
SECONDARY COHOMOLOGY OPERATIONS

WHICH EXTEND THE TRIPLE PRODUCT

DONALD W. KAHN

The triple product of Massey [5] is a secondary cohomology oper-
ation in three variables which is defined when the three classes satisfy
two relations. The value of the operation is a certain natural coset
of cohomology. In this note, I discuss certain secondary operations
which generalize the triple product, when the values are taken in
cohomology with real coefficients. Roughly speaking, for each pair of
integers (M, N), there is such an operation when one takes the pair
(1, 1), the operation is the triple product.

There are four sections. The first section, which is primarily
motivation, discusses operations in real cohomology. In this section,
explicit cochain formulas are given. In the remaining sections, we
are concerned with operations whose domain is integral cohomology,
and whose range is real cohomology. The second section studies the
universal examples. In the third section, I define the operations and
determine their ranges. Finally, in the fourth section, I prove a
classification theorem for these operations, which asserts that in
certain cases these operations constitute all such operations.

I would like to thank W. S. Massey and N. Stein for their help
and encouragement during the preparation of this paper.

1* Consider now operations in real cohomology* We restrict
attention to spaces which are 1-connected, countable simplicial com-
plexes. In [4] the author showed that for such spaces, there is an
anti-commutative cochain algebra over the real numbers, which gives
the correct cohomology. If X is a space in our category, write this
anti-commutative cochain algebra as &(X).

The Massey triple product may be defined as follows : consider
classes u, v, weH*(X, R)1 such that u v = v w = 0. Choose

u'9 v\ w'

which represent these classes, and a, be &(X) such that

u'-v' = δa, v'w' = δb

Set
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1 Real cohomology is to be understood in this section.
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One easily sees that δZ' = 0. Depending on the different choices, Z'
represents a set of classes in H*(X) (in fact a coset).

Now, using the anti-commutativity of &(X), we make the follow-
ing definition.

DEFINITION 1.1. (Double Product). Let u e HP(X), v e Hq(X).
Suppose q is odd, and u v = 0. Choose u',v'e 2f(-3Γ), representing u
and v. Let u' v' — δa.

Define

Z' = a-v'

δ(a-v') = u'-v'-v' = u'-{v'f = 0 , as (ι/)2 = 0 .

Set Z = {Z'}, and ζu, v> = {Z}, where the latter is the set of all
classes represented by such Z. ζu, v) is the double product of u and v.

DEFINITION 1.2. (Generalized Double Product). With the same
conventions as Definition 1.1, we add the assumption that p is even.
Define Z' = an v'f n being positive integer.

δZ' - ( ^ . α ^ Λ y = 0.

Set Z — {Zr}, and <u, v\ = {Z}, ζu, v)n is the generalized double
product.

DEFINITION 1.3. (Generalized Triple Product). Consider classes
u,v,we H*(X) in dimensions p, q, r (resp.). Suppose p and r are
odd. (If one is even, one may choose k or I below to be 1). Suppose
u v = v w — 0. Choose uf, vf, w' e &(X) representing u, v, w, and
choose a, be &(X) so that

u' v* = δa vf >w' = δb .

Let k and i be positive integers. Set

Z' = l-aϊw'b1-1 - ( - lJ^^+'-^+^-^A α^-V δ1 .

An elementary computation shows that δZf — 0. Let Z = {Z'}, and
<w, v, wykΛ = {Z}, the generalized triple product.

REMARKS. One easily computes the dimensions for these operations.
For example,

d i m <u, v, wyKιl = k p + (k + I - l)(q - 1) + Z r .

The double product ζu, v) is quite similar to the triple product
ζu, v, v>. However, the denominator modulo which it is defined is
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actually smaller than the corresponding denominator for the triple
product.

Finally,

DEFINITION 1.4. With the notations of Definition 1.3, suppose
dim. v is odd.
Let

Z' = v' am bn , {Z1} = Z .

Let

m>n<u, v, w> = {Z} .

REMARKS. It is clear that these operations are generalizations of
the triple product (in real cohomology). However, they do not lend
themselves to computation, because of the difficulty of computing in
&(X). Therefore, in order to obtain a fuller theory, the remainder
of this paper will study similar operations which have integral coho-
mology as domain and real cohomology as range. The technique of
universal examples can then be applied.

We shall assume that all spaces have the homotopy type of a
1-conneeted countable simplicial complex.

2. We now give the basic definitions and theorems for universal
examples. A primary operation in one variable is a natural function

φ : HP(X, G) > H<(X, H)

where p and q are positive integers, and G and H are Abelian groups.
Such an operation is said to be of type {p, Gjq, H}. Serre [9] and
others observed that the cohomology of Eilenberg-MacLane spaces
described all such operations. Precisely, there is a natural one to
one correspondence between operations of type {p, G q, H} and classes
of Hq(G, p H). If φ is of type {p, G q, H} then this correspondence
assigns to φ the class φ(ί), where i is the fundamental class of
HP(G, p; G). Hence, a knowledge of operations is equivalent, in principle,
to a knowledge of the operations in a " universal example ", here a
space K(G, p).

The theory of universal examples may be extended to cover
operations in several variables, and higher order operations, which
are defined when certain operations vanish, and which take on a values
certain sets of elements in the cohomology of a space. In the defini-
tion of such operations, one imposes only one condition, naturality.
For a general discussion of such operations, and the corresponding
universal examples, we refer to [1], [3], and [7]. The information
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which we shall need is contained in the following two theorems.

THEOREM 2.1. Let X be a space in our category. The universal
example for a primary operation φ, in the variables ut e HPi(X, Gι)
is a space

K(G» ft) x x K(Gn, pn) .

That is, the operations φ(uu , un) e Hq(X, H) are in one-to-one cor-
respondence with the classes of

H«(K(Glf ft) x . . . x K(GΛ, vn) H) .

THEOREM 2.2. Consider X and u{ as above. Suppose that the
classes satisfy the homogeneous distinct relations

P1(u19 , un) = 0, , P»(u19 , w.) = 0

where we have associated to each relation, a pairing of the groups
Gl9 , Gn to a group A<.

Then, the universal example for operations in these variables,
defined when these relations are satisfied (i.e., on the kernel of the
operations P(uu , un), , PJμl9 , un)), is a fibre space (E, F, B P),
with

B = K{GX ft) x . . . x tf(G. p.)

1 deg. Px - 1) x x K(Am deg. P m - 1) .

The structure of the fibre space is determined by a map

f:B > K(A19 deg. P,) x . x iί(Am deg. Pm)

which is given by the product of the relations. That is, such opera-
tions φ(u19 , un) G Hq(X, H) are in one to one correspondence with
the classes of Hq{E, H).

The correspondence is as follows : Write u19 , un as maps

χ^U K(Glf ft), , X -^> K(Gn, Vn) .

If the classes uu , un satisfy the relations, then the composition

x x K(Am, deg. Pm)

is homotopic to zero. Hence, the map u± x x un may be lifted to
a map U: X • E, so that the following diagram is commutative.
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E

If φeHq(E,H), we define <p(ulf ---,un) t o be t h e collection {U*{φ)}

in Hq(X, H) where U ranges over all lifting maps which make the
above diagram commutative.

Proof. See the references mentioned above. The proofs of these
theorems follow immediately from the techniques of those paper.

Conventions. For the remainder of this paper, assume that all
operations go from integral cohomology. That is, the G< and At are
always Z, while H is R. The pairings will always be the natural
multiplication in Z. The cohomology of a space will be real singular
cohomology.

I will now indicate how the above theorems apply to the cup-
product, and to the triple product [5].

(a) If we were to choose as coefficients any ring with identity,
the cup-product is an operation in two variables, given by the composition

H*(X) (g) Hq(X) > HM{X x X) — H*+*(X)

where Δ is the diagonal. We shall consider the particular cup-product

(*) H*(X Z) <g) H'(X Z) > iP+*(X R)

This operation is described in terms of the universal example as follows.
The space involved is K(Z, p) x K(Z, q). By the Kunneth theorem:

, p) x K(Z, q);R)~ Σ H\Zf p R)® H*+*~\Z, q R) .

Let ip and iq be the generators of HP(Z, p R) and Hq(Z, q R), i.e.,
the images, under the coefficient homomorphism Z' —> R, of the funda-
mental classes. Then, our cup-product (*) corresponds to the class
iP (g) iq.

More generally, we have the following.

PROPOSITION 2.1. Consider classes

uλ e H*(X, Z),.-.yune H>*(Xf Z) ,

where X is some space in our category. Then, all primary operations*
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in these classes, which take on values in real cohomology, are given
by (formal) polynomials in these classes, with respect to cup-product,
that is linear combinations of monomials with respect to cup-product
multiplication.

Proof. One simply computes the real cohomology of the universal
example, which is

K(Z, Vl) x . . . X K(Z, Vn) .

(b) We define the triple product. Consider three cohomology
classes ue HP(X; Z), veHq(X, Z), we Hr(X, Z). Suppose that these
classes satisfy the relations

u v = 0 v-w = 0 (pairing Z(& Z-* R).
Choose representatives u\ v', w' and cochains a and b so that

u'-v' = da v' w' = δb .

We set

j»(u, w) = u-H*-»(X) + Hn~r{X)-w (real cohomology)

where

n = p + q + r — 1 .

Define

Z' = a w' - ( - lyu'-b (pairing Z<g>Z->R).

One easily checks that 8Z1 = 0, and that {Z'} represents a coset of
Hn(X)IJn(u, w). This coset is defined to be the triple product ζμ, v, w}.
When no confusion is possible, we shall not distinguish between
ζμ, v, wy and {Zr}.

Using Theorem 2.2, we construct a universal example in the case
which we are considering. It is a fibre space (E, F, B p), with

B = K(Z, p) x K(Z, q) x K(Z, r)

F = K(Z, p + q - 1) x K(Z, q + r-ΐ).

The structure of the fibre space is given by a map

B >K(Z, p + q)x K{Z, q + r)

representing the two cup-products.

PROPOSITION 2.2. Consider the universal example for the triple
product {E, F, B p) Suppose p < r. Let u e HP(Z, p) be a generator



SECONDARY COHOMOLOGY OPERATIONS 131

in the base, and y e HqJrr~\Z, q + r — 1) be a generator in the fibre2.
Then u(^y e E2, in the Serre spectral sequence, remains until Ep,
and represents the triple product </&, v, w> up to a sign.

If p = r, let w e iί r(Z, r) and a; e HpJrq~\Z, p + q — 1) be gene-
rators for the base and fibre respectively. Then

remains and represents the triple product up to a sign.

Proof. Suppose p < r. Consider the universal fibre space

K(Z, p + q - 1) x K(Z, q + r - 1) > paths

K(Z, p + q)X K(Z, q + r).

We use x and y to denote the generators in the fibre, also. It is
well-known that τ(x) and τ(y) generate the cohomology of the base,
and it follows from the naturality of the transgression that in the
universal example (E, F, B p), x and y are transgress!ve and

τ{x) = wv τ{y) = v-w

where u, v, w generate HP(Z, p), Hq{Z, q), Hr(Z, r) (resp.). Now
consider the i?2-term of the spectral sequence of (E, F, B p) (see [10]).

yw

u

u V)
— Φ
u v w

L e t n = p + q + r — 1. A s ^ / i s transgressive,

di(u (g) y) = 0, i £n- p , dn-p+1(u (g) y) = {u-v w} ,

where the brackets indicate the representation of an element in a

2 We take as generators the images of the generators in integral cohomology, under
the map induced by the inclusion Z -» R.
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higher term of the spectral sequence. However, already

ώ%_ r+i(± W (g) x) — {U'V W} .

Hence {u (g) y} is a cocycle for all di. One easily sees that {u ® y} is
not a coboundary for any d{.

It is easy to see that {u§§y} is the only element of dim. n in
En so that it must represent some multiple of the triple product.
We now make this determination more precise. Consider the classes
p*u, p*v, and p*w in H*(E). Since x and y are transgressive, with
τ(x) = u v, τ(y) = v-w, we can choose cochains Cx and Cy in C*(E)
such that

{i*(Cβ)} - x

with u'-v' w' representing u, v, w.
We have, by definition

In the Serre spectral sequence, Ca, and Cy represent elements in 2£2

0 *
corresponding to a? and y in the fibre. It follows that the cochain
Cx p*w' — (— ϊ)pp*u'-Cy represents in E^ that element which comes
from the term

x){w <g) 1) - ( - 1 ) ^ (g) i/)

in i72. w(&x disappears by En-r+1. Up to a sign, the element {u
then determines the triple product.

The case where p ^ r is handled in a similar manner, and is left
to the reader.

3 We now define the double product and generalized double
product in terms of the universal example4.

DEFINITION 3.1.

(a) Double Product: Consider classes u, v dim. u = p > 1 dim.
v — q > 1, g odd. Suppose that u v = Q. The universal example for
operations defined under these circumstances is a fibre'space (E, F, B p),
with

B = JΓ(Z, p) x

3 Concerning groups, real cohomology is to be understood, for the remainder of the*
paper. Operations will go from integral to real cohomology.
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with classifying map

f:K(Z,p)x K(Z,q) K(Z, p + q)

representing the cup-product, u v.
Consider the j^-term in the spectral sequence for this fibre space.

Let u and v generate HP(Z, p) and Hq(Z, q) in the base, and x generate
Hp+q-\Z, p + q - 1) in the fibre. As in Prop. 2.2, φ) = u-v.

Clearly d{ = 0 for 2 < i < n — p + q. We look at dn.

dn(x) ~ u-v. dn(u 0 x) = u2v. dn(v 0 x) = 0 .

{v 0 #} is not a coboundary under c£w, as dn(En^) is contained in the
ideal generated by {w t;01}. Hence, {v(g)x} remains until EL, and
represents an element in H*(E). We define a class in H*(E), the
double product, to be this element, and write, by abuse of language,

<>, v} = {v 0 $} .

(b) Generalized Double Product: We make the same assumptions
as in (a), but also assume that p is even. Then p + q — 1 is even.
We consider the universal example and note that if n = p + g, then
^ ΞΞΞ 0, for 2 ^ i < w. We compute ker dn : c^(#) = u v, dn(u ®a;) =
^2 ?;, dw(v 0 a;) = 0, dn(«*) ^k-uv(& xk~\ dn(u 0 #*) = ± fc ^V 0 a;*-1,
rfιι(^ 0 ^fc) — 0. We may represent En+1 by the following picture, in
which φ indicates the presence of an element:

{v 0

We now show that {v®xk},k^l remains until J5L. The difference
in dimension between ua and ^α + 1 is p. The difference in dimension
between v 0 α;fc and i; 0 αjfe+1 is p + ? - 1 > P Hence, if ^α (or v-ua)
is killed off by d{ of (i;0a?*) for some i and fc, uα+1 (or^ πα+1) cannot
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be killed. Hence, if we had d^v ® xk) = ua, then in ϋL, we would
have ua — 0, ua+1 Φ 0, which is absurd. Therefore, {v 0 xk} represents
a non-zero element in JSL, and we define, as before,

It is clear that <w, ̂ X = <u, vy.

REMARK. The operations <t&, v>fc are clearly non-trivial. One
simply computes them in E.

Next, I want to discuss an extension of the double product, which
amounts to forming a double product in which each variable is actually
a (formal) polynomial, with respect to the cup-product, of certain classes.

Consider classes ul9 , un, which satisfy a homogeneous relation
P[uu , un] = 0, where P is a homogeneous-degree (formal) polynomial.
The universal example for secondary operations, which are then defined,
is a fibre space (E, F, B p), with

B = K(Z, dim. uλ) x x K(Z, dim. un)

and

F - K(Z, dim. P - 1) .

Let ulf * ,un denote generators of H*(B), and x a generator of
H*{F). Then τ(#) = P[^i, , un]. Let Q be a polynomial in the uif

such that P-Q — 0, i.e., P Q is forced to vanish by the anti-commu-
tativity. Consider

Clearly, d^Q ®xk) = 0, 2 ^ i < n = dim. P. But, also, dw(Q (g) xk) =
k-Q-P^x1"'1 = 0. Suppose that Q®a;fc remains until ϋL, and hence
represents an element in H*(E). Then, we say that Q ® #& determines
a generalized double product, and write

REMARK. If there are I independent generalized double products
in some fixed dimension, then we can conclude that there are I in-
dependent secondary operations which are defined on the kernal, P = 0,
and which take on values in the fixed dimension. In general, we
cannot identify particular elements in E^ with particular classes in
H*(E).

The analogous statements also apply to the generalized triple
products. Details are left to the reader.

We now determine the denominators, modulo which the double
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and generalized double products are defined.

PROPOSITION 3.1. Consider a space X in our category, and classes
u and z in dimensions p and q. Suppose q is odd. Then

<u, z> e H"(X)lz Hn-%X), n = p + 2q - 1 ,

and if p is even,

O , z>k G Hn(X)lz Hn-*(X) + O , z> Hn-*-2q+1 + •

w = g + fc (p + ί — 1)

as well-defined elements of these groups.

Proof. We make full use of the theory of principal fibre spaces,
for which we refer to [7] [8]. The universal example, (E, F, B p)
may be considered a principal fibre space, with maps :

μ: E x F >E

m: F x F >F .

As in section 20 of [2], E x F is a fibre space over 5, with projection
map p : E x F > B given by p(e,f) = p(β). Denote the spectral
sequence of this fibre space by {Er dr}.
Then, we have

Er = Er®H

dr is dr on the first factor, and null on the second.

μ* : E2 > E2

is given by 1 ® m*.
H*(F) is either an exterior algebra on an odd-dimensional gene-

rator, or a polynomial algebra on an even-dimensional generator.
In the first case,

m*(x) = x®l + 1§§X ,

while in the second

m*{xk) = Σ Q)χί Θ ^y

where no repeats are taken in the sum. These facts follow immediately
from the knowledge of H*(F), see [3], and duality. Hence, in E2,

4 We take the spectral sequence with real coefficients.
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μ*(z (g)xk) = z<g) m*{xk) = z / Σ (*)»'

We will now show that there are non-zero real numbers ai9i9 so
that if {z®xk} represents the class in H*(E),

μ*({z ® xk}) = Σ ai>Mz ® »*}®»0 e H*(E x F) .

First, notice that this relation with aitj = 1 is valid in 2<L, because
of the properties of the dr. Now 1<L and 2<L are graded groups of
H*(E) and if*(i£ x F), with respect to certain filtrations. A homo-
geneous element of iϊL has a degree with respect to the fibre, the
dimension of the second part in E*, = E^ (g) H*(F). Furthermore, a
homogeneous element in Ew and a representative for this element in
H*{E x i*7) have the same degree with respect to the fibre.

Corresponding to each degree in the fibre, in which an x\ i ^ k
lies, the term in E* and the term in H*(E x F) are both 1-dimensional
vector spaces over R. In ΪL, each term in the sum which is

μ*({z®x>})

has a different degree with respect to the fibre. Hence, in H*(E x F),
the corresponding sum consists of distinct non-zero elements, which
each have different degrees with respect to the fibre. As each
{z (g) x1} (g) xj is a non zero element in the corresponding 1-dimensional
vector space, there exist non-zero aitS such that the desired relation
holds. It is easy to see that akΛ — 1.

To prove the proposition, consider two maps v9v': X—>E such
that p v — p-v'. By Lemma 1.2 of [8], 3 w: X-+Fs\ich that μ^(v, w) = v'.
Then

/i)t($/y fs?\ /y k\\ — ft f/)i oi)\ i} *y ft?\ w^W
V \\<v \£y *A/ \i — Γ^ϊt\^9 W) W™ Yjy ™ ) /

= (v9 w)*{μ*{{z (g) xk})

Hence, by choosing different maps v9 vf, ζu, zyk varies by at most an
element of

where n = g + k (p + q — 1). Therefore, <w, ^>Λ is a well-defined
element of the stated group, completing the proof.
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REMARK. Using the same technique, a similar result may be
established for the generalized triple product.

4, We now give some classification theorems for operations which
go from integral cohomology to real cohomology.

THEOREM 4.1. Let ulf — ,un be classes which satisfy one, non-
trivial, homogeneous relation P[uu •••, wΛ] = 0. Then, all the secon-
dary operations which are defined under those circumstances are
given by the generalized double products. Precisely, in each dimen-
sion, the term E* in the spectral sequence for the universal example
is spanned by p*(H*(B)) and the generalized double products.

Proof. The universal example here is a fibre space (E, F, B p)
with

B = K(Z, dim. u±) x . . . x K(Z, dim. un)

F = K(Z, dim. P - 1) .

As before, take ulf , un as generators of H*(B) and a a s a generator
of H*{F), with τ(x) ~ P[ιιlf -, un]. We consider three cases.

Case 1. dim. w{ is even for all i. We will show that there are

no non-trivial secondary operations. As dim x is odd, there are only

2 nonzero rows in the l?2-term of the spectral sequence of (E, F, B p).

The elements are of the form R 0 1 or R (g) x, where R is a polynomial

in the u{. Clearly di(R(%) 1) = 0 for all ί, and these terms respresent

P*(H*(B)). Now,

di(R<g>x) - 0 , if

i < dim. P = k, dk(R<g>x) = i

But R'P is not zero, unless R = 0.

Case 2.

i<g>a? a?

dim # = k — 1
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Suppose dim. P is even, admitting the possibility of some Ui have
odd dimension. Again we have 2 non-zero rows in the H7a-term.

If dk(R®x) = R P®1 = O (recall k = dim. P), then {R ® x) remains
until Eπ, and represents the operation ζP/R, R}.

Case 3. dim. P is odd, so that dim. x is even. In this case, the
E2-term has infinitely many, non-zero rows.
Suppose that we have, in E2 a homogeneous element of dim. m,

u = Ro + R1 ® x + + Rn 0 Xn dim. i^ = m - i(k - 1) ,

which is a cocycle for each diy i.e., remains until E^

α?

By assumption

and

w = 0, 2 ^ i <k

dku = j B i - P ^ l + 2i22 P(g)x + ••• + n-R^P^x71-1 = 0

As each term has a different complementary degree, we have

R1.P=O, . . . , i ^ . P = 0 .

Now, Ro and β ^ x represent cocycles for each d{ we have

di(R2 ® #2 + + i?w 0 #w) = 0, all i ,

and in the same way.

c^(i?2 (g) ̂ 2) = 0, all i .
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Hence, proceeding in this way, we see that each term, R{ ® x\ remains
until EL. Therefore, R{ ® xi represents a double product ζp/Ri, R^i, or

{u} = R0 + <plRly1 + + <j>IRu, Rn\ .

We state the following similar theorem without proof the proof
is complicated.

THEOREM 4.2. Consider operations in 3 variables u, v> w, defined
on the kernel {u, v, wju v = 0, v w = 0}. All such operations are
given (in the sense of the above theorem) by sums of products of
(possibly generalized) double and triple products.

REMARK. In either of the above theorems, if there is exactly
one element in a given dimension in E^, then the operation involved,
as a class in H*{E) is determined exactly.

The following theorem of Massey may be proven either by these
methods, or by using the Gysin sequence.

THEOREM 4.3. (Massey). Consider n even-dimensional cohomology
classes which satisfy two distinct, non-trivial, polynomial relations.

f(ulf , O = 0

g(ul9 , O = 0 .

Let h be the greatest common divisor of / and g, over the reals.

f=h-f1 g = h-glm

Then, </χ, h, g^ generates all secondary operations which are then
defined, as a module over the primary operations.
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