2ninzn and

let {an} satisfy the Hadamard conditions insuring that h(τ) has finitely
many poles on the circle of convergence as the only singularities in
I τ I < co. If in addition one requires that these poles are of the first
order, then

(2.20) h(τ) = Σ - ^ V + g^ '

and g(τ) is an entire function. We define

(2.21) W(F*)

where s is no longer the unit circle, but a conveniently chosen closed
curve in the f-plane which contains the origin. Then the harmonic
function H will possess singularities of a certain type. Notice that if
G is an entire harmonic function, then W(G) — G. We shall discuss
two applications of this idea from which the details of the procedure
will be clearer.

If (2.1) is summed according to a sequence of coefficients which are
parallel to the left or right leg of the triangular array (2.2), then the
branch lines corresponding to polar singularities of these distinguished
subseries will be circles which are tangent to the #-axis at the origin.

THEOREM 2.2. Let

(22.2) H = W(H) = W(F*) + W(H - ί7*)

1 ~ »-i r -r*df
2πi ά^ok^m ' )\ζ\=i ζ
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With the coefficients {a2n>n} (which is the subsequence along the right
le9 of (2.2)) associate the numbers

(2.23) I* = ϊίϊn I D** \lln

where

If If = l/rί+1, i = 0,1, 2, p - 1 αwd Z* < l/r*+1 then it is possible to
determine a polynomial P*(w) of degree p see (2.5). If P*(w) — 0 has no
multiple roots, the above poles are the only singularities of ^a2n>nτ

n

f

and [H — F*] is an entire harmonic function then (2.22) has p
branch-line singularities. Each branch-line is along a circle in x, y, z
space which is tangent to the x-axis at the origin, the planes of the
circles contain the x-axis, and the centers of the branch-line circles all
lie on the circle

(2.25) x2 + y2 + z2 = r2 , x = 0 .

REMARK. Using the consideration of the first part of this section,
one can establish conditions for {a2nιn} in order that h(τ) has distinct
poles and that these poles are the only singularities of h.

Proof. From the definition of W and our assumptions it follows that

(2.26) H = J ^ f Γ Σ — ^ - 5 - + g(«ζ)W +(H- F*) .Σ 5 + g(«ζ)W
μ-=0Uζ — Pμ J ζ

Since H — F * and g(τ) are entire functions, we get the above described
singularities by carrying out the integration

(2.27)

For fixed μ this gives

(2.28) -^-ί ^
v ' 2πi2πi)*(uξ-βμ)ξ

K +

Z* - βμ (-x + Vx2

where the curve s is chosen so that besides ξ = 0 only one of the roots
of Zξ2 + Xζ + (Z* - βμ) = 0 lies within s and where β* = /SjL + ίβ*..

A formal calculation shows that the branch-lines are along the
circles
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[χ2 + {y- βl)2 + (z + β\γ = (
(2.29)

{vft. + zβi = o
which are tangent to the α -axis at the origin with centers at (0, βl, — β]).
Since by hypotheses

(2.30) β* = r(cos I* + i sin ξ*) ,

the centers of the branch-line circles all lie on the circle (2.25).

THEOREM 2.3. Let H be defined by (2.21) and (2.22), with

2ni m=0 fc=-m m J|£|=l ζ

(2.31) F**(X, Z, Z*) = - ^ Σ α
2π^ o.κ

hypothesis is the same as the previous theorem modified so
that the distinguished sequence of coefficients {αo>j is the subsequence
along the left leg of (2.2).

The conclusion is the same as Theorem 2.2.

Proof. The proof is a modification of the proof of the previous
theorem. Write (2.22) as

<2 32) β -

denoting the poles by

(2.33) 7lf . - , 7 , .

For fixed μ, integrating the first term gives

(2.34) cμ ί
- ΎjVX2 ~4Z*(Z- τμ)

where the path s is chosen appropriately (see remark after (2.28) and
7μ = 7Ϊ. + iΊl.

A formal calculation shows that the branch-lines are along the circles

( } I try1
 ~ O T 2 - 0

A comparison shows that the circles (2.35) and (2.29) are in related
families.
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Since the branch-lines depend only on the denominator of the inte-
grand [4], Theorems 2.2 and 2.3 can be extended to summing over any
parallel "diagonal" of (2.2). The branch-lines will be circles similarly
situated, although the singular harmonic function will in general differ
according to the diagonal distinguished. Indeed, for n large enough
the subseries associated with any "diagonal" parallel to the right leg
can be written as

(2.36) v?(Z a.n-.Λ^Y)
n

3* Other rearrangements* It is possible to sum the series (2.1) by
other rearrangements. Polar singularities associated with the dis-
tinguished subsequence of coefficients correspond to other possible singu-
larity curves. In general, a distinguished subseries would be

1

ΛnU{U ζ ) ζ ξ

where N, M, K, ω are fixed constants and \M\ < N.
Interchanging summation and integration and supposing that the

coefficients are such that the series has polar singularities similar to
those of the previous theorems, the harmonic function (3.1) can be written

(3 2) J^(
2πi )\ζ\=2πi )\ζ\=ia(uNζM)m i

where Q(u, ζ) is a polynomial in u and ζ.
The possible singularity curves of (3.2) depend only on the denomi-

nator of the integrand. Assuming that the polar singularities are simple
the general class of possible singularity curves for (3.2) will be the
same as for

(3.3) F(X9 Z, Z*) = — ( ^

where a is a complex number [14].
If iVΞ> 2 the explicit evaluation of the integral (3.3) in closed form

is difficult. Some information about the possible singularity curves, can
be found by indirect means, however. It will be shown in the next
theorem that the harmonic function (3.3) also satisfies a system of
ordinary linear differential equations with rational coefficients. The
theory of these ordinary differential equations can then be used to
study the singularities of this class of solutions.

THEOREM 3.1. The harmonic function
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(3.3)

where u = X + Zζ + Z*ξ~1, satisfies ordinary, linear, homogeneous
differential equations, with respect to X, Z, Z*, respectively, while
keeping the remaining two variables fixed, of order

r^2N+l.

Proof. The proof will be given for the ordinary differential equation
with respect to X (keeping Z, Z* fixed). The proofs for the other cases
are analogous.

For convenience, set

ζ = eu, dζ = iζdt

and write (3.3) as

(3.3)
Zeut + Xeιt

2τr

0
2πi J

where

τ ^ _ e{N~M)τt

Q

and

Q = (ue'Y - ae{N-M)it .

The ordinary differential equation is of the form

(3.4) M{F) ΞE AQF + AλFl + + ArF^ = 0 .

Since

2τri Jo

it is sufficient to prove that

(3.5) M(V) = A0V+A1V
1

x+- .+ ArVlrΛ = R(t)

where

(3.6) R(t) = —{(1 - eu)PVQ(ι-r))
dt

and
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(3.7) P = 1 + Σ P*M ,
V = l

the pv and I to be determined.
The derivatives of V with respect to t and with respect to X each

have V as a factor.

(3.8) ®Σ=Vt= V[i(N- M) - QtQ-*]

(3.9) ?Z =
to

(3.10) 7βίB -

- F[β2iίiV(iV-

(3.11) Vxxx = - Θ F ^ W ^ O
f GV[eutN2(N

- V[eutN(N-

In general,

(3.12) 7,w - constant VWNiue

Expanding (3.6), obtain

(3.13) Λ(t) = FQ-r{-ΐβ^(iV - M + 1)PQ
+ (i - eu)(PtQ - rPQt) + (N - M)PQ} .

After substituting (3.9)-(3.13) into (3.5) multiply both sides of (3.5)
by Qr and omit the common factor V. Then each side of the resulting
equation is a polynomial in (eu). If in (3.7), we choose

(3.14) I = 2N(r - 1) - 1

then each side of the resulting equation will have the same degree,
namely 2Nr. Since equality holds for arbitrary t, the coefficients of
each power of (eu) on the left side may be equated to the coefficient
of the same power on the right side of the equation.

Thus we obtain a system of 2Nr + 1 linear equations. If we choose

r = 2N + 1

then the number of equations equals the number of unknown coefficients:

Ao, Au , Ar; p19 p2, , Vΰ (Po = 1) .

In order to be able to determine these coefficients it suffices that
the determinant D(X, Z, Z*) of these coefficients does not vanish identi-
cally. If D = 0, it can easily be shown that there is a subdeterminant
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which does not vanish identically. In the case D = 0, the order r of
the differential equation is less than 2N + 1.

In that case where D = 0, but the rank of D is positive, we may-
use the linear dependence between the columns to determine the coef-
ficients of the differential equation.

The rank of D cannot be less than I (see below). For the subdeter-
minant consisting of the columns corresponding to the coefficients
Pit P2, , Vu and the rows corresponding to eu, e2it'", eιit is in triangular
form with (Z*)* on the main diagonal and zeros above the main diagonal.
Assume that the rank R^l and that the nonvanishing 12-rowed de-
terminant is, for convenience, in the upper left hand corner.

If we denote the coefficients of the determinant by {cifj}, then
because of the linear dependence of R + 1 columns we can write

(3.15) cμ,δ = 7iCμl + 72cμ2 + + ΎRC^ ,

where μ = 1, 2, , R) δ > R.
From this system we can solve for yl9 γ2, , 7R and let

7i = Pi, 72 = p a , , Ύι = Pi] 7 m = Au 7 i + 2 = A2, , ΎR = AR^ .

Similar theorems for certain classes of partial differential equations
in two real variables have been proven. Bergman [1] showed that a
class of solutions of An + u(x, y) = 0 also satisfy ordinary linear differ-
ential equations. Nielsen [13] and Kreyszig [9], [10] have dealt with

Δψ + a(x, y)-^- + b(x, y)~¥- + g(x9 y)ψ = 0 .
dx dy

4 A special case* A special, but typical, case of (3.3) will now
be considered.

In (3.1) let N= 2, M = 1, K = 0, ω = 0. Then

{AJ = { O

where the sequence of coefficients on the right refers to the triangular
array (2.2). Specializing (3.3) gives

(3.3)'

The harmonic function (3.3)' also satisfies ordinary differential
equations of order r ^ 5. The differential equation with respect to X
will be constructed.

Denote
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(4 1) V- 1 eit - eit

u2ξ - a {ueιtf - aeu Q

where Q = (Ze2it + Xeu + Z*f - aeu.

The differential equation to be constructed is

(4.2) M(V) - Λ F + AxVl + + AδV™ =

where

(4.3) {(i
αί

= FQ-5{-2ie<iPQ + (i - eu)(PtQ - 5PQt) + PQ)

By formal computation

V = euQ-χ

V. = -2V{V{ue»)}

V'j = V{-2eHV + 8(ueuYV2}
( ' ) γ>» = V{24(ueu)euV2 - 48(weit)3^3}

V2 - 288(ueuYeiι F 3

w = V{-720(ueit)e'itVs + 3680(ttβ«)V F 4 - 3440(tteit)5 F5} .

Substituting (4.3) and (4.4) into (4.2), multiplying both sides by Q5

and omitting the common factor F, we obtain an equation of polynomials
each of degree 20 in (βu) from which is obtained a linear system of
twenty-one equations in the twenty-one unknowns

which can be solved. p0 = 1.
Equating the coefficients of the same powers of (eu) we have

- 5Z*8a) + A1(-2Z*S)
= ί(-2^*2 - 8XZ* -

(4.5)

It can immediately be seen that the coefficient

Λ = i(Z*)~s.

Integration with respect to t from 0 to 2π will not affect the co-
efficients but (4.2) will become

(4.6) M{F) = 0
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If the linear system is arranged so that the kth row corresponds
to (e11)^1 and the columns from left to right correspond to pl9 p29 , p15,
Ao, , Aδ the determinant of the coefficients on the left side of the
system has an interesting form.

The elements of the first row are zero except for the column cor-
responding to Ao, which element is Z*10. Denoting elements of D by
(cpq) we have

(4.7) cv^ = ivZ*\ ι> = 2,3, . . . , 1 6 .

while the elements in the rows above these elements are zero. We
also have the elements

each equal to (Z2) multiplied by an imaginary constant, while the
elements in the rows below (4.8) are all zero.

The 6 x 6 matrix in the upper right hand corner is in triagnular
form where the elements of the main diagonal are: const. Z*10, const.
Z*9, . . . , const. Z*5.

The 6 x 6 matrix in the lower right hand corner has only zero
elements below the other diagonal and on that diagonal, the elements are,
(reading from bottom to top and left to right).

const. Z10, const. Z\ , const. Zh .

The possible singular curves of the solutions of the differential
equation will be those curves for which the determinant Ώ is zero. It
is easy to see that the columns are linearly independent and hence that
the determinant does not vanish identically.

These results on singularities can be extended to the equation

+ + + f i f ) φ +fφ o
dx2 dy2 dz2 dx2 ΘZdZ*

where Z = i(z + iy), Z* = -i(z- iy), r2 = x2 + y2 + z2 = x2 - 4ZZ*.
See [2], [3].
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