ON CERTAIN PROJECTIONS IN SPACES OF
CONTINUOUS FUNCTIONS

S. P. LLoyp

1. Introduction. Let X be a compact Hausdorff space and let
C(X) be the Banach space of continuous real or complex valued
functions on X, with supremum norm. We are concerned with the
set & of positive bounded constant decreasing projections in C(X).
That is, <7 is the set of bounded linear operators 7T:C(X)— C(X)
which have the properties T° =T, Tf =0 if f=0,T1 <1. A great
deal is known about the structure of such T when the range of T is
a closed self-adjoint subalgebra of C(X) containing constants [1] [4] [5].
In the present paper we develop a corresponding representation theory
for members of &7. An application to Markov processes is given.

2. Representation theory. Let X denote the o-field of Borel
subsets of X. We represent the conjugate space of bounded linear
functionals on C(X) as the space of regular real or complex Borel
measures in X, with variation norm. In all that follows, the topology
in C*(X) will be the C(X) (weak™) topology.

THEOREM 1. The members of 7 correspond 1—1 to certain C*(X)
valued functions on X, as follows. Suppose t: X — C*(X) corresponds
to Te . Then t and T are related by (i), and t has properties
(ii)-(@v):

(1) Tf@) = [f@tde), ve X, fe o)

(ii) t: X— C*(X) 1s continuous (with the C(X) topology in C*(X)).
(i) t, =0, t(X)=1, zeX

(iv) t, = gtx,tx(dx’), ve X,

Proof. Suppose T e <# is given. Standard representation theory
for bounded linear transformations into C(X) gives (i) and (ii) im-
mediately [2, p. 490]. Property (iii) is a consequence of 7' = 0, 71 < 1.
It is to be noted that the conditions T=0, T1 <1, T # 0 which
characterize the nonzero members of &7 are equivalent to the con-
ditions 7= 0, || T|| = 1. The function ¢ is simply the restriction of
the adjoint 7*: C*(X)— C*(X) to domain X, regarding X as the set
of unit point measures in C*(X). The adjoint itself has the represen-
tation
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(2) T*\ = Stxx(dao), re C*(X),

where the integration is in the weak* sense [3]. (That is, for given
A€ C*(X) the value of the integral in (2) is the element of C*(X)
whose values for fe C(X) are

) | @), recx) .

Condition (iv) is a consequence of 7' = T; the integration again is in
the weak™ sense. Conversely, any ¢ with properties (ii)-(iv) determines
a Te o” according to (i), and the theorem is proved.

Let @ be the equivalence in X defined by x,px, if and only if
t,, = t.. On the quotient space Y = X/p define ¢: Y — C*(X) by
t,=t,if y=nx, xe X where m: X— Y is the quotient mapping.
General considerations show that % is a homeomorphism of compact
Hausdorff Y and the set K = {f,: ye Y} of various distinct values of
t. The quotient mapping is closed, so that the decomposition {7~'y:
ye Y} of X into closed equivalence classes is upper semicontinuous.

Denote by K, the closed convex hull of K U {0}, where 0 is the zero
measure. Since K U {0} is compact, K, is compact, and is hence the
closed convex hull of its extreme points. Denote by Y, the set of all
ye Y such that 7, # 0 is an extreme point of K;; all extreme points
of K, are to be found in {7,:y € Y} U {0} [2, p. 440].

THEOREM 2. For each ye€ Y, the measure t, lives on w'y; that
8, t(E) =t (EN7'), EcX, ye Y,. Moreover, {(X)=1, ye Y,

Proof. Property (1.iv) is

(3) ty = |Tuiida), ye Y,

in terms of £. Fix ye Y, and suppose there exists a closed set F'
disjoint from 7'y such that ?,(F) > 0. Since ¢ is one-to-one and
continuous, t7F = {I,,: x€ F'} is a compact set which does not contain
t,. The closed convex hull of ¢7F does not contain %,, either (other-
wise t, € tnF, t, being extreme [2, p. 440]). Thus there exists fe C(X)
which separates ¢, and fxF strictly. Expressing (3) as

£, = 5F)| T2 4 | 75 + 11— 200,
r ty(F) X—F

we see that %, is expressed as a proper convex combination of elements

of K, distinct from %,. This contradicts the assumption that 7, is an

extreme point of K,. The regularity of each %, shows that 7, lives
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on 7'y when y € Y,. The same sort of argument shows that if ,(X) #
0, then %, is not an extreme point of K, unless {,(X) = 1.

THEOREM 3. Y, is closed.

Proof. Define u: Y— C*(Y) by u,(E)=1t,(zE), EcY, yeY.
The continuity of ¢ implies that u is continuous with the C(Y) topology
in C*(Y). From Theorem 2, u, is for each ye Y, the unit point
measure at y. Thus for each fe C(Y) we have

(4) r@) = [r@ iy, ve Y.

Since for each fe C(Y) the members of (4) are continuous in y, the
equality (4) persists for y € Y,. This implies that u, is the unit point
measure at y for each ye Y,. It follows that ¢, lives on n~'y for
each ye Y,. It should be clear that each such %,, y € Y, is necessarily
an extreme point of K,, and the theorem follows.

THEOREM 4. For each yc 'Y the measure t, lives on n'Y,; that
is, T(E) = TI(ENa'Y,), EcX, ye Y.

Proof. Since {t,,y€ Y} is in the closed convex hull of compact
{t,,ye Y} U {0}, for each ye Y there exists a Borel measure v, = 0
on compact Y, such that

(5) ty, = SY Eu’”u(dy')

in the weak™ sense. Let F' be an arbitrary closed subset of X — n'Y,,
and let fe C(X) satisfy f(F) =1, f(z7'Y) =0, 0 =f=<1. From (5)
and Theorem 2 one has S f@)t,(dx) =0, ye Y, and hence t,(F) =0,
ye Y. Since each %, is regular, the theorem follows.

3. Invariant measures and functions. We now characterize the
ranges of T* and 7. From (2), any invariant measure T*\ is con-
tained in the weak® closed subspace spanned by {¢,,#€ X}. From
(1.iv), each t, is invariant, x € X. Thus range (T'*) is the weak* closed
subspace spanned by {¢,, x € X}. The extreme points {¢,, ¥y € Y;} con-
stitute a minimal spanning set, clearly.

From (1.i), any invariant function 7f is constant on equivalence
classes, and so determines an element of C(Y). Restriction of domain
to Y, gives an element of C(Y,). Conversely, let f, be an arbitrary
element of C(Y,). Define function f by

(6) f@=| | fmtde),ze X
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It follows from Theorem 8 and the Tietze extension theorem that
feC(X) and hence that Tf = f. From Theorem 2, the contraction
procedure described above applied to f gives f, back again. It should
then be clear that (6) establishes an isometric order isomorphism of
C(Y,) and range (T'). The isomorphism is algebraic if and only if
Y, =Y [4].

4. Application to Markov chains. Let (X,, # ) be a measurable
space, and let p(x, F), xe€ X,, Ec &, be a transition subprobability.
That is, p(x, +) is a measure on &% for each x€ X; and 0 = p(-, E) =1
is a measurable function for each Ee . Denote by B(X,, & ) the
Banach space of all bounded real or complex measurable functions on
X,, with supremum norm. Then P: B(X,, & )— B(X,, &) defined by

Pf(w) = jf(x')p(x, da'), we X, fe B(X,, &),

has the properties P = 0, || P|| < 1. Suppose there is an operator T'
(necessarily unique) in the closed convex hull of {P",n =1,2,---} in
the weak operator topology with the properties TP = PT = T. Then
T has the properties T'= 0, || T'|| =< 1, and is the projection onto the
subspace of invariant functions of P.

We assume without essential loss of generality that B(X,, &%)
separates the points of X;. Then there is a totally disconnected compact
Hausdorff space X containing X, as a dense subset such that each
element of B(X,, & ) extends uniquely to an element of C(X) [2, p.
276]. Operator P becomes an operator P:C(X)— C(X) with the
properties P =0, || P|| = 1. Such an operator necessarily has the form

Pf(@)= |f@)pda), we X, feC(X),

where p: X — C*(X) is continuous with the C(X) topology in C*(X)
and has the properties p, =0, p,(X) =<1, e X. Clearly, p is the
extension of the given transition subprobability to all of X.

The operator T becomes a projection in C(X) to which our results
apply. Each set 77'y,ye Y, is an ergodic set and X — 77'Y, is the
dissipative set, according to

THEOREM 5. If ye Y, then for almost all xe ™'y with respect
to t, the measure p, lives on wy.

Proof. From TP = T we obtain

[Euds) [p.tdo)s @) = [E@07@), we ¥, Fec).
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Fix ye Y, and let F be any closed set disjoint from 7~'y. Let fe C(X)
be such that f(F)=1, f(#7'y) =0, 0 <f <1. The right-hand side
above vanishes, from Theorem 2, which requires p,(F') = 0 for almost
all  with respect to ¢,. Since p, is regular, the theorem follows.
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