GENERALIZED SPECTRAL OPERATORS
ON LOCALLY CONVEX SPACES

FuMi-YUkl MAEDA

Introduction. The theory of spectral operators on Banach spaces
has been successfully generalized to a certain class of locally convex
spaces by Ionescu Tulcea [4], using the definition of spectra introduced
by Waelbroeck [7]. On the other hand, Foias [3] considered a notion
of generalized scalar operators on Banach space. The present work,
suggested by these two works, develops a theory of very general
spectral operators on locally convex space for which the space of linear
continuous operators is quasi-complete.

Let A be a complex algebra with unit 1 endowed with a topology
which makes A a separated locally convex linear space and for which
the mapping (x, y) — a2y is separately continuous. Given an element
of A, the resolvent set o(x) of x is a subset of C=cCuU {eo} (the one
point compactification of the complex plane C) consisting of all points
A in C such that there is a neighborhood V, of A in which ¢l — z is
invertible in A for (e V, — {} and the set {(¢#1 — x)™; pe V) — {o}}
is bounded in A. sp(x)=C — o(x) is called the spectrum of z. If
o ¢ sp(x), then x is called regular. One may refer to [7] and [5] for
more details.

Waelbroeck [7] showed that if A is quasi-complete and 2z is a
regular element of A, then the formula

f(@) = (1/27ti)Syf(>»)(>»1 — @)y

defines an element f(z) of A for any function f holomorphic in a
neighborhood of sp(x), where v is a closed contour surrounding sp(x)
and contained in the domain where f is holomorphic. Let D be an
open set containing sp(x) and let H(D) be the space of all holomorphic
functions on D. Then the mapping f— f(x) is a continuous homo-
morphism (linear multiplicative mapping) of H(D) into A. The function
fOA) =1 is mapped to 1 and the function f(A) =\ is mapped to x.
Conversely, if there is a continuous homomorphism # of H(D) into A
such that #(1) =1 and u(\) = z, then u(f) = f(x) for all fe H(D).

If A is an algebra given above, we have an isomorphism x— L, of
A into (A) defined by L,y = xy for all yc A. Here, <(A) is the
algebra of all continuous linear operators. The isomorphism is topological,
if we consider the simple convergence topology in <#(A4). Furthemore,
if L, is invertible in .#(A), then sois # in A. Therefore, the spectral
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theory on A can be reduced to that on ¢2(A4), or more generally, to
that on <“(F), where E is a separated locally convex space such that
Z(E) contains a quasi-complete full subalgebra with respect to some
topology.

Thus, we shall consider in this paper a locally convex space E for
which < (F) is quasi-complete with respect to the uniform convergence
topology on bounded sets in a family &; & is a collection of bounded
sets whose union is the whole space E. We remark that in this case,
E itself is quasi-complete. Ionescu Tulcea [4] defined a scalar operator
Se L(E) as follows: Suppose there is a family & ={,. . }.en »en Of
bounded complex Radon measures on C and suppose there exists a
continuous homomorphism f— U(f) of the algebra of all bounded com-
plex-valued Borel measurable functions on C into the algebra <2(FE)

such that U(1) = I and Sfdﬂx,x, = {U(f)x, 2" for all xc E, ' ¢ E’'. If
the support of & (= the closure of the union of all supp ¢, ., ' € E’)
is compact and if (Sw, &> = Sxduz,x,(x) for all we E, o' ¢ E’, then we

say that S is scalar. If, in this case, f is holomorphic in a neighbor-
hood of sp(S), then we see that f(S) = U(f). Hence the mapping
f—U(f) can be regarded as a linear multiplicative extension of the
mapping f—f(S). Similarly, a generalized scalar operators S introduced
by Foias [3] is an operator in %“(F) for which there is a continuous homo-
morphism U of & =(C) into . (F) such that U(1) = I and U(\) =S. Here
again, the mapping f— U(f) is an extension of the mapping f— f(S).
These observations motivate us to define very general scalar operators (Defi-
nition 1.2) and furthermore, general spectral operators of transformations
(Definitions 3.1 & 3.2). We will see that many properties of scalar
and spectral operators given in [1], [2], [3], [4], which called for more
restricted conditions, remain true for our generalized ones. In particu-
lar, the decomposition theorem on spectral operators into scalar and
quasi-nilpotent parts will be given in the form of Theorem 4.1 and 4.2
for the generalized spectral transformations. One should remark that
only significant condition put on E is that < (F) is quasi-complete.
Finally, it is well to mention that a linear difierential operator with
constant coefficients defined on the space of rapidly decreasing functions
on R" is a generalized scalar operator by our definition (Example 2.5).

1. @-scalar operators and @-spectral representations.

We consider an algebra @ of Borel measurable complex valued
functions on C(=R?. If o is a Borel set in C, then the set of all
f€@ such that supp f < o will be denoted by @, and the set of all
f€® with compact support is denoted by @,.

DEFINITION 1.1. An algebra @ of functions is called basic if it has
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the following properties:

(i) For any compact set 6(=C) and an open set ¢ 2 9, there is
a function fe @ such that f =1 on a neighborhood of d, f = 0 outside
of cand 0 = f < 1.

(ii) If fe @ has a compact support and if @ is holomorphic in a
neighborhood of supp f, then fpc @,

(iii) @ is a separated topological algebra with a topology stronger
than that of uniform convergence on each compact set; @, is dense in
@; the mapping @ — fp is continuous from H(o) into @ for any open
set o containing supp f, fe€ ..

Examples of basic algebras

(1) <2 =% (C)=the algebra of all locally bounded Borel measur-
able functions on C with the topology of uniform convergence on each
compact set.

(2) Z,= <#(C). The topology is the inductive limit topology of
By’s.

(8) &°=Z&"C) = the set of all continuous functions with the
same topology as 7.

(4) &= ZAC). The inductive limit topology of &;"s is given.

(5) @&~=%=(C)= the set of all infinitely differentiable functions
with the topology of uniform convergence of all derivatives on each
compact set.

(6) &= = &=(C) is the space &7 (R’) of L. Schwartz [6].

Given a basic algebra @ and an open set o, let H(@; o) =
{fe®; floe Ho)} = {fe®; f is holomorphic in ¢.} Then the mapping
f—flo is a continuous homomorphism of H(®?; o) into H(os) by (iii) of
Definition 1.1.

Throughout this paper, let E be a separated locally convex space
over C such that ¢2(F) is quasi-complete with respect to a topology
of uniform convergence on bounded sets in a family &. We always
consider this given topology unless otherwise specified. Then, E itself
is quasi-complete and any set in &“(F) which is bounded for the simple
convergence topology is bounded for the given topology. The set of all
regular elements, i.e., the set of all T'e ¢Z (&) with compact spectrum,
will be denoted by Z(E).

Given T e &(E) and an open set 0 Dsp(T), p(T) e & (F) is defined
for any @ e H(o). (See the introduction.) Therefore, f(T) = (f/o)T)
is defined as an element of <(E) for each fe H(®; o). The mapping
F—f(T) is a continuous homomorphism of H(@; o) into <L (E).

DEFINITION 1.2. Te <#(FE) is called @-scalar if the mapping f— f(T')
of H(®;0) into &~ (F) can be extended to a continuous homomorphism
of @ into <~ (E) for any open set ¢ containing sp(T).
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DEFINITION 1.8. A continuous homomorphism U of @ into &#(F)
such that the identity is in the weak closure (i.e., the closure with
respect to the simple convergence topology) of the image of U in <#(F)
is called a @-spectral representation.

ProposiTioN 1.1. If U 4s a @-spectral representation, then
{U(f)x; fe®, xc E} ts dense in E. In fact, there is a mnet {f,} of
functions f,e® with compact support such that U(f.)x — x for all
re k.

Proof. Since the identity I is in the weak closure of the image
of U, there is a net {f.} of functions in @ such that U(f,)r — x for
all xe E. Since @, is dense in @ and since U is continuous, we can
choose f,’s having compact supports.

ProrPosITION 1.2. If U 14s a @-spectral representation and if
constants are in @, then UQ1) = I and hence

{U(f)x; fe@,xcE}=FE.

Proof. UQ)U(f)x = U(f)x for all fe®, xc E. Hence by Propo-
sition 1.1, U(1) = L.

PRrRoOPOSITION 1.3. Let U be a @-spectral representation with com-
pact support. Let 6, = supp U and let f,e® be equal to 1 imn a
neighborhood of 6,. Then, U(f,) = I and S = U\f,) (\f, is the function
AN, It is an element of @ by the condition (ii) of Definition 1.1.) s
@-scalar and sp(S) = 0,. In fact, U is an extension map of f— f(S).

Proof. For any fe@, supp (f — fof) = Cd,. Hence U(f — fof) =0
or U(f) = U(f,)U(f). Hence by Proposition 1.1 we have U(f,) = I.
Thus, if we know that sp(S) = d,, then we obtain U(f) = f(S) for
fe H(®; o) for any o D sp(S) from the uniqueness of f(S) and the
proposition will be proved. The fact that sp(S) = d, can be shown in
the way of the proof of Proposition 1, Foias [3]. We remark that if
pésupp fo, then (¢ — \)7'fy(A) €@ by the condition (ii) of Definition 1.1
and it is holomorphic in £t.

This proposition and the following one, which is immediate from
the definition, show the direct relationship between @-scalar operators
and @-spectral representations.

ProposITION 1.4, If S ts @-scalar, then an extension map f— U(f)
of f—f(S) is a @-spectral representation and hence sp(S) = supp U
(by the previous proposition).
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REMARK 1. Let @, and &, be two basic algebras. If @, S @, and
the topology of @, is stronger than that of @, induced on @, and @, is
dense in @,, then any @,spectral representation is @,-spectral, so that
any @,-scalar operator is @,-scalar. In particular, any <#-scalar operator
is #’and & ~-scalar and any <%,-scalar operator is & -and &, ~-scalar.

REMARK 2. It can be shown that if E is reflexive, then any & °-
spectral representation or &’-spectral representation is <#-spectral.

REMARK 3. If Se & (F) is H-scalar, then the family {«,.} of
complex Radon measures defined by g, ..(f) =<U(f)zx, x> for fe B,
xeE and 2’e E’, where U is an extension map of f— f(S), is a
spectral family of measures corresponding to S in the sense of Ionescu
Tulcea [4]. Therefore, if E is barreled and if we consider the topology
of uniform convergence on each bounded set, the extension map U
must be unique by [4].

On the other hand, the following example shows that the extension
may not be unique to &~ when S is & >~-scalar: Let S be & *=-scalar
with an extension f— U(f) of f—f(S) to &=. Let @ #0 be a
nilpotent operator in (), say Q*™ = 0, commuting with all U(f),
fez=. Now, we define

V(F) = U) + UDNR + UWDNQ[2 + -+ + UDRH k!,

where D = 9/0g, + 10/0E,(\ = &, + 1&,). If f is holomorphic in a neighbor-
hood of sp(S)= supp U, then Df =0 there, so that V(f)=U(f)=f(S).
It is elementary to see that V is a homomorphism of &> into < (KE).
Since f— Df is continuous in &=, f - V(f) is continuous. Thus, V is
an extension of f— f(S) to be a continuous homomorphism on &= and
is different from U.

DEFINITION 1.4. Let X be a set and let ¥ be an algebra of com-
plex valued functions on X with a locally convex topology. Given a
basic algebra @, ¥ is called @-admissible if

(i) fope¥ for any fe€@ and e ¥, and

(ii) f—fo® is a continuous mapping of @ into ¥ for each pe ¥,

We remark that (i) implies that ¥ contains constant functions.
The following examples of @-admissible algebra are of special interest:

ExAMPLE 1.1. Let X be a separated topological space and let ¥
be the set of all bounded continuous functions on X with the uniform
convergence topology. Then ¥ is & '-and & ’-admissible.

ExAMPLE 1.2. Let X be a locally compact space and let ¥ be the
topological direct sum of two algebras ¥, and C; ¥ =¥, C, where
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¥, is the set of all continuous functions with compact support. The
topology of ¥, is the inductive limit topology of ¥,.’s like that of &%
Then ¥ is < -admissible. In fact, if fe&' then foop =
{fo@ — f(0)} + f(0) and fo@ — f(0) e ¥,. Furthermore we have

[1f 0@ — f(0) |l suppe = [|.Fls + [ SO = 2 flsu10) »
where ¢ = p(X).

ExaMpPLE 1.3. Let X be a &*-manifold and ¥ be the set of all
z=-functions on X whose derivatives are all bounded. If we consider
the topology of uniform convergence of all derivatives in X, then ¥ is
z=-and &, -admissible.

ExAMPLE 1.4. Let X be a & ~-manifold and let ¥, be the set of
all z~-functions with compact support. The topology of ¥, is the
inductive limit topology like that of &,>. Then ¥ =¥, P C is &,>-
admissible.

THEOREM 1.1. Let @ be a basic algebra and let ¥ be a @-admissi-
ble algebra of functions on X. If V is a continuous homomorphism
of T into <L (K) such that V(1) = I, then V(p) is @-scalar whenever
pe¥ is bounded, sp(V(p)) S p(X) and, in fact, f— V(fo®) is an
extension map of f— f(V(®)).

Proof. It is clear that f— V(fo®) is a homomorphism of @ into
ZL(E). Let Uf)= V(fop). Since f—fop, fop— V(fop) are
both continuous, f— U(f) is continuous. If f; =1 on a neighborhood
of P(X), then foop =1 and (\f,))op = @. Therefore, U(f,) = I and
U(f,) = V(p). Thus, U is a @-spectral representation. It is easy to
see that supp U< @(X). Therefore, by Proposition 1.8, V(p) = U(\f,)
is @-scalar, sp(V(®)) = supp US ¢(X) and f— U(f) = V(fop) is an
extension of f— f(V(9)).

COROLLARY. If @ 1is any one of the algebras given in the examples
after Definition 1.1 and if U is a @-spectral representation, then U(f) is
@-scalar for any bounded function fe@.

Proof. If @ = &Z, z° or &=, then @ itself is @-admissible and if
O =&, & or &=, then ¥ =0 @ C is P-admissible, by Examples 1.2
and 1.4. Hence, taking V(f + a) = U(f) + al for the latter case,
U(f) = V(f) is @-scalar by the theorem.

2. Subspaces corresponding to a @-spectral representation. Given a
@-spectral representation U, we consider (see [3]) subspaces E;, of E
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for open or closed set ¢ in C as follows:

DEeFINITION 2.1. If ¢ is an open set in C, we define
By, = Useo, USNE) = {U(f); fe@,, vc E}.
If 0 is a compact set in C, then we define
E, s = N{Ey..; 0: open set such that ¢ D d}.

The following properties are easy to verify;

(i) If o is an open set, then Ej ., is a linear subspace of E; if ¢
is a compact set, then Ej ; is a closed linear subspace of E.

(ii) Let o, and o, be either open or compact. If o, N ¢, = ¢, then
Ey ., N Ey ., ={0}; if 0, < 0, then Ey, S Ey,,.

(iii) Ey .= U{Eys 0: compact} is dense in E. If supp U =0, is
compact, then K = Ej ;.

The property (iii) follows from proposition 1.1 and 1.8.

ProposITION 2.1. If fe@ 1s equal to 1 in a meighborhood of a
compact set o, then U(f)x = x for all xc E, ;.

Proof. Let f=1 on o, an open set containing 6. If ze Ej;,
then there is ge @, and ye E such that x=U(g)y. Then, U(f)x =
U U@y = Uf9y = Uy = =.

PROPOSITION 2.2. x€ Ey,; of and only if U(f)x =0 for any f such
that supp f N d = ¢. (0 is a compact set.)

Proof. Suppose x€ E;;. Then, there is ge @, such that xz =
U(g)y, where o = Csupp f. Hence U(f)x = U(f)U(g)y = U(0)y = 0.
Conversely, suppose U(f)x =0 for any f such that suppfNo=¢. Let
o be an arbitrary open set (bounded) containing 6 and let f,e@, be
equal to 1 in a neighborhood of 4. Suppose first that x € E, ... Then
there is a compact set 0, 0, 27, such that xe Ey;. Let f,e® be
equal to 1 in a neighborhood of ¢,. Then, U(f,)» = 2 by Proposition
2.1. On the other hand, f, — f, =0 on a neighborhood of 4, i.e.,
supp (f- — f)) N 0 = ¢. Hence, by our assumption, U(f, — fo)x = 0 or
U(fs)x = U(f)x = «. Therefore, € E,,. Since o Dd is arbitrary,
x € Eys. Next, let « be arbitrary. Take a net {f,} given in Proposition
1.1. Then, U(f.)x € Ey . and for fe @ U(HU(f)e = U(f)U(f) 2z = 0.
Hence, by the above argument, U(f.)x€ E,;. Since Ej,; is closed,
x = lim, U(f.)x € Ey .

ExampLE 2,1, Let @ be an arbitrary basic algebra and let J, be
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the homomorphism of @ into <Z(F) defined by
JNf) = fO)I for all fe® (LeC is fixed) .
Then, J, is a @-spectral representation and

0}, if regd

FE —_
TR, i nes.

Hence M e & (F) is @-scalar.

EXAMPLE 2.2. Let @ = <% and let U be a ®@-spectral represen-
tation. If we write P; = U();) for any Borel set 0, where y; is the
characteristic function of 4, then P; is a projection on E and E,; =
Py(E). The family {P;; 0 Borel set} is a spectral measure in the sense
of Dunford or Ionescu Tulcea. (See [2] and [4].)

ProposiTION 2.3. If U is a @-spectral representation and if 0 is
a compact set such that E, s + {0}, then

sp(UNS3)Ey ) S0,

where fsc @ 1s equal to.1 in a neighborhood of o.

Proof. Let ne (Co. Choose f5€@ such that f; =1 in a neighbor-
hood of 6 and f; =0 in a neighborhood N of X,. For any Te ¢~ (E),
we write T; = T/E,;. We know that U(f:)s = I,. Put S; = UNSfs)s
and f.(0\) = 00t — A\)* for e N. Then f.€@ and U(f,) is holomor-
phic in p£e N, hence so is U(f.)s. Now, we have

(s — SHU(fu)s = HLeU(Sfs) — UM U]
= U((tfs — M)t = N7
= U(fD)s = [U(Fo)s] = Ls .

Therefore, \,€ 0(S;). Hence, Cé = o(S;) or sp(S;) S 9.

With the help of subspaces E, ; and of Proposition 1.3, we are able
to extend the notion of @-scalar operators to nonregular operators and
to non-continuous transformations;

DEFINITION 2.2. A transformation T on E with domain D, is called
@-scalar if there is a @-spectral representation U such that Ej, .. S D,
and Ty(=T/E, ;) = U(\f;) for any compact set J, where f;€@ is equal
to 1 in a neighborhood of d.

The following proposition is an immediate consequence of the defi-
nition:
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PropPoSITION 2.4. If T is @-scalar, then T U(f)e £ (E) for any
n=12 -+ and for any fe®, Furthermore, TU(f)= U(f)T on
E,. for any fe® and T(Ey;) S Eys.

PROPOSITION 2.5. Given any @-spectral representation U, there ts
a @-scalar closed transformation T to which U 1is the corresponding
representation.

Proof. Using the function fse@ as before, we define T on Ej;
by T/E; s = UMNfs)/Ey ;s for each compact set 6. Then, T is uniquelly
defined on E, . (by Propositions 2.1 & 2.2). Next, taking a net {f,}
given in Proposition 1.1, we define

D, = {xe E; lim, T.U(f,)x exists.}

and Tx = lim, T..U(f,)x for x€ D,. Then we can show that the trans-
formation T with domain D, is closed (in a way similar to the proof
of Lemma 2.2 of Bade [1]). This transformation 7' is obviously @-scalar
and U is the corresponding @-spectral representation.

We remark that the closed transformation constructed above is
the minimal closed extension of 7. Therefore, (7, D,) is determined
independent of the choice of a net {f.}.

PROPOSITION 2.6. Suppose @ contains constants. Then the stat-
ment of Theorem 1.1 remains true even if @€ ¥ 1is not bounded, i.e.,
under the same conditions of Theorem 1.1 V(@) is @-scalar for all
pe¥. In particular, U(f) is @-scalar for all fe @ +f U is a P-spectral
representation and @ is either &, z° or ==.

Proof. Let 6 be compact and let fye@ be as before. Then
W\fs)o@ =@(fsop) for any e ¥, so that Ufs) = V(@) V(fsop) =
V() U(fs). Thus, Unfs)s = V(P)s.

ExamMPLE 2.8. Unbounded self adjoint operators on Hilbert space,
or more generally, unbounded spectral operators of scalar type on
Banach space (see [1] and [2]) are .Z-scalar.

ExAMPLE 2.4. The operator T, on C®, given in Example 1 of [5],
i «#-scalar. If the sequence 4 is unbounded, then T, is not regular.
In faet, U(f) = T,,, where f(4) is the sequence {f(\), f(\y), +--}, is
the corresponding <Z-spectral representation.

ExAMPLE 2.5. Consider the space .&=.9“(R") of rapidly decreasing
functions on R" given by L. Schwartz [6], i.e.,
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& ={pez=(R"); |a*¢P(x)| < ¢, for all xe R", k and p} .
(k = (kl’ "'rkn)v b= (plr Tty pn), kj, p; = 09 1’ 2y "')

The topology of .&¥ is defined by a countable number or norms
pP,.l=01.:--,m=0,1,.--:

P, ,(p) = sup{|z*pP(x)|; xcR", 0= |k| =1, 0= |p| = m}.

Then & is a Fréchet space and (%) is complete. Let P =
P(xy, --+,2,) be a complex valued polynomial in %, ---,2,. Corre-
sponding to this polynomial, we consider a linear operator T, on .&*
defined by T,@ = P-p for all pe.”. It can be seen that T, e & (<°).
Also, for fe &=, we define U(f) by Us(f)® = (f o P)p. Again, by a
somewhat elaborate computation, we can see that Up(f)e (<) for
all fe &, and that the mapping f— Up(f) is continuous from &~
into &(<”). It is easy to construct a sequence {f,} of functions in
&, such that lim,.. Us(f.)® = @ for any p€ . Thus, U, is a &,
spectral representation. For this U,, E;,; = {p€.&; supp ¢ & P7'(9)}.
Then we can see that T, is <,~-scalar with the corresponding repre-
sentation U,.

The Fourier transformation F' is a topological isomorphism of &
onto itself ([6]. Chap. VII, §6). Let us denote by F the induced
automorphism on <£(<9); FT = FTF for Te <2(<°). Then, T and
FT have same spectral properties; in particular, if 7T is scalar, so is
FT. Since T, is &,>-scalar, FT, = P(D) is 7z ,“-scalar, where P(D) is
the differential operator P(D,, ---, D,), D, = (1/%)(0/dx,), on .&¥. Thus,
any linear differential operator with constant coefficients is &, -scalar
on .&“. The corresponding & ,~-spectral representation is, in general,
expressed in an integral form. For instance, if n =1 and P(D)= D =
1/2)(d/dx), then

Ut = (tf2m)|” |” e f(s, 0)p(wds du
for fe &, and pe &¥(R). If 0 is a compact set whose intersection
with the real line is a closed interval [—L, L], then

E;, s = {pe &(R); # can be extended to an entire
function of exponential type L.}

We remark that sp(P(D)) = sp(Tp) = image of P. Therefore, in par-
ticular, sp(d/dx) = the imaginary axis.

3. @-spectral transformations. Now that we have the subspaces
Ey; s, the following definitions of @-spectral operators and @-spectral
transformations are natural extensions of the spectral operators given
by Dunford [2] and Ionescu Tulcea [4].
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DEFINITION 3.1. Given a basic algebra @, Te <~ (F) is called a @-
spectral operator if there is a @-spectral representation U such that

(i) T commutes with U, i.e., TU(f) = U(f)T for all fe @,

(ii) sp(T/E, ;) S 6 for any compact set 0 such that E,; + {0}.

Similarly, for a noncontinuous transformation:

DEFINITION 3.2. Given a basic algebra @, a transformation 7 with
domain D, S E is called a @-spectral transformation if there is a @-
spectral representation U such that

( i) Ey.S Dy

(ii) TU(f) = U(f)T on E, . for all fe @;

(iii) T "U(f)e << (F) for all n =1,2, .- and fe®,;

(iv) sp(T/Ey; ;) < 6 for any compact set ¢ such that Ej,; = {0}.

ExAMPLE 3.1. Propositions 2.3, 2.4 and Definition 2.2 imply that
any @-scalar transformation is @-spectral.

ExamMpPLE 3.2. Any spectral operator defined by Dunford [2] and
by Ionescu Tulcea [4] is <#-spectral.

REMARK 1. By the condition (7), we see that D, is dense in F.

REMARK 2. If T is closed and if the closed graph theorem holds
in E, then the condition (iii) follows from (i) and (ii).

REMARK 3. If E is barreled and if we consider the bounded con-
vergence topology in & (F), then any <% -spectral operator T is spectral
in the sense of Ionescu Tulcea [4]. Hence, the corresponding represen-
tation U is uniquely determined by 7. On the other hand, Foias [3]
showed that U may not be unique if @ = &,°. Later (Theorem 3.1),
we shall show that the spaces Ej ; are uniquely determined in any case.

- ProposITION 3.1. If T 1is @-spectral and U 1is a corresponding
@-spectral representation, then supp U = sp(T).

Proof. Suppose not, i.e., suppose supp UnN o(T) +# ¢. Let
pesupp U N p(T) and let o be a neighborhood of ¢ contained in o(T).
Then there is fe @, such that U(f) #+ 0. Then, Ey ., # {0}. Since
T is @-spectral,

ST/ Ey sups) S supp f N sp(T) = ¢ .

This is impossible. Hence we have the proposition.

COROLLARY. If T s @-spectral and sp(T) ts compact, then
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Te < (E) (and in fact Te Z(K)).

Proof. If sp(T) is compact, then supp U is compact by the pro-
position. Hence E = Ey .0 & D, S E, so that D, = E.

ExaAmPLE 3.8. Let Jy(v € C: fixed) be the @-spectral representation
given in Example 2.1. Then T is @-spectral with respect to J, if and
only if Te &2(F) and sp(T) = {\}.

Proof. Let Te < (E) and sp(T) = {\}. Obviously, T commutes with
Jr. If E; ;+{0}, then N€d and E; ,=E. Then, sp(T/E;, ;) =sp(T)=
{\}& 6. Therefore, T is @-spectral with respect to J,. Conversely if T
is @-spectral with respect to J,, then sp(T) = sp(T/E;, ) S {\}, since
E;,.y = E. sp(T) being nonempty, sp(T)={\. Te L (F) by the
above corollary. Thus, in this case, T'= Al + @, where Q is a quasi-
nilpotent operator.

ProPOSITION 3.2. Let T be @-spectral and let U be a corresponding

@-spectral representation. If W — T)x =0 for some e C and x € D,,
them x e Ey , and

Ul f)x =0 for any f€@ such that \¢ supp f;
U(f)x =0 for any fe€ @ such that f =1 wn a neighborhood of .

Proof. Let 6 = supp f be compact and let A ¢ 4. Since sp(T) S 9,
there is R, ; such that

W —T)R.s =R.;(\ — T)s = I .
Since U(f)xe E,;, we have
U(f)x = Rys(M — TYU(f)x = By sU(FYM — The =0 .

Since @, is dense in @, U(f)x = 0 even if supp f is not compact. Hence,
we conclude that xe Ej, , by Proposition 2.2, The last statement of
the proposition follows from Proposition 2.1.

ProposiTiON 3.3. If T is @-spectral, then it has the single valued
extension property, i.e., if we have

M—-—Te,=0M—Ty,==,

where x, and Y, are holomorohic in open sets o, and o, respectively,
then x, = yn on 0, () 0,.

Proof. We can prove this in a way similar to the proof of Theorem
1 in Foias [3], using the previous proposition,
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We are now able to define the spectrum of an element ¢ E with
respect to a @-spectral transformation 7, as was done in Dunford [2]
and Foias [3] for special cases:

DEFINITION 3.3. Let T be @-spectral and let x € E. The set of all
xoeé’ such that there is a holomorphic function #,(€ D,) defined in
a neighborhood N of )\, satisfying the equation (A — T)x, = « for
Ne N — {c}, will be denoted by p,(x). The set sp,(x) = ¢ — or(x) is
called the spectrum of x with respect to T.

By the previous proposition, x, is uniquely determined on p,(x) and
2y =0 — T)'x if Ne p(g’) — {oo}. Therefore, sp,(x) S sp(T). Obvi-
ously, sp,(x) is closed in C.

THBOREM 3.1. If T 1is @-spectral and U is a corresponding @-
spectral representation, then K, = {x; spy(x) & 6} for any compact set
0. Therofore, E, s = Ey; s 1s uniquely determined by T.

The proof of this theorem is again similar to those of Proposition
3 and Theorem 2 of Foias [3]. If we use our Proposition 2.2, then the
proof will become simpler.

4. Decomposition theorem for @-spectral transformations. In what
follows, we always assume that 7 is a @-spectral transformation, U is
a corresponding @-spectral representation and Ky = E,; = Ky ;s is the
subspace of E for each compact set §, given in the previous sections.

LEMMA 1. Let 6 be a compact set such that Es + {0}, Given
re CF, let py = SuDPues | 1t — N|. Then, for any x€ E;, r > 0., the set
{OI — Tyz/r;n=1,2, .-} is bounded in E.

Proof. Let \,€ Cd be fixed. Since x € Ej, sp,(x) =06 by Theorem 3.1.
Hence, there is a holomorphic function x, defined outside of 4, satisfy-
ing (\ — T)x, =«. In particular, x, is holomorphic for | — | > 0,,
so that

& NI — Ty
2, = N o 7
A nz_;") (7\; . )Vo)n+1
for |[x — A, | > p,, and the series converges uniformly for |x — \,| = 7,
r > p,, (see, for example, Dunford [2]). Therefore, we have the pro-
position.

COROLLARY. Let supp f be compact, A& suppf and let 0,, =
SUDuesupps | £ — M. Then, for any xc€kE and r > p,,, the set
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{0 — Ty Uf)zlr; n=1,2, -} is bounded in E.

Proof. If U(f)x =0, then it is trivial. If U(f)x # 0, then E,,, #
{0}, so that we can apply the lemma for U(f)x and ¢ = suppf.

Given a compact set 9, let f;€ @, be equal to 1 in a neighborhood
o of 4.

LEMMA 2. Let fe® and suppf C 6. Then, for any gc @, the set
([T — UM U U(g)r; m = 1,2, -+ -} is bounded in L (E) for every
r > 2d,, where d, is the diameter of supp .

Proof. First, let us remark that
U(f)"U(f) = U(f)

and
U U(f) = UNS) .

Now, we can write

[T — UG U(S) Ulg)
= (] — U3 — Ol — T} U() Ul9)

= 35, 1 (J)ud — TSGR — T U V)
= 35 (=17 U100 = WS 10L — T U0)

Let 7, = 7/2 and let f,€® be such that fi =1 on a neighborhood of
suppg and d, < r.' Then, since U(9)U(f) = Ulg),

[T — UGS U Ula)ir
= /2) 5D} {UI0w = W= ArHOWT = Ty~ V@)™

If vesupp f-fi S suppfi, then [N —r| < 0; 0 <7 Hence, the set
{(vo — N - fulrk; B =0,1, -} is bounded in @ by (iii) of Definition 1.1.
Hence, B, = {U[(v — Nf-fillrk; B =0,1, --+} is bounded in Z(E).

On the other hand, since P, < P55 < 71, it follows from the
above corollary that the set {(A\I — T)*U(g)z/r; k=0,1, ---} is bounded
for all ze E. Then, B, = {(\I— T)*U(g)/rf; k=0,1, ---} is bounded in
Z(E). The set {{T— UN)I"UW)U(g)r"; n=1,2,---}is contained in
the convex hull of B,B,, which is again bounded. Hence the set is
bounded and the lemma is proved.

We are now ready to prove the following proposition, to which the
main theorem of decomposition is a corollary:

1 We choose € Csupp f1 such that oy a, < 71.
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PROPOSITION 4.1. Given a compact set 6 and fse @, if supp f < o,
fe@, then the set

{{T — UGS Ul n = 1,2, -}
1s bounded in < (K) for any € > 0.

Proof. Given ¢ > 0, we can construet (by (i) of Definition 1.1) a
finite ¢/2-decomposition of unity on 9, i.e., a finite set of functions
{Pi}ti=1.2..ee. 1, By € @, such that the diameter of each supp %, is less than
€/2, S\h, = 1 In a neighborhood of . Then, we have

T — U0 US)er = SAT — TOAII UG U/ -

By Lemma 2, the set {{T — U\fs)|"U(f) U(h)/e"; n = 1,2, -+ -} is bounded
for each k, since ¢ > 2d, . Hence, we obtain the proposition.

THEOREM 4.1. Any @-spectral transformation T can be expressed
T=S+Q on Ey., where S 1s a @-scalar transformation and Q is a
transformation defined on E,. such that lim, . |[{Q"x,z'>["* =0 for
oll xe E,. and '€ E'. If T s closed, then S and @ can be taken as
closed transformations with domains containing E, ...

Proof. Let U be a corresponding @-spectral representation to T
and let S be the closed @-scalar transformation constructed in Propo-
sition 2.,5. Let Q =T— S on D, = D, N Ds. Then if T is closed, so
is Q. For any x€ E, ., there is a compact set o such that xec E,;.
Then, Sz = U(\f;)x. Hence, taking fe @, such that suppfc o and
expressing x = U(f)y, we have Q" = [T — U\f5)]"U(f)y. Therefore, it
follows from Proposition 4.1 that lim, ... |<Q"z, 2" |'* = 0 for all ' c E’'.

REMARK 1. The example of Bade [1] shows that
lim,_..KQ"z, z"H[V" = 0
might not be satisfied for all e D,.
REMARK 2. If @ = <7, then S, hence Q, are uniquely determined
by T, provided that £ is barreled. But it is not true if @ is arbitrary.

(See Remark 3 in the previous section.)

COROLLARY. If T s ®@-spectral and sp(T) is compact, then T =
S + Q where S is a @-scalar and Q is a quasi-nilpotent operator.

A converse theorem can be given in the following form:
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THEOREM 4.2. Let S be a @-scalar transformation with a corre-
sponding @-specral representation U. Let Q be a transformation such
that Es .. S Dy, QU(F) = U(f)Q on Es., Q"U(f)e & (E) for all feo,
and lim,_ .. |{Q"x, "> " =0 for any € Ey.., 2’ € E'. Then T=S+Q
defined on D, = Dy N D, ts a @-spectral transformation.

Proof. It is enough to show that sp(Ts;) S o6 for any compact set
0. For any ),ec Cd, let fe @, be equal to 1 in a neighborhood of 4,
equal to 0 in a neighborhood N of \,. Since U(f)xc E, . for any 2 ¢ E,
lim, .. [<Q"U(f)x, > "™ = 0 for all xe€ E, 2’ E’. Then, the series

B, = 3@ U — N+

converges uniformly for [¢— N |=¢, for some ¢ > 0. (Note that
(et —N)"*'f(\)e@ for all £k and each term of the series belongs to
Z(K).) Since < (F) is quasi-complete, B, e < (&) and is holomorphic
in pg:lpgp—7|=¢ It is easy to see that R.(uI— S — QU(f)x =
(wl—S—QR.U(f)r =« for all xe Eg;. Therefore, R, is the inverse
of Iy — Ts on Egy; and R,; is holomorphic in a neighborhood of X\,
Hence, M€ o(T5) or Co = o(Ty), i.e., sp(Ts) S 0.
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