
ON CONVEX HULLS OF TRANSLATES

I. GLICKSBERG

1. Let G be a locally compact group, g a closed subgroup, each
taken with its left invariant Haar measure. For / i n LX{G) let/ 8 denote
a right translate of f(fs(x) = f(xs)) and let Cf denote the closed convex
hull of the set {fs: se g} of right translates of / by elements of g.

Recently Reiter [9] considered the problem of determining the
distance in Lλ from the origin to Cf and proved, when g is abelian1 and
the homogeneous space G/g of left cosets xg has a left invariant measure,
that the distance is given by the expression

(1.1)
θ/g

f(xs)ds dx'

where integration is with respect to the invariant measures (suitably
normalized), and x is an element of the coset x'. Now this suggests
the following (overly general) question: suppose one has a semigroup S
of operators of norm 1 on a Banach space B; under what sort of conditions
can one explicitly determine the distance from the origin to the convex
hull of the orbit Sx of an a; in ΰ?

In the present note we give a simple approach to certain problems
of this sort (Lemma 2.1), which yields some information whenever S,
in the terminology of [3], is right amenable, and leads to an explicit
determination of the distance in a variety of cases (see 2.2-2.4). In
particular we obtain (in 3.2) a considerable strengthening of Reiter's
result in which g assumes the role of a very well behaved transformation
group on a locally compact space G, while Haar measure on G is replaced
by an essentially ^-invariant measure.

But for a recent extension by Day [4] of the Markov-Kakutani
theorem [1, p. 114; 5, p. 456] we should have to take our semigroup S
abelian; for the reader's convenience we shall begin by giving a (rather
different) proof of Day's result.

2. Let S be a semigroup, m(S) the usual supremum normed space
of all bounded complex functions on S. For fem(S) let fs(t) = f(st),
s,te S. A left invariant mean M on m(S) is a nonnegative (hence
continuous) linear functional for which2

<1, M> = 1, </., My = </,
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1 Or somewhat more generally, the product of a compact and an abelian group.
2 Right invariant means are defined analogously, with </*, M> — </, My.
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98 I. GLICKSBERG

for all seS, fem(S).
Day's extension [4] of the Markov-Kakutani theorem can be stated

as follows.3

Let K be a compact convex subset of a locally convex topological
vector space X, S a semigroup of continuous affine4 maps of K into itself
for which m(S) has a left invariant mean. Then S has a common
fixed point x in K: sx = x, all s in S.

(To see this we shall essentially apply our mean M to the vector
valued function s—> sx (x some element of K). In order to make this
legitimate we shall convert M into a measure on a "compactification"
of S.)

Let Kκ be the space of all (not necessarily continuous) maps of
K into itself, taken in the topology of pointwise convergence. Kκ is
compact by Tychonoίf 's theorem, as is the closure Σ of S c Kκ.

We can of course compose elements σ and τ of Σ and it is easily
seen that Σ is itself a semigroup; however for our purposes it is sufficient
to note that sσ e Σ for se S, σeΣ: if sδ —> σ in Σ, sδ e S, then s8x —• σx,
all x in K, whence ssδx —> sσx, s being continuous, so sσ = lim ss8, and
sσ e S' = Σ. And clearly the continuity oί se S implies σ —» sσ is continu-
ous from Σ into itself.

Now let M be our left invariant mean on m(S); for / a continuous
function on Σ we have the restriction / | S in m(S), so

is a nonnegative linear functional on the space C(Σ) of all continuous
functions, which assumes the value 1 at the constant function 1.
Consequently by the Riesz representation theorem we have a nonnegative
measure μ of norm 1 on ί for which

<f\S,M>=\f(σ)μ(dσ).

Evidently for s in S, fs\S = (f\S)8f so (σ—>f(sσ) being continuous
because σ —> sσ is)

(2.1) \f(sσ)μ(dσ) = </JS, M> - <(/|S) s, M> - </|S, M> - \f{σ)μ{dσ) .

Let x G K, and consider the vector valued integral
3 Abelian semigroups have invariant means on m(S) (a consequence of the Markov-

Kakutani theorem), so this is an extension; also solvable groups have such means; for other
instances, see [3].

4 That is, preserving convex combinations.
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(2.2) \σxμ{dσ)

which exists in the Riemann sense since σ —•> σx is continuous, and so
lies in K by convexity. Since any s in S is affine and continuous,

(2.3) s\σxμ(dσ) = \sσxμ(dσ)

while for any α?* in X*,

/f \ f f

<" \sα #/i(cί0 ), #* > = Wsσx, x*yμ(dσ) = \ζσx, x*yμ(dσ)

by (2.1), so

(2.4) /ίsraμ(d<7), α * \ = /[σxμ(dσ), x*
and s\σxμ(dσ) = \σxμ(dσ) by (2.3) and (2.4). Thus (2.2) is the desired

fixed point.5

The following simple consequence of Day's result and the Hahn-
Banach theorem forms the core of our approach to the problem raised
in § 1.

LEMMA 2.1. Let S be a semigroup of operators of norm rg 1 on
the normed space B, and suppose m(S) has a right invariant mean.
Let Cx denote the closed convex hull of {sx: se S}, xeB. Then the distance
from the origin to Cx in B, dist(O, Cx), if positive, is given by

<2.5) dist(0,Cβ) = \<x, x*>|

where x* is an element of norm 1 of the adjoint space B*, fixed under
the adjoint semigroup S* = {s*: s e S}.

Of course 2.1 can only be applied to yield (2.5) explicitly when we
can sufficiently limit the possible candidates for such an x*. But as we
shall see, this can be done in a variety of cases. (Note that 2.1 says
nothing if | | s | | < 1 for some s in S, since the distance then is always
zero; we have not insisted that the elements of S are of norm 1 simply
to avoid needless verifications in our applications.)

5 It may be worth noting that what we have needed, rather than a left invariant mean
•on all m(S), is a left invariant mean M on the subspace spanned by 1 and functions of
the form t -> ζstx, #*> and their conjugates. (For then M has a nonnegative extension to
all of C(Σ), invariant on the appropriate subspace.)
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To proceed to the proof, let c = dist(0, Cx) > 0. As a consequence*
of the Hahn-Banach theorem there is an element y* of i?* of norm 1
for which

(2.6) c£\<3/,y*>\, yinCx.

Let C** be the weak* closed convex hull of {s*y*:s in S}, endowed with
the weak* topology; since C** is clearly contained in the unit ball of i?*,.
C** is compact. And for any #* in C**,

(2.7) c ^ | < y , α ? * > | , yinC,;

indeed it suffices to verify (2.7) for the dense set of %* of the form
Σ£c%8*y*, cn ^ 0, Σcn = 1, and for y in Cx

1

jsr

Σ cnsny, y* V,

by (2.6), since Σ f cnsnye Cx. Note that by (2.7) and the definition of cy

||a?* || ^ 1, hence ||a?*|| = 1, for every a?* in C**.
Now S* provides a semigroup of continuous affine maps of C** into

itself; and since s-^s* is an anti-isomorphism of S onto S*, our right
invariant mean on m(S) clearly induces a left invariant mean on m(S*).
Thus Day's theorem applies and we have an x* in C** fixed under
S*: s*#* = $*, s in S. This is of course the desired functional, and it
only remains to prove (2.5).

But x* is constant on Cx since

cnsnx, x* ) = <( x, Σ c X α * > = <( x, Σ cnaj* > = <x, x*>

for cn ^ 0, Σcn = 1, 8n in S. So by (2.7), c ^ \<x, ̂ *>| - |<y, ίu*>| £
112/1111̂ *11 = 111/11 f o r a 1 1 ί/ ίn Ĉ » a n ( i (2.5) follows since \\y\\ can be
chosen arbitrarily close to c = dist(0, Cx).

An obvious case in which 2.1 leads to explicit determination of t h e
distance is that in which S is also "ergodic," in the sense that the fixed
points of S* form a one-dimensional subspace of 5*, spanned say by the
unit vector x*. For the x* of 2.1 is then a unimodular multiple of x*,.
whence

6 This is best known in the real case (and is a special case of the Eidelheit separation
theorem [2, p. 22]). One obtains it as follows. If Bo is the open unit ball in B then
cBo — Cx has interior (c > 0!) while 0 is not in the interior, so by (a form of) the Hahn-
Banach theorem [1, p. 71; 2] there is a real linear functional F on B, ^ 0 on cBo — Cz.
Normalizing Fso \\F\\ = 1, F(cBo) is the interval (-c, c), and F(CX) ^ c; so setting H(x) =
F(x) - iF(ix), xeBy yields as usual a complex linear Hof norm 1, with |H(CX) \ ^ ReH(Cx) —
F(CX) ^ <?.



ON CONVEX HULLS OF TRANSLATES 101

if the distance is positive, while

\<x, O | = \<x, Σcn8*xϊ>\ = \<Σcnsnx, x*>\
^\\Σcnsnx\\

shows the same is true if the distance is zero.
An explicit example of this sort is the first of the following three,

which illustrate the application of 2.1.

2.2. Let (X, &, μ) be a (totally) ^-finite measure space (so the
adjoint of Lλ{μ) is L^μ)). Let S be a semigroup of (1 — 1) maps of X
onto itself which, along with their inverses, are measurable and measure
preserving. Suppose S is μ-ergodic (that is, if E\/ F denotes the
symmetric difference of E and F in ^ , μ(s-λE\7 E) = 0 for all s in S
implies μ(E) = 0 or μ(X\E) = 0), while m(S) has a left invariant mean.7

For feL^μ), let Cf be the closed convex hull of {fos:s in S}. Then

(2.8)

Here our left invariant mean on m(S) translates into a right invariant
mean for the (anti-isomorphic) semigroup of isometric maps/—>/os,
while our assumption that S is μ-ergoάie implies (as is well known) that
the only fixed points of the adjoint semigroup are the constants, and
so (2.8) follows.

Of course when μ is finite one might obtain (2.8) from general mean
βrgodic theorems, but this is not the case in general, where Cf need
not contain an S-invariant element (as in the example of footnote 7).

2.3. Our next example is far less trivial. Let G be a locally compact
abelian group, μ a nonnegative regular Borel measure on G, of norm 1
(a probability measure). Let g be the smallest closed subgroup of G
which carries μ, and let T be the operator on LX{G) sending f—+μ*f,
S = {Tn:n^ 1}. Then if Cf is the closed convex hull of {Tnf: n S 1},

dxf(2.9) dist(O, Cf) = \ \\ f(xs)ds

where the measures are the appropriate Haar measures, normalized so that

(2.10) ( f(x)dx = ( ( f(xs)dsdx' ,
Jβ JQίgJg

xf being the coset xg of x.
7 For example, with our measure space the usual one formed from the positive reals

(Lebesgue measure), one could take £ = {sn: n ^ 1}, where s is the ergodic transformation
of the half line given on p. 84 of [6].
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First note that whenever s —>f(xs) is integrable on g (i.e., for almost

all x'), I Tnf(xs)ds = \ f(xs)ds since μ is carried by g. Thus if Σ cn = 1>
J 0 up

(2.11) ( (/(aw)cte cte' = ( If Σ1cnT
nf{xs)ds dx'

Jβlg Jo Jβlg \ Jg

si (lΣo.τ-
JGlg Jg

by (2.10), so (2.9) clearly holds if dist(O, Cf) = 0, and we can henceforth
assume the distance is positive. Thus 2.1 clearly applies: we have a φ
of norm 1 in L^G) for which

(2.12) dist(0, Cr) = I ( f(x)φ{x)dx = I ( ( /(ajβM^dβda?'
I JG \ JGlg Jg

while Γ*<£> = φ. Now the set of φ in L^G) satisfying Γ*<£> = φ is
precisely the subspace £7 orthogonal to the range of /—*/ — μ*f =f— Tff

and we want to see these functions φ are constant on cosets mod g.
But the closure of the range of this map, I = {f — μ*f;feL1{G)}~f

is a closed ideal in LX(G), whose hull clearly is the set of characters g

in the dual group GΛ for which 1 = μ(g)l = \ g(x)μ(dx)j. Since μ ^ 0
\ JG J

and of norm 1, these characters are just those identically 1 on the carrier
of μ, hence just those in g1, the group of characters identically 1 on g»
Since [7] gL is a set of spectral synthesis, we know E, the subspace of
L^G) orthogonal to /, is the weak* closed span of the characters in
g1; hence7a E consists of functions constant on cosets mod g, as desired,
and, in particular our φ in (2.12) is such a function.

Consequently (since ||<p||oo = 1) by (2.12)

dist(O, Cf) ̂  ( ί f(xs)ds dx'
JGlg I Jg

since the reverse inequality was obtained in (2.11), (2.9) follows.
Note that we could just as well take a family of probability measures

{/**}, S the semigroup generated by all the corresponding maps f~-+μΛ*f9

and g the smallest closed subgroup of G carrying all our measures. For
I, in the above argument, would replaced by the closure of the set of
all finite sums Σ(fn — μan*fn), an ideal whose hull is the set of characters
identically 1 on all carriers, hence with hull gL as before.

Finally one could take μ to be any measure of norm 1, but then
one sees (quite easily) that if dist(O, Cf) > 0 for some /, μ has to be the
product of a character and a probability measure; for 2.1 provides a
nonzero φ orthogonal to /, so that / is a proper ideal and must have
a nonvoid hull. If g lies in the hull, so μ(g) = \g(x)μ(dx) = 1 then

7 a That ψs=\p in Loo, sβg, ψeE, is immediate; that the assertion follows is a result
of Reiter (Ann. Math., to appear; see 3.1 below).
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v = gμ ^ 0. (The corresponding result for such a measure is of course
easily derived from the original case since g(μ*f) = (gμ)*(§f).)

2.4. Our next example is a variant of 2.3, although G could be
nonabelian (if we take care in writing products). G will again be a
locally compact abelian group and μ a probability measure on G, but
now T:f-+μ*f will act on C0(G), the continuous functions vanishing
at infinity on G. Let g again be the smallest closed subgroup of G
carrying μ. With S and Cf as before we can now assert that dist(O, Cf) —
0 for all / in C0(G) unless g is compact; and if g is compact

(2.13) dist(O, Cf) = sup ( f(xs)ds
x Jg

Suppose the distance is positive for some /, so by 2.1 we have a v
in C0(G)* = M(G) ( = finite complex regular Borel measures on G) of norm
1 for which Γ*v = v, and

dist(O, Cf) = \f(x)v(dx) .

Since f*μ(y) = {/(x'tyμidx), T*v=v becomes μf*v = v, where μ\E) =

μ(E~ι). Asa consequence we conclude (as is well known) that δx*v = v
for each x in the carrier of μ\ where δx is the unit point mass at
x. (Indeed, consider K= {XeM(G): \\X\\ g 1, μ'*\ = λ}, a translation
invariant weak* compact convex set. For an extreme point λ of K,
X — //*λ can be rewritten in terms of a weak* convergent integral:

λ = \δx*X μ'(dx); since δx*X e K, x-^δx*X is weak* continuous, and \\μ'\\ =

1, we conclude that X = δx*X, for all x in the carrier of μ'. Thus the

same is true for all λ in K.)
Consequently we have δx*v — v for all # in g, and ^ must be compact;

for if {Xy} is a net tending to infinity we clearly have \\δXy*v — v\\ —>
2||v| | = 2, and so this cannot hold for xΊ in g.

Now let Q be the closed convex hull of {fs: s in g} in C0(G), so
Cf c: Cf, and let μ, be normalized Haar measure on #. Then f*μg is
an element of least norm in Cf: \\Σcnf

8»\\ ^ | |-Σcn/β»*μJ|β β = l l ^ / * / ! , ! ^ ^
ll/*ΛlU, for cn ^ 0, Σcn = 1, and sw in g of course. Thus since our v
satisfies v*μg — v,

dist(O, Cf) ̂  dist(O, Cf) = \\f*μg\U ^

and we obtain (2.13) since | | /*/*JU is its right side.8

8 This example could also be obtained from the mean ergodic theorem, which applies
(since / in CΌ(G) is weakly almost periodic) to yield an h in Cf of minimal norm. (Just as
in the case of our v above, one sees hs = h for s in g, whence g is compact if h Φ 0; since
h is constant on cosets mod g, \\h\\oo = supa I h(xs)ds , which clearly coincides with the
right side of (2.13))
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2.5. Finally we should note an alternative formulation of 2.1 which,
although not useful for our purposes, has some interest: the assertion
of 2.1 is equivalent to the assertion that, if dist(O, Cx) is positive, then

(2.14) dist(O, Cx) = dist(O, x + span{# - sy : y in B, s in S})

(hence that the origin is equidistant from Cx and a certain linear variety-
through it).

Indeed let L denote the closed subspace formed from span{?/ — sy :y
in B, s in S}; then Σcnsnx = x + Σcn{snx — x) shows Cx c x + L, so

(2.15) dist(O, C.) ^ dist(O, x + L) .

But the #* of 2.1 clearly has the constant value (x, x*y on x + L, and
since it has norm 1, dist(O, x + L) ^\ζx, x*y\ — dist(O, Cx). Thus the
assertion of 2.1 implies that given in (2.14).

Conversely (2.14) implies the assertion of 2.1. For if we let x* be
any element of J5* of norm 1 vanishing on L (and such will exist if
dist(O, Cx) = dist(O, x + L) > 0) then s*#* = x* follows, and so x* has
the constant value ζx, $*)> on Cx. Consequently one obtains dist(O, Cx) =
\(x, x*y\ exactly as in the proof of 2.1.

Note that (2.15) shows we do not need to assume our distance positive
in (2.14). Moreover (2.14) shows that in explicitly computing dist(O, Cx)
in the situation given in 2.1, we are actually computing the norm in a
quotient space of B\ this was in fact the origin of Reiter's work.

3 We now turn to our version of Reiter's result, which has a
generality due mainly to recent results of Swierczkowski [10]. Several
remarks will be necessary before we state our result.

Let X be a locally compact space, on which the locally compact
group g acts (on the right) as a transformation group, so that (x, s) —> xs
is continuous from X x g —> X, and the identity of g is the identity map.
Let X/g denote the corresponding orbit space, that is, the space of orbits
xg in the finest topology rendering the canonical map p: X —* X\g con-
tinuous. We shall assume

(3.01) XIg is locally compact {Hausdorff), and piX-^X/g is open,

and, for any compact K c X

(3.02) {seg: K f] Ks Φ φ) is compact g: alternatively,

(3.02;) {(x, s): x e K, xs e K} is compact in X x g.

For example, we might take our locally compact X to be (metrizable
and) the simply connected covering space of a connected locally simply
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connected space Y — X/g, g the fundamental group of9 Y. As a simpler
example take X — G a locally compact group, g a closed subgroup, so
X\g is the homogeneous space Gjg, and (3.02) is evident. Or take X =
Y x g, Y an arbitrary locally compact space, and let g act in the obvious
(trivial) fashion.

Let L(X) denote the vector space of (complex) continuous functions
with compact support on X. Condition (3.02) insures that for any / in
L(X), s—>f(xs) is in L{g), and so we may form

(3.1) f\x') = \ f(xs)ds ,
Jo

where ds is the element of left invariant Haar measure on g, and xr

is the orbit xg of x. (Left invariance of course implies (3.1) is independent
of the particular x in x\) Since, by (3.01), p:X—*Xjg is open the
resulting function / ' is continuous on X\g, hence lies in L(X\g). More-
over by (3.01) every compact subset K of Xjg is the image of some
compact subset of X (simply choose for each xf in K some preimage x
and a compact neighborhood Vx; finitely many of the (compact) neighbor-
hoods ρ(Vx) cover K). As a consequence/—>/' maps L(X) onto L(Xjg),
exactly as in the case in which X — G is a group, g a closed subgroup
[11, p. 43].

Let v be any Radon measure on Xjg, that is, a nonnegative regular

Borel measure, finite on compacta. Since /—> \ f\xr)v{dxf) is a non-
JXlg

negative functional on L(X), we have a corresponding unique Radon
measure μ on X (by the Riesz representation theorem):

(3.2) ( f(x)μ(dx) = ( ί f(xs)dsv(dx') ,
Jx JxlgJg

f in L(X). (Note that μ also uniquely determines v since L(X) maps
onto L(X/g).)

In [10, Th. 1] Swierczkowski has characterized the measures μ which

so arise when X = G is a group, g a closed subgroup, and precisely the

same proof applies in our more general setting. (One needs only the

fact that, for/, h in L(X), (x, s) —>f(x)h(xs) is in L(X x g), which follows

from (3.02').) The induced measures μ are just those which translate

(as one would expect from (3.2)) as follows, where10 \f(x)μs(dx) =

fs(x)μ(dx), and d is the modular function [11] of g:

9 Here the set in (3.02) is finite, a consequence of the fact that g acts freely (xs — xt
for some x implies s = t). For suppose {sn} is a sequence of distinct elements of the set,
so knSn€K, kneK, all n. Passing to a subsequence we can assume kn -> k, knsn -> &', and
all kn lie in a neighborhood F of & for which p\ V is a homeomorphism. Then ,#(&«) =
p(knsn) -> K&O and to p{k)y so &; = &S, sβg. So fcwSraS-1 -> &, knsns~1e V for % ̂  wo, whence
knSnS*1 = kny n ^ %o, and sw = s, w ̂  no, our contradiction.

10 Here fs(x) = f(χs) as earlier. Since Swierczkowski writes fs(x) = Λxs'1), both (3 3)
and (3.4) below feature δ(s) in place of δis"1) in [10].
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(3.3) μs = δ(s->)μ

in particular when g is unimodular (δ Ξ= 1) these are the ^-invariant
measures on X

Now fix μ and v satisfying (3.2). Usual monotoneity arguments
show (as in [10]) that /—>/' extends to map the nonnegative (extended
real valued) Baire functions on X onto the corresponding set of functions
on X/g (since L(X) maps onto L(X\g)), while (3.2) continues to hold for
such functions; by (3,2) those nonnegative Baire functions which are
μ-integrable map into v-integrable functions of the same Lλ norm, so
/—•/' extends to map Lt{μ), the nonnegative elements of L^μ), onto
Lt(v), hence to a map of Lx{μ) onto Lλ{v). Since (3.2) holds for all / in
Lt(μ), it continues to hold for / in Lx{μ).

We shall require one further result of Swierczkowski [10, Th. 3],
which extends to our setting without change:11 the kernel of the map
/—>/' of L^μ) onto Lx(v) is the closed span in Lλ(μ) of the elements

(3.4) Γ-δis^f, feL^μ), szg.

(Note that by (3.3), Lλ(μ) is ^-invariant, so fs e Lx(μ).) This has the
following consequence, which has been noted by Reiter.

LEMMA 3.1. Let μ and v satisfy (3.2), and suppose ψ e LJ^μ) satisfies
ψs = ψ (in LJ^μ)) for all s in g. Then ψ = ψΌp for some ψr in L^v)
of {essential supremum) norm bounded by that of ψ.

Let < , •> denote the pairing between Lx and L^, so </, φy =

[ f(p)φ{p)μ{dx) f o r / e L ^ ) , φzLJμ). Then

if, ΦS> = ( f(x)ψ(xs)μ(dx) = [ ( f(X81)φ(X818)d81v(dx')
JX JXIQJQ

= ( ί
JxlgJg

so

(3.5) </, φsS> - <β{s-')f*-\ φy , f e Lx(μ) , φ e LJβ) .

For our element ψ in 3.1, this of course implies ψ is orthogonal to
fs~λ — d(s)f, and so to the functions (3.4), hence orthogonal to the kernel
of our map f—*f. Let E denote the subspace of L^μ) orthogonal to
the kernel, so ψeE.

11 [1O] deals only with real h\ spaces, but extension of this result to the complex case
is trivial.
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Since /—>/' maps Lλ(μ) onto Lx{v), the adjoint map, which clearly
sends ψ' —• ψΌp (ψr e L^v)) by (3.2), must map LJμ) onto E. Consequently
there is a ψ' in L^v) for which ψ = ψΌp. Now

, =\<h',Ψ'>\
)x\g

where hr is a positive multiple of an appropriate characteristic function,
and of norm 1 in Lλ{v). Since Lt{μ) maps onto L{{v) under f-+f',hf

is the image of a nonnegative h in L^μ), and by (3.2) \\K\\T, = ||/&'|li = 1.
But ψ' maps onto ψ under the adjoint map, so (h, ψ} = Qi', ψry, and
thus

completing the proof of 3.1.
We can now formulate our version of Reiter's result.

THEOREM 3.2. Suppose the locally compact space X and the locally
compact group g acting on X satisfy (3.01) and (3.02), and μ is a Radon
measure on X satisfying (3.3); let v he the corresponding measure on
Xjg satisfying (3.2).

Suppose g contains a subsemigroup S which generates g (topologically)
for which there is a left invariant mean on the space m(S) of bounded
functions12 on S. Then for every f in Lλ{μ) we have

(3.6) inf [ Σ cAs-Wxs?) μ(dx) = f I ( f(xs)d
JX i Jxlg I Jg

v(ds') ,

where the infimum is taken over all finite sums with cn ^ 0, Σcn — 1,
and sn in S.

Furthermore (3.6) continues to hold if the sn are allowed to range
over any large subset of g, or the cn are allowed to be complex numbers
summing to 1, or both.

Slightly more can be claimed in the purely group setting (X = G 3 g)
if our measures are the (left invariant) Haar measure on G and a
relatively invariant measure on Gig (see 4.1). (3.6) resembles Reiter's
result most closely when g is unimodular, but even asserts more, for
example, when we take X to be the group R of additive reals, g = S
the subgroup of integers, where 3.2 takes the following form. Let μ
be a periodic Radon measure, say of period 1, on R (so μ(E + 1) = μ(E)
for all Borel E c R); the corresponding v is the restriction of μ to [0,1),

12 Or just on the uniformly continuous functions; for we (in effect) apply our mean only
to functions of the form t -> <h, ψst> (cf. footnote 4), h θ Li(μ), ψ 6 Loo(μ), and those are in
fact uniformly continuous, a consequence of 3.3 below.
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viewed as the quotient group, so (3.6) asserts that for / in Lx(μ)f

i n f J l
N

-IT

μ(dx) = [ ±f(x + n)
JO

μ(dx).

Reiter's result yields the same assertion for Lebesgue measure, hence
(almost immediately) for absolutely continuous μ.

While it will be apparent that the hypothesized invariant mean is
essential to our proof, we have no example showing it is essential to
the result.

To proceed to the proof of 3.2 let Cf be the closed convex hull of
{δis-1)/8'1: s in S} in L^μ). We have to prove that c = dist(O, Cf) is
precisely the right side of (3.6). From Σcn = 1 we have (as in [9])

(3.7) f I ( f(xs)ds v(dx') =\ If Σcnδ(s?)f(x88?)d8
Jxlg I Jg Jxlo I Jg

v(dxf)

xlg Jg
\Σc,δ(8^1)f(X88^)\d8V(dx')

by (3.2), so c ^ \ If f(xs)ds
jxlg I Jg

v(dxf)1 and it remains to prove13

(3.8) \ f(xs)ds
JO

v{dx')

since this is obvious for c = 0, we can assume c > 0, and so apply 2.1.
Indeed, if Rs is the operator on Lx{μ) defined by Rsh = ^(s"1)/^8"1 then

R*<P - ^ s since, by (3.5), <βΛh, φ} - <A, ̂ s>; since | |iί*| | = 1, ||Λ.|| = 1
(in fact R8 is an isometry, as is easily seen). Now s—> Rs is an anti-
homomorphism, since RsRth(x) = δis^Rthixs'1) — ̂ (s"1)^-1)/^^-1^"1) =
Rtsh(x), so {Rs: δ in S} is a semigroup having a right invariant mean
on its bounded functions, and Lemma 2.1 applies: we have a φ of norm
1 in Loo(μ) satisfying

(3.9) = !</,?>> I

for which φ8 = <p in L^μ), for all β in S.
Consequently φs = φ for all s in the dense subgroup S generates

algebraically in g. Now suppose that (as we shall see in Lemma 3.3
below) s—>φs is a weak* continuous map from # into LJ,μ), so that
9 s = φ in !/«,(/!) for all s in #. By Lemma 3.1 we then have φ = <pΌp
where 99' is an element of LJμ) of norm ^ 1, so by (3.9)

1 3 Since (3.8) and (3.7) imply (3.6), there still remains the final assertion of 3.2, but this
follows trivially. (For the proposed changes in (3.6) can only decrease the left side, while
by (3.7) no actual decrease is possible; this is precisely the argument used by Reiter to
show [9] contained its precursor [8].)
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= \<f,<P>\ = \\ \
I Jx/s Jo

= I ( ( f(xs)φ'(ρ(xs))dsv(dx')
I Jxlg Jg

- l ί ([ f(X8)d<
I )xlg\jg

^ \ I ( f(xs)ds
jxlg I Jg

v(dx')

since <ρ' is of norm ^ 1, which yields (3.8), and so (3.6).
Hence to complete the proof of 3.2 we have only to prove

LEMMA 3.3. Let μ satisfy (3.3). Then for f in Lλ{μ), s->fs is
strongly continuous from g into Lλ(μ); consequently for φ in LQO(μ)9

s—>φs is weak* continuous {by (3.5) and the continuity of δ).
Let V be a fixed compact neighborhood of the identity in g. Since

ί \f'(v)\Mdx)=\ \f(^)\βs(dx)^δ(s-1)\\f\\1 by (3.3), the translation
jx Jx

operators /—>/ s on Lλ{μ) corresponding to the elements s of 7 are
uniformly bounded; thus it suffices to shows s—+fs is strongly continuous
at the identity of g for a dense subset of L^μ), in particular for / in
L(X).

So suppose / in L(X) vanishes off the compact set K c X and v is
the Radon measure on X\g satisfying (3.2). Then for te V by (3.2)

(3.10) H/' -./U = ( \ \f{xst)-f{xs)\dsv{dx') .

Now the inner integral vanishes for x' & ρ(K), so we need only compute
it for x in K; and for x in K the integrand vanishes unless xst or xs
is in K. By (3.02') we have a compact Kxc g for which xs in K and
x in K imply s e K19 so our integrand vanishes (for x in K) unless st
or s is in Ku hence certainly if s £ K2 = Kx V'1 U ^ 3 KJ'1 U JKΊ.
Consequently the inner integral is bounded by

ct = suv{\f(xst) - f(xs)\ :xeK,seK2}

multiplied by the Haar measure of K2, for xr in p(K). Since it vanishes
for xf ί p{K), and the compact set ρ{K) has finite v measure, (3.10) itself
is bounded by c ct9 where c is a constant independent of t. But ct clearly
tends to 0 as t tends to the identity of g, so our proof is complete.

When g is abelian (so invariant means exist) one can easily see
directly that the left side of (3.6) is the same whether the sn range (1)
over g or (2) only over a generating subsemigroup14 S. Indeed by 3.3
it suffices to compute the left side of (3.6) using only a dense subset of
our sn. Thus in case (1) we can approximate the left side of (3.6) by

14 I am indebted to K. deLeeuw for pointing this out to me.
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(3.11) Ilίx/
Mi

where sn> tn e S, since S~XS is dense in g. But since g is unimodular
||Λ |li=l|fc||i>*' in Lx(μ)9 so (3.11) coincides with | | Σ ί c n / »1'» ||i> where
we may take s = JJf sn, so that s~Hns e S for all n. Hence the left side
of (3.6) in case (1) is no less than in case (2), and since it could only be
smaller, both are equal. But note that this is not at all apparent in
the non-abelian case (and may of course, be false without some restriction).

4 Now let G be a locally compact group, g a closed subgroup, and
suppose the homogeneous space Gjg of left cosets xg — x' carries a
relatively invariant measure (which we shall denote by dx'), i.e., for each
y in G there is a χ(y) > 0 for which, for / in L{Gjg),

(4.1) [ f{y^x')dx' = χ(y) \ f(x')dx'.
JGJg JGJg

Then [11, pp. 42-45] χ is a continuous homomorphism of G into the
multiplicative positive reals, with

(4.2) X(s)Λ(s) = d(s) , s in g ,

where Δ is the modular function of G; in fact the existence of a
homomorphism χ satisfying (4.2) insures the existence of a relatively
invariant measure satisfying (4.1). (In particular such a measure exists
if g is unimodular, e.g., with χ = A'1.) With an appropriate normalization
[11, P. 45],

(4.3) f(x)χ(x)dx = f(xs)dsdx' ,
JG JGJgJg

for all/in L(G), where dx denotes the left invariant Haar measure on
G. Consequently the measures χ(x)dx and dx' can assume the roles of
fi and v, in which case (3.6) takes the form

(4.4) inf \ \Σcnδ(8?)f(x8?)\χ(x)dx =\ \\ f(xs)ds dx' ,
JG JGIg I Jg

for / in L1(χ(x)dx). But now some simplification in (4.4) can be made
by rephrasing it in terms of the element f0 = fχ of L1(G)f and utilizing
the involution f—>f*(f*(x) — Δ{x"v)f{x~v)) available in Lλ(G).

COROLLARY 4.1. Let G/g carry a relatively invariant measure
satisfying (4.3). Suppose g contains a generating subsemigroup S as
in 3.2. Then for every f in Lλ(G)

(4.5) inf ί Σ,cnf(snx) dx = \ \\ dx' ,
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and, if Δ{s) = 1 for all s in g,
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(4.6) inf (
N

1
dx =

Gig
\ f(xs)χ(xs-1)ds
Jg

dx' ,

where infimums are taken as in 3.2.

We need only apply (4.4) to fx = /χ"1 € L1(χ(x)dx), which yields

inf \ I I φ

= ( ί f(xs)χ(xs)'1ds
Jβlg Jg

dx' .

Since δfo^χO

(4.7) infί

= δ(β;ι)Z(«.) = /((s;1) by (4.2), this becomes

N

1
= t

Jβlg

dx',

yielding (4.6) when Δ = 1 on g. Noting that we have defined /, by
fs{%) = f(sx), we have

= f(xs~1)

so the left side of (4.7) is

inf||Jc.((/*).n) ||x = inf

since * is an isometry, and (4.7) may be rewritten as

inf ί I ΣcJ*(snx) \dx=\ \\ f(xs)χ(xs->)ds
JG JG/g I Jg

dx'

which reduces to (4.5) when / is replaced by /*.
Finally we should note that there is also a considerable simplification

in the technical details surrounding 3.2 in the above situation. Indeed
3.3 then follows from the fact that elements of Lλ{G) translate continuously,
while the use of Lemma 3.1 can easily be avoided by using an approximate
identity {u}. For with ψs = ψ in L^G), seg, and c ^\(f, ψ)\ =

f(x)χ(x)ψ(x)dx

u*fo{x)ψ{x)dx

, the fact that /0 = fχ e LX(G) implies c — ε

for some u, and this reduces easily to\
J

where ψjx) — \ u(y)ψ(yx)dy. But ψu is a continuous function (bounded
JG

by 1) which satisfies ψs

u = ψu in L^G), s in g, hence must be constant
on cosets mod g, which is clearly all that is needed.
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5. We conclude by noting the rather simple analogue of 4.1 which
holds for LP(G), l<p< oo, when Gjg carries an invariant measure
(corresponding to χ = 1, so that A(s) = δ(s), s in g, by (4.2)). Suppose
S is now any generating subsemigroup of g. Let Cι

f (resp. C}) denote
the closed convex hull of the left (resp. right) translates of feLp(G) by
elements of S. Then either 0 e Cι

f for every / in LP(G), or g is compact
and

'dx1

P \llp

dx'

(5.1) inf{|| h H, :heC}} = (\ If f(xs)ds
\JGlg I Jg

(5.2) inf{p| |p: he Cι

f} = (\ \\ f*{xs)ds
\JGlg I Jg

where f(x) = f(χ-1)4(x~iyilp) (the positive root), and we normalize the
Haar measure of g to be 1. (If g is unimodular and noncompact, OeC} for
all / in LP(G) as well.)

Indeed, since LP(G) is reflexive and Cι

f is bounded, Cι

f has an element
h of least norm, unique since the unit ball of LP(G) is strictly convex.
B u t hseCι

f a n d \\hs\\p = \\h\\p, s in S, so

(5.3) Λ. = λ

for all s in S, hence for all s in g (since elements of LP(G) translate
continuously).

But if 0 g Cy then & ̂  0 and clearly (5.3) cannot hold for all s in
g unless g is compact. (A similar argument applies if g is unimodular
and 0 ί C>.)

Now with g compact (and so unimodular), the unique element h of
least norm in C} satisfies hs = h, s in g, and so with μ the normalized

Haar measure of g, h*μ = \ hsds = h, and h is (the equivalence class

of) a function constant on cosets xg; hence ||fc||P = (I \ \h(xs)\pdsdx')
\jGlgJg /

coincides with

Gig Jg I

Since A(s) — δ(s) — 1 for s in #, (5.4) coincides with the right side of
(5.1) (for any h in C% yielding (5.1).

To obtain (5.2) one employs the (isometric) involution/—>/* of LP(G}
as earlier, noting that /* s* = fs-u
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