
GENERALIZED SPECTRAL OPERATORS
ON LOCALLY CONVEX SPACES

FUMI-YUKI MAEDA

Introduction. The theory of spectral operators on Banach spaces
has been successfully generalized to a certain class of locally convex
spaces by Ionescu Tulcea [4], using the definition of spectra introduced
by Waelbroeck [7]. On the other hand, Foias [3] considered a notion
of generalized scalar operators on Banach space. The present work,
suggested by these two works, develops a theory of very general
spectral operators on locally convex space for which the space of linear
continuous operators is quasi-complete.

Let A be a complex algebra with unit 1 endowed with a topology
which makes A a separated locally convex linear space and for which
the mapping (x, y) —• xy is separately continuous. Given an element x
of A, the resolvent set p(x) of x is a subset of C = C U {<*>} (the one
point compactification of the complex plane C) consisting of all points
λ in C such that there is a neighborhood Vλ of λ in which μl — x is
invertible in A for μe Vλ — {<*>} and the set {(μl — a?)"1; μe Vλ — {co}}
is bounded in A. sp(x) = C — p(x) is called the spectrum of x. If
co $ sp(x), then x is called regular. One may refer to [7] and [5] for
more details.

Waelbroeck [7] showed that if A is quasi-complete and x is a
regular element of A, then the formula

/(*) =

defines an element f(x) of A for any function / holomorphic in a
neighborhood of sp(x)y where 7 is a closed contour surrounding sp(x)
and contained in the domain where / is holomorphic. Let D be an
open set containing sp(x) and let H(D) be the space of all holomorphic
functions on D. Then the mapping f—>f(x) is a continuous homo-
morphism (linear multiplicative mapping) of H(D) into A. The function
f(χ) ΞΞ 1 is mapped to 1 and the function f(X) = X is mapped to x.
Conversely, if there is a continuous homomorphism u of H(D) into A
such that ^(1) = 1 and u(X) = x, then u(f) = f(x) for all feH(D).

If A is an algebra given above, we have an isomorphism x—>LX of
A into J5f (A) defined by Lxy = xy for all ye A. Here, jSf (A) is the
algebra of all continuous linear operators. The isomorphism is topological,
if we consider the simple convergence topology in £f(A). Furthemore,
if Lx is invertible in Sf(A)9 then so is x in A. Therefore, the spectral
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theory on A can be reduced to that on jδ^(A), or more generally, to
that on £f(E)9 where E is a separated locally convex space such that
J*f(E) contains a quasi-complete full subalgebra with respect to some
topology.

Thus, we shall consider in this paper a locally convex space E for
which Jzf(E) is quasi-complete with respect to the uniform convergence
topology on bounded sets in a family @; @ is a collection of bounded
sets whose union is the whole space E. We remark that in this case,
E itself is quasi-complete. Ionescu Tulcea [4] defined a scalar operator
Se^f(E) as follows: Suppose there is a family ^ — {μ*. *'}*€».*'€*?' of
bounded complex Radon measures on C and suppose there exists a
continuous homomorphism f—* U(f) of the algebra of all bounded com-
plex-valued Borel measurable functions on C into the algebra ^f(E)
such that U(l) = I and ί/dμβiβ, = <U(f)x, x'> for all a? e E, %' e E'. If
the support of ^ " ( = t h e closure of the union of all supp μXtX,, x'eE')
is compact and if (Sx, #'> = l XdμXtX,(x) for all a? e i?, a?' e £", then we
say that S is scalar. If, in this case, / is holomorphic in a neighbor-
hood of sp(S), then we see that f(S) — U(f). Hence the mapping
/—• U(f) can be regarded as a linear multiplicative extension of the
mapping /—>f(S). Similarly, a generalized scalar operators S introduced
by Foias [3] is an operator in £f(E) for which there is a continuous homo-
morphism U of <tf°°{C) into £f(E) such that U(l) = / and J7(λ) = S. Here
again, the mapping /—> U{f) is an extension of the mapping f—*f(S).
These observations motivate us to define very general scalar operators (Defi-
nition 1.2) and furthermore, general spectral operators of transformations
(Definitions 3.1 & 3.2). We will see that many properties of scalar
and spectral operators given in [1], [2], [3], [4], which called for more
restricted conditions, remain true for our generalized ones. In particu-
lar, the decomposition theorem on spectral operators into scalar and
quasi-nilpotent parts will be given in the form of Theorem 4.1 and 4.2
for the generalized spectral transformations. One should remark that
only significant condition put on E is that ^f(E) is quasi-complete.

Finally, it is well to mention that a linear difierential operator with
constant coefficients defined on the space of rapidly decreasing functions
on Rn is a generalized scalar operator by our definition (Example 2.5).

1Φ Φ-scalar operators and Φ-spectral representations.
We consider an algebra Φ of Borel measurable complex valued

functions on C( = R2). If σ is a Borel set in C, then the set of all
/ e Φ such that supp / C σ will be denoted by Φσ and the set of all
feΦ with compact support is denoted by Φc.

DEFINITION 1.1. An algebra Φ of functions is called basic if it has
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the following properties:
( i ) For any compact set δ(gC) and an open set σ a 8, there is

a function fe Φ such that / = 1 on a neighborhood of δ,f = O outside
of σ a n d O g / g l .

(ii) lί feΦ has a compact support and if φ is holomorphic in a
neighborhood of supp /, then fφeΦ.

(iii) 0 is a separated topological algebra with a topology stronger
than that of uniform convergence on each compact set; Φc is dense in
Φ; the mapping φ—*fφ is continuous from H(σ) into Φ for any open
set σ containing supp f,fe Φc.

Examples of basic algebras
(1) ^ = ^ ( C ) = the algebra of all locally bounded Borel measur-

able functions on C with the topology of uniform convergence on each
compact set.

(2) &c — &e(C). The topology is the inductive limit topology of

(3) ίfo = <ir°(C) = the set of all continuous functions with the
same topology as &.

(4) ^ c ° = 9fc°(C). The inductive limit topology of ίfδ°'s is given.
( 5 ) ^°° = ^°°(C) = the set of all infinitely differentiate functions

with the topology of uniform convergence of all derivatives on each
compact set.

(6) <Sfc°° = ^c°°(C) is the space &{R2) of L. Schwartz [6].
Given a basic algebra Φ and an open set σ, let H(Φ; σ) =

{feΦ; flσeH(σ)} = {feΦ; f is holomorphic in σ.} Then the mapping
f-^f\o is a continuous homomorphism of H(Φ; σ) into iJ(ί7) by (iii) of
Definition 1.1.

Throughout this paper, let £ be a separated locally convex space
over C such that ^f(E) is quasi-complete with respect to a topology
of uniform convergence on bounded sets in a family @. We always
consider this given topology unless otherwise specified. Then, E itself
is quasi-complete and any set in £?(E) which is bounded for the simple
convergence topology is bounded for the given topology. The set of all
regular elements, i.e., the set of all Te^f(E) with compact spectrum,
will be denoted by £?r(E).

Given Te^fr(E) and an open set σ z> sp(T), φ(T) e £?{E) is defined
for any φeH(σ). (See the introduction.) Therefore, f(T) = (flσ)(T)
is defined as an element of £f{E) for each feH(Φ; σ). The mapping
f—*f(T) is a continuous homomorphism of H(Φ; σ) into jSf (£?).

DEFINITION 1.2. Te^fr(E) is called Φ-scalar if the mapping f->f(T)
of H(Φ; σ) into £f(E) can be extended to a continuous homomorphism
of Φ into £?{E) for any open set σ containing sp(T).
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DEFINITION 1.3. A continuous homomorphism U of Φ into
such that the identity is in the weak closure (i.e., the closure with
respect to the simple convergence topology) of the image of U in J*f(E)
is called a Φ-spectral representation.

PROPOSITION 1.1. If U is a Φ-spectral representation, then
{U(f)x; feΦ, xeE} is dense in E. In fact, there is a net {/J of
functions f^eΦ with compact support such that U{fa)x —+ x for all
xeE.

Proof. Since the identity I is in the weak closure of the image
of U, there is a net {/*} of functions in Φ such that U(fa)x —> x for
all xeE. Since Φc is dense in Φ and since U is continuous, we can
choose /Vs having compact supports.

PROPOSITION 1.2. If U is a Φ-spectral representation and if
constants are in Φ, then U(l) — I and hence

{U(f)x;feΦ,xeE} = E.

Proof. U(ΐ)U(f)x = U(f)x for all feΦ9 xeE. Hence by Propo-
sition 1.1, 17(1) = /.

PROPOSITION 1.3. Let U be a Φ-spectral representation with com-
pact support. Let δQ = supp U and let foeΦ be equal to 1 in a
neighborhood of δ0. Then, U(f0) = I and S = Z7(λ/0) (λ/0 is the function
λ/oCV) It is an element of Φ by the condition (ii) of Definition 1.1.) is
Φ-scalar and sp(S) = δ0. In fact, U is an extension map of f

Proof. For any feΦ, supp (/ - fj) = Cδ0. Hence U(f - fof) = 0
or U(f)= U(fo)U(f). Hence by Proposition 1.1 we have U(fo) = I.
Thus, if we know that sp(S) = δ0, then we obtain U(f) = f(S) for
feH(Φ;σ) for any σ D sp(S) from the uniqueness of f(S) and the
proposition will be proved. The fact that sp(S) — δ0 can be shown in
the way of the proof of Proposition 1, Foias [3]. We remark that if
μ £ supp /0, then (μ — λ)" 1/^) e Φ by the condition (ii) of Definition 1.1
and it is holomorphic in μ.

This proposition and the following one, which is immediate from
the definition, show the direct relationship between 0-scalar operators
and Φ-spectral representations.

PROPOSITION 1.4. If S is Φ-scalar, then an extension map f—*U(f)
of f—>f(S) is a Φ-spectral representation and hence sp(S) = supp U
(by the previous proposition).
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REMARK 1. Let Φλ and Φ2 be two basic algebras. If Φx £ Φ2 and
the topology of Φ1 is stronger than that of Φ2 induced on Φx and Φ2 is
dense in Φ2, then any 02-spectral representation is (^-spectral, so that
any $2-scalar operator is (^-scalar. In particular, any ^-scalar operator
is ^° and <^~-scalar and any ^.-scalar operator is £f;°-and ^c°°-scalar.

REMARK 2. It can be shown that if E is reflexive, then any ^°-
spectral representation or ^-spectral representation is ^-spectral.

REMARK 3. If Sε£f(E) is ^-scalar, then the family {μx,x) of
complex Radon measures defined by μx,Λf) — (U(f)x,xfy for / e ^ ,
# e lϊ and x' 6 £", where Ϊ7 is an extension map of / —> /(S), is a
spectral family of measures corresponding to S in the sense of Ionescu
Tulcea [4]. Therefore, if E is barreled and if we consider the topology
of uniform convergence on each bounded set, the extension map U
must be unique by [4],

On the other hand, the following example shows that the extension
may not be unique to ^°° when S is ^"-scalar: Let S be ^"-scalar
with an extension /-> U(f) of f->f(S) to 9f°°. Let Q Φ 0 be a
nilpotent operator in £?(E), say Q*fl = 0, commuting with all £/(/),
/e^°° . Now, we define

F(/) = U(f) + U(Df)Q + U(D*f)Q2l2l + + U(Dkf)Qklkl ,

where D = 9/Θ& + id/d£2(X = & + i|2) If / is holomorphic in a neighbor-
hood of sp(S)= supp Z7, then Df=0 there, so that V(f) = U(f)=f(S).
It is elementary to see that V is a homomorphism of ^°° into ^f(E).
Since f—*Df is continuous in ^°°, f-^V(f) is continuous. Thus, F is
an extension of f-^f(S) to be a continuous homomorphism on <έf°° and
is different from 27.

DEFINITION 1.4. Let X be a set and let Ψ be an algebra of com-
plex valued functions on X with a locally convex topology. Given a
basic algebra Φ, Ψ is called Φ-admissίble if

( i ) / o φ e Ψ for any / e $ and φ 6 Ψ, and
(ii) f—+foφ is a continuous mapping of 0 into Ψ for each φeΨ.
We remark that (i) implies that Ψ contains constant functions.

The following examples of (^-admissible algebra are of special interest:

EXAMPLE 1.1. Let X be a separated topological space and let Ψ
be the set of all bounded continuous functions on X with the uniform
convergence topology. Then Ψ is ^c°-and ^-admissible.

EXAMPLE 1.2. Let X be a locally compact space and let Ψ be the
topological direct sum of two algebras Ψx and C; Ψ = Ψτ 0 C, where
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Ψλ is the set of all continuous functions with compact support. The

topology of Ψx is the inductive limit topology of Ψltz& like t h a t of ^ Λ

Then Ψ is ^ - a d m i s s i b l e . In fact, if fe <gfc°, then foφ =

{f°Φ~ /(0)} + /(0) and / o φ - /(0) e Ψx. Furthermore we have

δU{0} f

where δ = φ(X).

EXAMPLE 1.3. Let X be a i f °°-manifold and Ψ be the set of all
< °̂°-functions on X whose derivatives are all bounded. If we consider
the topology of uniform convergence of all derivatives in X, then Ψ is

^c°°-admissible.

EXAMPLE 1.4. Let X be a ^°°-manifold and let Ψx be the set of
all ^°°-functions with compact support. The topology of Ψ1 is the
inductive limit topology like that of ^°°. Then Ψ = Ψλ@C is ifc~-
admissible.

THEOREM 1.1. Let Φ be a basic algebra and let Ψ be a Φ-admissi-
ble algebra of functions on X. If V is a continuous homomorphism
of Ψ into £?{E) such that V(l) = I, then V(φ) is Φ-scalar whenever
φeΨ is bounded, sp( V(φ)) S Φ(X) and, in fact, f-»V(foφ) is an
extension map of f-+f(V(φ)).

Proof. It is clear that / —* V(f © φ) is a homomorphism of Φ into
^f(E). Let U(f) = V(f o <p). Since f-+foφ, foφ-^V(foφ) are
both continuous, /—• U{f) is continuous. If f0 = 1 on a neighborhood
of φ(X), then /0 o <p = 1 and (λ/0) o φ = φ. Therefore, U(f0) = I and
U(Xf0) — V{φ). Thus, U is a 0-spectral representation. It is easy to
see that supp U^φ(X). Therefore, by Proposition 1.3, V(φ) = Ϊ7(λ/O)
is (^-scalar, sp{V{φ)) = supp U^φ(X) and /—> !7(/) = V(fo<p) is an
extension of f—>f(V(φ)).

COROLLARY. // Φ is any one of the algebras given in the examples
after Definition 1.1 and if U is a Φ-spectral representation, then U(f) is
Φ-scalar for any bounded function feΦ.

Proof. If Φ = &, 9f° or if°°, then Φ itself is ^-admissible and if
φ = &ef ^c° or ίfc°°, then Ψ = Φ © C is (^-admissible, by Examples 1.2
and 1.4. Hence, taking V(f + a) = U(f) + al for the latter case,
U(f) = F(/) is ^-scalar by the theorem.

2. Subspaces corresponding to a 0*spectral representation^ Given a
0-spectral representation ί7, we consider (see [3]) subspaces Eu>σ of E
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for open or closed set σ in C as follows:

DEFINITION 2.1. If o is an open set in C, we define

Eπ,σ = \JfeΦσ ϋ(f)(E) = {U(f)x; feΦσ,xeE}.

If δ is a compact set in C, then we define

EUt8 — Π {Eu.σ'i σ' open set such that (JDS} .

The following properties are easy to verify;
( i ) If σ is an open set, then Eu>σ is a linear subspace of E; if δ

is a compact set, then EUt& is a closed linear subspace of E.
(ii) Let σx and σ2 be either open or compact. If σλ f] σ2 = φ, then

Eπ,σi Π -E^,σ2 = {0}; if σλ g σ2, then Eu>σι s ^,σ 2 .
(iii) £ F i β β = U ί ^ . δ J δ: compact} is dense in E. If supp U = δ0 is

compact, then i? = EU>SQ.

The property (iii) follows from proposition 1.1 and 1.3.

PROPOSITION 2.1. If feΦ is equal to 1 in a neighborhood of a
compact set δ, then U(f)x = x for all x e EUt8.

Proof. Let / = 1 on σ, an open set containing δ. If x e EUth,
then there is g e Φσ and yeE such that χ=U(g)y. Then, U(f)x =
U(f)U(g)y = U(fg)y = C/(^ - x.

PROPOSITION 2.2. x e Eu>δ if and only if U(f)x = 0 for any f such
that supp / Π δ = φ. (δ is a compact set.)

Proof. Suppose xeEUth. Then, there is # e ̂ σ such that x =
C/(̂ )7/, where σ = C supp/! Hence [/(/> - U(f)U(g)y - tf(0)y = 0.
Conversely, suppose U(f)x = 0 for any / such that supp/ίΊ δ = Φ. Let
σ be an arbitrary open set (bounded) containing δ and let fσ e Φσ be
equal to 1 in a neighborhood of δ. Suppose first that x e Eu>00. Then
there is a compact set δl9 δ1 3 ό", such that xeEu>5i. Let foeΦ be
equal to 1 in a neighborhood of 51# Then, U(fo)x = a? by Proposition
2.1. On the other hand, / σ — / 0 = 0 on a neighborhood of <5, i.e.,
supp (/σ — /o) Π δ = 0. Hence, by our assumption, Z7(/σ — /0)a? = 0 or
U(fσ)x = U(fo)x = a?. Therefore, a? e Eπ%σ. Since σ 3 δ is arbitrary,
a; e EUt8. Next, let a? be arbitrary. Take a net {/*} given in Proposition
1.1. Then, U(fΛ)x e Eu>oo and for / e ΦΌl U(f) U(fΛ)x = U(fΛ) U(f) x = 0.
Hence, by the above argument, U(fa)x e EUtS. Since EUtS is closed,
x = \imaU(fω)x e J5^iδ.

EXAMPLE 2,1 Let Φ be an arbitrary basic algebra and let Jh be
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the homomorphism of Φ into <^(E) defined by

j λ ( / ) = f(χ)l for all fe Φ (λ e C is fixed) .

Then, J λ is a (^-spectral representation and

({0}, if X£δ
Ejλ'*~ [ E , i f X e δ .

Hence Xle^f(E) is (^-scalar.

EXAMPLE 2.2. Let Φ = & and let U be a (^-spectral represen-
tation. If we write P5 — £7(χδ) for any Borel set <?, where χδ is the
characteristic function of <?, then Pδ is a projection on E and EUt& =
P5(E). The family {Pδ; 5 Borel set} is a spectral measure in the sense
of Dunford or Ionescu Tulcea. (See [2] and [4].)

PROPOSITION 2.3. // U is a Φ-spectral representation and if d is
a compact set such that EUι5 Φ {0}, then

where f^eΦ is equal to 1 in a neighborhood of 3.

Proof. Let XoeCδ. Choose fseΦ such that / 8 = 1 in a neighbor-
hood of δ and / δ = 0 in a neighborhood N of λ0. For any Te.£f(E),
we write T, = T/EU)5. We know that C7(/δ)δ - Jδ. Put Sδ - Z7(λ/δ)δ

and fμ(X) = fδ(X)(μ - X)'1 for μeN. Then / μ 6 Φ and i7(/μ) is holomor-
phic in μeN, hence so is 27(/μ)δ. Now, we have

- Sa)ϋ(/μ)a -

Therefore, λ0 e ρ(S8). Hence, Cδ Q ρ(S8) or sp(S8) S δ.
With the help of subspaces . E ^ and of Proposition 1.3, we are able

to extend the notion of (^-scalar operators to nonregular operators and
to non-continuous transformations;

DEFINITION 2.2. A transformation T on E with domain Dτ is called
Φ-scalar if there is a Φ-spectral representation U such that Eu>oo §Ξ Dτ

and Tδ(=TIEUι5) = Z7(λ/δ) for any compact set δ, where f5eΦ is equal
to 1 in a neighborhood of δ.

The following proposition is an immediate consequence of the defi-
nition:
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PROPOSITION 2.4. / / T is Φ-scalar, then Tn U(f) e ^f(E) for any
n = l, 2, ••• and for any feΦc. Furthermore, TU(f)= U(f)T on
Eu>oo for any feΦ and T(EUίS) S EUtS.

PROPOSITION 2.5. Given any Φ-spectral representation U, there is
a Φ-scalar closed transformation T to which U is the corresponding
representation.

Proof. Using the function f8 e Φ as before, we define T on EUtS

by T/Eσ>8 — U(Xf5)/Eσ,δ for each compact set δ. Then, T is uniquelly
defined on EUtOti (by Propositions 2.1 & 2.2). Next, taking a net {/„}
given in Proposition 1.1, we define

Dτ = {x e E; limΛ TL U(fa)x exists.}

and Tx — limΛ T* U{f^)x for x e Dτ. Then we can show that the trans-
formation T with domain Dτ is closed (in a way similar to the proof
of Lemma 2.2 of Bade [1]). This transformation T is obviously (^-scalar
and U is the corresponding (^-spectral representation.

We remark that the closed transformation constructed above is
the minimal closed extension of JL. Therefore, (Γ, Dτ) is determined
independent of the choice of a net {/*}.

PROPOSITION 2.6. Suppose Φ contains constants. Then the stat-
ment of Theorem 1.1 remains true even if φeΨ is not bounded, i.e.,
under the same conditions of Theorem 1.1 V(φ) is Φ-scalar for all
ψ e Ψ. In particular, U(f) is Φ-scalar for all feΦ if U is a Φ-spectral
representation and Φ is either &, ^ ° or r

(g
?Q".

Proof. Let δ be compact and let / δ e Φ be as before. Then
(λ/β) o ψ = φ{fh o φ) for any ψ e Ψ, so that C/(λ/δ) = V(φ) V(f* o φ) -
V(φ)U(f8). Thus, ϋ(λ/β)β = V(φ)t.

EXAMPLE 2.3. Unbounded self adjoint operators on Hubert space,
or more generally, unbounded spectral operators of scalar type on
Banach space (see [1] and [2]) are .^-scalar.

EXAMPLE 2.4. The operator TΛ on Cω, given in Example 1 of [5],
is ^-scalar . If the sequence A is unbounded, then TΛ is not regular.
In fact, U(f)= Tf(A), where f{Λ) is the sequence {f(\),f(\), •••}, is
the corresponding ^-spectra l representation.

EXAMPLE 2.5. Consider the space S^~£^{Rn) of rapidly decreasing
functions on Rn given by L. Schwartz [6], i.e.,
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&> = {φ e <έf°°(Rn); I xkφ™(x) | ^ cktP for all xeRn, k and p} .

(ft = (kl9 , ftΛ), p = (pl9 - -,pn), kh pj = 0 , 1 , 2, •)

The topology of ^ is defined by a countable number or norms

P,,m, 1 = 0 , 1 , •••, m = 0 , 1 , ••• :

PiΛψ) = sup {| xkφlp)(x) I; α? e J?*, 0 ^ | ft | ^ Z, 0 ^ | p | ^ m} .

Then y is a Frechet space and ^f(^) is complete. Let P =
P{xu , xn) be a complex valued polynomial in xl9 , αjn. Corre-
sponding to this polynomial, we consider a linear operator TP on £f
defined by TPφ = P-φ for all c p e ^ . It can be seen that TPe£?(^).
Also, for fe <έ?c°°, we define UP(f) by C/P(/)^ = (f°P)φ. Again, by a
somewhat elaborate computation, we can see that UP(f) e ^f(^) for
all / e ^c°° and that the mapping / —> UP(f) is continuous from WΓ
into ^{^). It is easy to construct a sequence {/n} of functions in

.̂°° such that lim^co UP{fn)φ = ^ for any 9? e ^ . Thus, UP is a ^c°°-
spectral representation. For this UP, EUp>5 — {φe<9*; supp φ s P"1^)}.
Then we can see that JΓP is ^c°°-scalar with the corresponding repre-
sentation Z7p.

The Fourier transformation F is a topological isomorphism of ^
onto itself ([6]. Chap. VII, §6). Let us denote by F the induced
automorphism on J ^ ( ^ ) ; FT - FTP" 1 for Te^f(^). Then, Γ and
F T have same spectral properties; in particular, if T is scalar, so is
FT. Since TP is 9fc°°-scalar, FTP = P(D) is ΐf0--scalar, where P(D) is
the differential operator P(A, , Dn), Dk = (l/i)(S/9a?Λ), on ^ . Thus,
an?/ linear differential operator with constant coefficients is ^"-scalar
on £f. The corresponding ^^-spectral representation is, in general,
expressed in an integral form. For instance, if n = 1 and P(D) = D =
(l/i)(dldx)f then

UD(f)φ(t) =

for / e ^c00 and ?>e^(i2). If ί is a compact set whose intersection
with the real line is a closed interval [—L, L], then

9> can be extended to an entire
function of exponential type rg

We remark that sp(P(D)) = sp(TP) = image of P. Therefore, in par-
ticular, sp(djdx) = the imaginary axis.

3* 0-sρectral transformations. Now that we have the subspaces
EjjtB, the following definitions of (^-spectral operators and 0-spectral
transformations are natural extensions of the spectral operators given
by Dunford [2] and Ionescu Tulcea [4].
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DEFINITION 3.1. Given a basic algebra Φ, Te^f(E) is called a Φ-
spectral operator if there is a (^-spectral representation U such that

( i ) T commutes with U, i.e., TU{f) = U(f)T for all feΦ;
(ii) sp(TIEUι5) S δ for any compact set δ such that EUth Φ {0}.

Similarly, for a noncontinuous transformation:

DEFINITION 3.2. Given a basic algebra 0, a transformation T with
domain Dτ ^ E is called a Φ-spectral transformation if there is a Φ-
spectral representation U such that

( i ) EU>COQDT;
(ii) 7 W ) - U(f)T on ^ > c o for all feΦ;
(iii) T*ί/(/) € ^f(E) for all n = 1, 2, and / e Φc;
(iv) sp(TjEπ>ι) gΞ δ for any compact set 3 such that Eσ>& φ {0}.

EXAMPLE 3.1. Propositions 2.3, 2.4 and Definition 2.2 imply that
any (̂ -scalar transformation is Φ-spectral.

EXAMPLE 3.2. Any spectral operator defined by Dunford [2] and
by Ionescu Tulcea [4] is .^-spectral.

REMARK 1. By the condition (i), we see that Dτ is dense in E.

REMARK 2. If T is closed and if the closed graph theorem holds
in E, then the condition (iii) follows from (i) and (ii).

REMARK 3. If E is barreled and if we consider the bounded con-
vergence topology in ^f(E)f then any ^-spectral operator T is spectral
in the sense of Ionescu Tulcea [4]. Hence, the corresponding represen-
tation U is uniquely determined by T. On the other hand, Foias [3]
showed that U may not be unique if Φ = ^c°°. Later (Theorem 3.1),
we shall show that the spaces Eu>5 are uniquely determined in any case.

PROPOSITION 3.1. // T is Φ-spectral and U is a corresponding
Φ-spectral representation, then supp U gΞ sp(T).

Proof. Suppose not, i.e., suppose supp U Π p(T) Φ φ. Let
μesupp U Π p(T) and let σ be a neighborhood of μ contained in ρ(T).
Then there is feΦσ such that U(f) Φ 0. Then, EUtSnvpf Φ {0}. Since
T is Φ-spectral,

sp(TIEσ>supΏf) g supp/ n sp(T) - φ .

This is impossible. Hence we have the proposition.

COROLLARY. // T i$ Φ-spectral and sp(T) is compact, then
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Te^(E) (and in fact Te£fr(E)).

Proof. If sp(T) is compact, then supp U is compact by the pro-
position. Hence E = Eu>sn^u ξΞ= Dτ ξΞ= E, so t h a t Dτ = E.

EXAMPLE 3.3. Let Jk(X e C: fixed) be the 0-spectral representation
given in Example 2.1. Then T is (^-spectral with respect to J λ if and
only if Te^f(E) and sp(T) = {λ}.

Proof. Let Te £f{E) and sp(T) = {λ}. Obviously, T commutes with
J λ . If # J λ , δ =£ {0}, then X e δ and EJλ>8 = E. Then, sp(T/EJλι8) = sp{T) =
{λ}£δ. Therefore, T is 0-spectral with respect to J λ . Conversely if T
is 0-spectral with respect to J λ, then sp(T) = sp(TIEJk>{λ}) £ {λ}, since
EJχtW = E. sp(T) being nonempty, sp(Γ) = {λ}. Te^f(E) by the
above corollary. Thus, in this case, T = XI + Q, where Q is a quasi-
nilpotent operator.

PROPOSITION 3.2. Let T be Φ-spectral and let U be a corresponding
Φ-spectral representation. If (XI — T)x = 0 for some Xe C and xe Dτ,
then xe EσΛk] and

U(f)x = 0 for any feΦ such that λg supp/;
U(f)x — 0 for any feΦ such that f = 1 in a neighborhood of X.

Proof. Let δ = supp/ be compact and let λgδ. Since sp(T) £ δ,
there is i?λfδ such that

(XI- T)5RλιB = J2

Since J7(/)aj e Eσt8, we have

= 0 .

Since (Pβ is dense in <P, U(f)x = 0 even if supp/ is not compact. Hence,
we conclude that xeEUΛλ} by Proposition 2.2. The last statement of
the proposition follows from Proposition 2.1.

PROPOSITION 3.3. // T is Φ-spectral, then it has the single valued
extension property, i.e., if we have

(XI- T)xλ = (Xl- T)yλ = x,

where xλ and yλ are holomorohic in open sets ax and σ2 respectively,
then xλ = yx on σx Π o2.

Proof. We can prove this in a way similar to the proof of Theorem
1 in Foias [3], using the previous proposition,
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We are now able to define the spectrum of an element x e E with
respect to a 0-spectral transformation T, as was done in Dunford [2]
and Foias [3] for special cases:

DEFINITION 3.3. Let T be (^-spectral and let x e E. The set of all
λ0 G C such that there is a holomorphic function xλ( e Dτ) defined in
a neighborhood N of λ0 satisfying the equation (XI — T)xκ = x for
λ e N — {co}, will be denoted by pτ(x). The set spτ(x) = C — pτ{x) is
called the spectrum of x with respect to T.

By the previous proposition, xλ is uniquely determined on pτ(x) and
xλ = (XI~ T)-ιx if Xeρ(T) - {oo}. Therefore, spτ(x) ^ sp(T). Obvi-
ously, spτ(x) is closed in C.

THEOREM 3.1. // Γ is Φspectral and U is a corresponding Φ-
spectral representation, then EUt5 — {x; spτ(x) <Ξ δ) for any compact set
δ. Therofore, Eτ>h = EUιB is uniquely determined by T.

The proof of this theorem is again similar to those of Proposition
3 and Theorem 2 of Foias [3]. If we use our Proposition 2.2, then the
proof will become simpler.

4. Decomposition theorem for Φ^spectral transformations* In what
follows, we always assume that T is a 0-spectral transformation, U is
a corresponding (^-spectral representation and EB = ETt8 = EUι8 is the
subspace of E for each compact set δ, given in the previous sections.

LEMMA 1. Let δ be a compact set such that E5 Φ {0}. Given

Xe Cδ, let pλ — s u p μ € δ \μ — X\. Then, for any xe 2£δ, r > pKf the set

{(XI- T)nx/rn; n = 1, 2, •} is bounded in E.

Proof. Let λ0 e Cδ be fixed. Since xe Eδ, spτ(x) £Ξ δ by Theorem 3.1.
Hence, there is a holomorphic function xλ defined outside of δ, satisfy-
ing (XI — T)xk — x. In particular, xx is holomorphic for | λ — λ01 > pλQ,
so that

= f
(λ - χoy

+ι

for I λ — λ01 > pλo and the series converges uniformly for | λ — λ01 ^ r,
r > i°λ0 (see, for example, Dunford [2]). Therefore, we have the pro-
position.

COROLLARY. Let supp/ be compact, λg s u p p / and let ρf>κ —
μ — λ |. Then, for any xeE and r > pfιλ, the set
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{(λ/- T)nU(f)$lrn; n = 1, 2, •} is bounded in E.

Proof. If U{f)x - 0, then it is trivial. If U{f)x Φ 0, then Esuvvf Φ
{0}, so that we can apply the lemma for U{f)x and δ = supp/.

Given a compact set 3, let /δ e 0C be equal to 1 in a neighborhood
a of 3.

LEMMA 2. Let feΦ and supp/ c σ. Then, for any geΦ, the set
{[T- U(Xfδ)]nU(f)U(g)lrn; n = 1, 2, •} is bounded in ^f(E) for every
r > 2dg, where dg is the diameter of supp g.

Proof. First, let us remark that

U(f8)
kU(f) = U(f)

and

U(Xfs)kU(f) = U(Xkf) .

Now, we can write

[T- U(Xf8)YU(f)U(g)

- T)YU(f)U{g)

Let n = r/2 and let f±eΦ be such that fx = 1 on a neighborhood of
and dΛ < n.1 Then, since U{g)U{fd = U(g),

[T - U(Xf,)YU(f)U(g)lrn

If Xe supp /-/i S supp/x, then | λ0 - λ | < p / l ι λ o < r1# Hence, the set
{(λ0 — λ)*/ ZiM; fc = 0,1, •} is bounded in 0 by (iii) of Definition 1.1.
Hence, Bλ - {lί[(λ0 - λ)*/./J/rf; fc = 0,1, •} is bounded in jSf(£7).

On the other hand, since /θαfλo < pfvH < n, it follows from the
above corollary that the set { ( V - T)kU(g)%lrϊ; fc = 0,1, •} is bounded
for all x e E. Then, J?2 = {(λ0J- T)kU(g)jrt\ k = 0,1, -} is bounded in
J 2 W . The set {[Γ- U(Xf8))nU(f)U(g)lrn; n = 1,2, ..} is contained in
the convex hull of BJi^ which is again bounded. Hence the set is
bounded and the lemma is proved.

We are now ready to prove the following proposition, to which the
main theorem of decomposition is a corollary:

1 We choose ^eCsupp/i such that pfv\Q <
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PROPOSITION 4.1. Given a compact set 3 and fδeΦ, if supp/ £ σ,
feΦ, then the set

is bounded in ^f(E) for any ε > 0.

Proof. Given ε > 0, we can construct (by (i) of Definition 1.1) a
finite ε/2-decomposition of unity on δ, i.e., a finite set of functions
{M*=i.2... . i, hkeΦ, such that the diameter of each suppfe* is less than
ε/2, Σihk = 1 in a neighborhood of δ. Then, we have

[T- U(\fΛ)]*U(f)le* - Σ { [ Γ - U(\fΛ)]*U(f)U(hk)le*} .
k = l

By Lemma 2, the set { [ Γ - U{Xf,)]nU{f)U{hk)lεn) n = 1, 2, •} is bounded
for each fc, since ε > 2 dhjc. Hence, we obtain the proposition.

THEOREM 4.1. Any Φ-spectral transformation T can be expressed
T = S + Q on ETt00, where S is a Φ-scalar transformation and Q is a
transformation defined on Eτ>oo such that limw_:oo | (Qnx, xfy \lln — 0 for
all x e Eτ>oo and x! e E'. If T is closed, then S and Q can be taken as
closed transformations with domains containing ETtOO.

Proof. Let U be a corresponding 0-spectral representation to T
and let S be the closed (^-scalar transformation constructed in Propo-
sition 2.5. Let Q = T - S on DQ = Dτ n Ds. Then if T is closed, so
is Q. For any x e Eτ>oo, there is a compact set δ such that x e Eτ>8.
Then, Sx = U{Xfs)x. Hence, taking feΦG such that s u p p / c (7 and
expressing x = U(f)y, we have Qnx = [T- U(Xfδ)]nU(f)y. Therefore, it
follows from Proposition 4.1 that l i m ^ | <Qwx, x'> \lln = 0 for all x' e E'.

REMARK 1. The example of Bade [1] shows that

l i π w K Q a?, x'>\lln - 0

might not be satisfied for all x e DQ.

REMARK 2. If Φ — & y then S, hence Q, are uniquely determined
by T, provided that E is barreled. But it is not true if Φ is arbitrary.
(See Remark 3 in the previous section.)

COROLLARY. If T is Φ-spectral and sp(T) is compact, then T —
S + Q where S is a Φ-scalar and Q is a quasi-nilpotent operator.

A converse theorem can be given in the following form:
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THEOREM 4.2. Let S be a Φ-scalar transformation with a corre-
sponding Φ-specral representation U. Let Q be a transformation such
that EStOO s DQ, QU(f) = U(f)Q on EB^, QnU(f)e^(E) for all fe Φc

and l i m ^ | < Q χ x'>\lln = 0 for any xe EStOO, xre E'. Then T = S+Q
defined on Dτ = Ds f] DQ is a Φ-spectral transformation.

Proof. It is enough to show that sp(Tδ) <Ξ δ for any compact set
δ. For any XoeCδ, let feΦc be equal to 1 in a neighborhood of <5,
equal to 0 in a neighborhood N of λ0. Since U(f)x e Es>00 for any x e E,

^ . . I <Q*U(f)x, x'y \lln = 0 for all x e E, x' e Ef. Then, the series

converges uniformly for | μ — λo | ^ ε0 for some ε0 > 0. (Note that
(μ — λ)~A:~1/(λ) G Φ for all k and each term of the series belongs to
^f(E).) Since J*f(E) is quasi-complete, R^e^f(E) and is holomorphic
in μ : \ μ — λo | ^ ε0. It is easy to see that Rμ(μl — S — Q) U{f)x =
(μl— S— Q)RμU(f)x = x for all xeEs>δ. Therefore, iϋμ,δ is the inverse
of μlδ — Γδ on ESι8 and i?μ,δ is holomorphic in a neighborhood of λ0.
Hence, λoe/)(Γδ) or Cδ s p(Tδ), i.e., sp(T5) S δ.
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