A PROBLEM OF LEAST AREA

EDWARD SILVERMAN

McShanes’s solution of the Plateau problem made use of a repre-
sentation theorem to reduce this problem to that of minimizing the
Dirichlet integral, a non-parametric problem. The parametric integral
considered by Cesari, Sigalov and Morrey [4, 16, 15] can be interpreted
as an area integral for an appropriately generalized area. If this
area satisfies certain conditions there exists a Dirichlet-type integral
and a representation theorem so that the McShane procedure applies.
We shall restrict ourselves to such integrands since further information
concerning the non-parametric problem is required to handle the general
case. Results of [13] ensure the existence of a solution minimizing
the Dirichlet integral and, if the integrand is sufficiently smooth, then
the solution also has differentiability properties. The representation
theorem is used to show that the solution which minimizes the Dirichlet
integral also minimizes the parametric integral.

We use Theorem 5.2 and the representation theorem to correct
an error in [21].

It seems probable that Fleming’s results [9] can be combined with
those of this paper to extend to surfaces of other topological types
the results derived here for surfaces of the type of the disc.

It is desirable that the theory be broad enough to handle the
problem of least area in m, the space of bounded sequences [1], hence
an independent proof that the generalized area, given by the integral
if the representation is good enough, is lower semi-continuous.

Since the Lebesgue area of a surface is obtained by taking the
limit of the areas of a suitable sequence of approximating polyhedra, -
there is no loss in generality in supposing that all of the Banach
spaces considered are separable, except m. If B is such a space, then
we can suppose that B is a subspace of m [17].

1. Let M be a metric space, C(J, M) be the space of continuous
functions on a Jordan region J into M and x e C(J, M). Then there
exists a monotone-light factorization x=Xx,t, such that g.(J)Cm,
L(p,) = L(x), where L is Lebesgue area and \, is a contraction [17, 18].
If yeC(J, M) then || ¢, — 4]l £ 2|z —y||. If K is a Jordan region
contained in J, then || £, (D) — ttx(@) || = || £.(P) — ££.() || Whenever
p, g€ K. Furthermore, there exists a nonnegative valued function »
on the subsets of m such that A A) < M(B) whenever AC B and
M (J)) = L(x). If M =m and « is monotone then Max(J)) = L(x)
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[20]. It is not hard to verify that the last equality holds if J is an
admissible set [3]. In addition, if A is contained in a cyclic element
C of t(J) then \(Int ,A) = M(4) where Int,A is the interior of A4
relative to C. Finally, Mt.(J)) = ZN(C) where the summation is taken
over the cyclic elements of f£,(J).

A Jordan region is the homeomorph of a Jordan region in the
plane. The letter ¢ will frequently be a natural number or an index
but may also indicate the identity map on m. Thus if ¢ (J) = K is
a Jordan region then ft, and 4| K are Fréchet equivalent and L(x) =
L(¢,) = MK) = L(i, K) where L(i, K) = L(1| K). If a Jordan region
A is cut into two Jordan regions B and C by means of a rectifiable
are, then MA) = MB) + MC).

A subset of f,(J) is open if it is open relative to g, (J). If f is
a function on A to B and pe B then f'(p) = {g€ 4|f(q) = p}.

Let #(»), Z(x), #(x), £(®) and 2 (%) be, respectively, the
collection of all Jordan regions in Domain @, all Jordan regions in
Range ., that subset of 2°(x) whose boundaries, relative to Range
M., are rectifiable, the open subsets of Range (¢, whose boundaries
are boundaries of elements of <Z(x), and the inverses, under £,, of
the elements of & (x). Thus the elements of & (x) and < (x) are open,
connected and simply connected.

Now let @ = Domain # and & = ¢.(Q), and L(x) be finite.

Lemma 1.1. If Je #(x) then L(t.,) = L(tt,, J).

Proof. By Kolmogoroff’s principle, L(x, J) = L((,, J) < L(&,);).
We have already noted the equality of L(x, J) and L(,;).

LemMMA 1.2. If Ge £ (x) and H = p,(G) then L(x, H) = MG).

Proof. If Je #(x), JC H, then L(z,J) = L(tt,;) = L(tt,, J) =
M) = MG). Thus L(x, H) = MG) since H can be invaded by Jordan
regions [3]. Now let @' = & — G — 0G and H' = ¢£;(G’). By invading,
with multiply connected Jordan regions if necessary, we obtain, as
above, that L(x, H') < MG'). Since x|0H is rectifiable (thus )\,(0G)
is also rectifiable) L(x) = L(x, H) + L(x, H') = MG) + MG') = &) =
L(p,) = L(x) and the equality must hold throughout. The lemma
follows.

LemMA 1.3. Let R, and R, be Jordan regions with R, CInt R,.
Suppose that x is light on A = R, — Int R, into M. Let # be the
set of all continuous f on [0,1] into A such that f(0)cdR, and
F(Q)edR,. Let 57 be the set of all continuous h on [0,1] into A
such that h(0) = k(1) and h(a) # h(b) unless (a,d) = (0,1) or (1, 0),
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and R, is contained in the interior of the Jordan curve determined
by h. Let a = infse gy length p,f and B = inf,cqy length (t,h. Then
a and B are minima and B < L(x)la + «.

Proof. Let f,e.&# with length g,f, < a + 1/n. By Hilbert’s
theorem concerning curves uniformly bounded in length there exists
S’ continuous on [0,1] to which a subsequence of . .f, converge in
the sense of Fréchet. Since z is light, £, is a homeomorphism. It
is easy to see that f = p;f e & and length g, f = a.

Let v = ([0, 1]) and geInt A — v. It is obvious that v is a simple
arc. There exist simple arcs v, joining 8R, to 8RR, and Jordan regions
J, with 8J, C8R, UdR, U~ U7, such that qeJ, and J, invades A.
By [19], there exists g, continuous on [0, 1] into J, such that g,(0) v
and ¢,(1) €7, such that length tt.9, < L(z, J,)/a < L(x)/a. By appeal-
ing to Hilbert’s theorem again we obtain a function ¢’ continuous on
[0, 1] into A such that ¢'(0) € #£.(7), 9'(1) € #£.() and R, is contained in
the Jordan region R bounded by ¢'([0, 1]) and the piece of v between
¢’(0) and ¢’(1). The lemma follows.

If xe C(J, m) then x** e C(J, E,) is defined by x**(p) = (*(p), £*(p))
for each peJ.

LeMMA 1.4, Let pe & and C be a cyclic element of < contain-
wng p. Then for each € > 0 there exists Re <Z(x) such that diam R
< ¢ and L(i, R) < e.

Proof. By [19] there exists, for each 6>0, Re <2 (x) with pe IntR
and diam R < d. By [17] there exists a number 7T such that
L(y) > L(#,) — ¢/2 where v/ = (¢,)) for < T and ' =0 for 7> T.
Let N, be the essential multiplicity function, [8], of (g.)*. Since

SNM is finite there exists 8, > 0 such that SS N, < ¢/T* whenever
B
|E| < 0. Let 6 =mind;,, 1=1,k=T. Now take diam’R < d/4.
Since diam (\,)*(R) < 2diam R, L(i, R) < S SSNM + &/2 < ¢, where
1Si<j=T
the integral is taken over (A,)"*(R). ’

By ‘0 < 97(x)’ we mean that o is a finite family of non-over-
lapping elements of .77, where 9 is &, 27 or Z2; by ‘o< A (%)
we mean that ¢ is a finite family of pairwise disjoint elements of &4
where &7 is & or .

THEOREM 1.1. There exists 0,< 2 (x) such that maxpe,, diamx(D)—0
and L(x) = lim, X\pe., L(2, D).

Proof. Let C; be the cyclic elements of «?. There exists T,
such that 3., MC;) < 1/n and max;,,, diam C; < 1/n. Those points
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common to C; and C;, 1+ J, 4,7 < T,, can each be placed in an
element of .&Z the sum of whose areas is less than 1/n. The part
of C;, 1 < T, not in any of these regions can be cut up into arbi-
trarily small regions each of which has a rectifiable boundary, relative
to C;, by means of the intrinsic inequality. The theorem follows from
the cyclic additivity of L and the additivity of L relative to a recti-
fiable cut. ~
If U is an open subset of Q let U = g, (Int ££,(0U)) [23].

LeEmMMA 1.5. If U 14s an open subset of Q then L(x, U) = Mt,(U)).

Proof. Let J be a Jordan region (possibly multiply connected)
contained in U. Then g (J)C ¢ (U) and L(z, J) < M¢,(U)). Hence
L(x, U) = M¢£,(U)). Let € > 0. The intrinsic inequality can be used
to produce 0 < Z (%), G’ = Uger G C ££,(U), such that MG") >Me(U))—
e. Let H= t;(G’). Then L(x, H) = MG’), by Lemma 1.2, and Hc U.
Thus L(z, U) = L(z, H) = MG’) > Me(U)) — e.

LeMMA 1.6, If U is an open subset of Q then L(x, U) = L(z, U).
Proof. L(z, U) = M(0)) = Mpe(0)) = L(z, U).

LemMA 1.7, If UcVc@Q, Uand V open, then
L(z*, V) — L(z*, U) < L(z, V) — L(z, U) .

Proof. Let € >0. By Theorem 1.1 there exists o < =7 (%),
Upee D U, and Sper L(z, D) > L(x, U) —e. Thus

L(*, V) - L@*, U) < L™, V) — 3 L(z*, D)
= L(@*, V- UD) < L V- UD)
= L(x, V) —Dg L(z, D) < Iz, V) — L(», U) + ¢ .

2. If B is a Banach space over the reals, then B, is the set of
all elements of B having norm one and B* is the space of continuous
linear functionals over B. For the purposes of this paper there is no
loss in generality in supposing that B is separable. In this case there
exist f,e Bf, n =1,2, ---, such that ||e]|| = sup, [a, f.]. By identify-
ing a€ B with {[a, f,]} € m we can suppose that B is a subspace of m
[17]. Let m’ be the space of bounded functions 8 on N x N, N is
the set of positive integers, such that B(m, n) 4+ B(n, m) =0. If a,bem
then we define a A bem’ by a A b(m, n) = a™b™ — a"b™, where a = {a’}
and b = {6°}. Thus we suppose that the exterior product of B with
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itself, B A B, is contained in m'. If Bem’ then we put ||B]| =
sup |B(m, n)| and obtain [la Ab|[=2(la|ll[b] = [la|*+|[b|* If
a Ab=20 then a and b are linearly dependent, and conversely. We
will usually write 5% for A(z, k).

If f is continuous on a Jordan region J into the plane then
O(f, 8J, p) is the topological index of p relative to f(8J).

Lemma 2.1, If U is an open conmected subset of Q and if J,
18 a sequence of (possibly multiply-connected) Jordan regions invading

U then limSSO(xi”, 0J,) exists. The limit ts independent of the
sequence {J,}.

Proof. Let € > 0 and take K so large that L(x, J,) > L(z, U) — ¢/2
for »r > K. If » >m > K then

(ggow’k, 8J,) — ggowk, 8J.,)

gggi O@®, 8(J, — Int J,))| < L(z*, J, — Int J,,)
< L,J,—IntdJ,) < L(x,J,) — Lz, J,) <c¢.

—e2< f SSO(W’", 8(J, — Int J,))

Let aif = \\O(z**, 8J,). Then {«i*} is a Cauchy sequence for each
(¢, k). Let a'* =limai*. Clearly a,em’, aem/, and o, — « in m'.
The last statement is evident.

If U is an open connected subset of @ then we define <{x, U) =
a. We may write {z, J) for {x, Int J> when J is a Jordan region.
Thus we have just shown that ||<{z, U) — <z, J>|| =< L(x, U) — L(z, J)
if JC U. If U is not connected we put <z, U) = 3{x, W)> where
the sum is taken over the components W of U.

LEMMA 2.2. If UC V are open subsets of @ then

LeEmMmA 2.3. If U is an open subset of Q and if D U, De & (%),
then {x, Uy = <z, Dy + {x, U — Clos D).

The proof depends upon the fact that the image of 8D under z
is rectifiable.

The monotone map ¢, induces an orientation of the cyclic elements
of «2[24]. We assume from now on that & is a subset of m together
with this induced orientation.

LEMMA 2.4. Let r, be the monotone retraction of & onto one of
its cyclic elements C. If J is a Jordan region contained in Q then
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Oz, 8J) = JO((\,)*r,, 1, (8J)), where the sum is taken over the cyclic
elements of <.

Proof. Let 6  p,(0J) and suppose that 7, is constant on 6 and
that r, =14 on p£,(0J) — 0. Let E be the oriented plane containing
**(Q), Pe K, and L be a half-line in E terminating at P. If peoJ
and f is continuous on J into E, let w(f, p) be the angle between the
half-line determined by f(p) and P with L. Evidently the change in
w(x**) around 0J is equal to the sum of the changes of w((\,)#r,) on
¢,0J). Thus <z, J> = Z1q, tI)).

LEMMA 2.5. <z, U> = (v, (0> .

Proof. We can suppose that U is connected. Let ¢ > 0. There
exists a Jordan region J < U with L(x, U) < L(z, J) + . If K= IntJ
then

S L0, T)) — Lvaro, 1K)
= L\, £0)) — LOv, p(K)) = L@, U) — L(z, J) < <.
Hence
1@, UD — vy O || < 1<, UD = <o, I |

+ [[<@, IY — Iy LA DD || + || Z0T0, £2T)) — S0, (TP ]
+ I|2<>":v,r(7! l’cs(U)> - <>":u ﬂz((j)>ll <e+ 0 + e+ 0=2¢.

LEMMA 2.6. Let p(U) contain a cyclic element C of the type
of a sphere. Then {\,rg, t,(U)) = 0.

Proof. Since U is open and ¢, (C) C U there exists a Jordan region
J with ¢, (C)cJc U. Hence, since 7, is the identity on C,

<7\“x/r07 Mx(J)> = <A‘w’ TU”E(J)> = O’
LEMMA 2.7. If % is constant on 0Q then {x, Q> = 0, furthermore
{w, Q) = oy LAQ) if C, is the cyclic element containing ££,(0Q).

Finally, <z, U) = Z{\10, (U)) where the sum extends only over
those cyclic elements of < mot contained in ,(U) plus, possibly, C,.

LEMMA 2.8. Let C and C’ be two Fréchet curves in K, of the
type of the circle, each of whose lengths is less than M. Then

1§, 10¢.») — 0", pian| = 2111 C, ')

where O(C, p) is the topological index of p relative to C and ||C, C’||
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18 the Fréchet distance between C and C’.
Proof. Choose ¢ > 0. There exist functions f, g, f’ and ¢’ on
[0, 1], all continuous and of bounded variation such that ||f — f'|| +
llg —9¢'ll <]IC,C"|| + ¢ and
1 1
[ltoe, » - o, wian| = || fag - | 72

:H:(f —fNdg + S:(g — g’)df’l < 2M{||C, C"|| + ¢} .

We require an additional property of .. If p,qe@ then
I| t(0) — £.(q) || = inf {length xg|g is econtinuous on [0, 1] into @ with
9(0) = p and g(1) = q} .

THEOREM 2.1. Suppose that x,— x in C(Q, m) and that there
exists a number M such that L(x,) < M for all n. Then for each
stmply connected Jordan region J,C Q there exists a finite collection
o, of non-overlapping simply-connected Jordan regions in J, such that

lim >, <z, J) =<z, J).
JEay,

Proof. If the theorem were false there would exist ¢, > 0 such
that limsup | Y;eo, <Tn, I — <&, Jp»| > & for each admissible {s,}. By
extracting a suitable subsequence we can suppose that the limit exists.

Let C, be the cyclic elements of & and 7, be the monotone
retraction of & onto C,. There exists a number T such that
Susr MCL) < &f/4. For each k < T let K;(k) be the Jordan regions in
C. whose boundaries, relative to C, are subsets of 7..(0J,). There
exists a number s, such that X;.,, MK;(k)) < &/(8T). Let s = maxs,
and 7 = &,/(4Ts).

Let us fix k< T, j=<s, and write K for K;(k). There exist
Jordan regions K;Cc K, 1=1,2,3, with K;,C K, —0K,Cc K,C K, — 0K,
c K, K — 0K, where boundaries are taken relative to C,, such
that MK;) > MK) — 7. Let 4 = inf diam A where A is a continuum
in K, — K, which separates 0K, from 0K,. Evidently +« > 0. Let
&(g, k) = (1/6) min {1, dist (0K, 8K,,), dist (0K, 0K,), dist (0K, 0K), ¥}, & =
min&(J, k), N= M/ + 1, and { = min{¢, 7/(4N)}. We consider only
such # for which ||z, — 2| <.

Let T, = (ry¢t.)"(K; — 0K;). Then T; is an open two-cell and
there exist Jordan regions S, and S, such that T, S,c S, T; and
dist (££.(8S,), 11.(0S;)) > 5. Let B; = £, (@S;). Then dist (B;, B)) >
5 — 4L =¢.

If p is a cutpoint of &, = £, (Q) on B; and if C'(n) and C"(n)
are two cyclic elements of «*, separated by » then only one is not
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separated from B2 by p. Hence there is a single cyclic element C(n)
of &, such that no cut point of &, on B; separates C(n) from B_..
Let r(n) be the monotone retraction of &, onto C(n).

If B2N C(n) = 0 there is a cutpoint p between C(n) and B2. Hence
p ¢ B and, consequently, p separates B: from B;. This implies that
there exists a continuum A c K, — K, which separates K, from 60K,
and whose diameter is less than 4&, but this is a contradiction. Hence
BN C(n) + 0 and, therefore, dist (r(n)BZ, r(n)B2) = dist (B, B2 > &.
Thus there exist Jordan regions R!c R C(n) such that »(n)B2C R,
r(n)BiN R =0 and dist (0RZ, 0R}) > &. Since MR}) < MC(n)) < M
there exists a Jordan region R(n) with R:C R(n)C R} and length
0R(n) < N.

The curves {#R(n)} lie in a compact set and are uniformly bounded
in length by N; thus there exist representations v,€ R(n) on [0, 1]
such that v, converges uniformly to a continuous function v on [0, 1]
onto 2. From now on suppose that n is so big that ||v, — 7| <&
Let te[0,1], » = ¥(t) and p, = 7,(t). There exists ¢,€S; — S, such
that p, = £,.(¢.). Thus |[|p— £(¢.) || = [P — Dul| + [|£2,(2.) — £A@) [| =
{+ 2 =3¢. First suppose that p.(¢,)€C,. Then p.(q,) €K, — K..
Whether peC, or not, ||7.(p) — £(g.) | = [|p — ££(2.) | < 8. Now
suppose that £.(q,) ¢ C,. If r.tt.(q,) separates p from C, then r.£2.(q,) =
7(p); otherwise || 7,(p) — 7.(0.) [| < |2 — £(¢,) [| < 3L, Thusif p =
7(t) and g€ q(t) = riftafts,Va(t) then || — ¢ < 3(. Let A(n) = Uq(?).
Then A(n)C K; — K,, ¥([0,1]) € K — K,, and A(n) separates 8K, from
0K,. If r,v could be shrunk to a point in K, — K, then v could be
in & — K,. Now B,= U, t:"(t) would be shrunk to a set of
arbitrary small diameter in C(n) — R}, for n large enough, and this
is impossible since diam R? = diam K, — 2||x — =, ||.

Let G; be the components of K — ([0, 1]) which do not contain
0K. Then

SSO(W’"% [0, 1)) = SSO(”“" 1[0, 1) = I\, Gy
and
o7, 10, 1D = v, R®
where m*(a) = (', ¢*). By Lemma 2.8,
momikvn, [0, 1) — O(z**, [0, 1])| < 4NC .

Let the subscripts of the G’s be so chosen that G, D K,. Then
“<7\'x9 K> - <)"m G1>” < X(K) - 7\'(G'l.) é 7\-'(-l:{) - )"(Kl) < 77 .
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Hence [|<\,,, R(n)) — {0, KD || < ANC + 7 < 21,

Next, <., R(n)) = {\,,, r(n)" R(n)) = <x,, D,> where D, =
t. [Int r(n)” R(n)]. There exists a simply connected Jordan region J,C D,
such that || <x,, D,> —<x,, J.>|| < 7. Thus ||\, K> — <&, I || < 37,

Let 7'(n), R'(n), J'(n), K’ and K. correspond to K; (k') as r(n),
R(n), J(n), K and K, correspond to K;(k) and suppose either k + k'
or j#4. If Rm)NR'(n)+ 0 there exists ne R(n) N R'(n), ¢c K,
and ¢'€ K, such that ||p —¢q|| < 2{, and ||p — ¢'|| < 2{,. This gives
4= 4L, > |lg — ¢'|| > dist{¢g, 0K} = dist {0K,, 0K} > 5¢ > 4. Hence
R(n) N R'(n) = 0, r(n)R(n) N r'(n)R'(r) =0 and, finally, J(n) N J'(n)=0.

Now let o, be the collection of all such J,, one for each K;(k).
By some arithmetic we get

| 2 <o > =< 0> | <.

CoroLLARY. If ®»,—w, L(x,) <M and o< _#Z(x) then there
exists 0, < _Z(x,) = _Z(®) such that lim 3 ;eq, <&y I = S7es <2, ID.

3. If aem let 7,(a) = ,a = {,&’} where ,a' =a’ or 0 according
ast=<mor t>n If aem’ let ,a’ = a* or 0 according as 7,k =n
or either % or £ > n. Let ,m = w,(m) and ,m' = ,m A ,m. We recall
that we can suppose that ,m' cm'.

Let +4 be a nonnegative valued function on ,m’, for some natural
number n, with the following properties:

(i) 4 is continuous,

(ii) «r is positively homogeneous of degree one,

(iii) + is convex, and

(iv) there exist K = k > 0 such that k||a|| = y(a) < K||«a|| for
all we,m’. Let F, be the collection of such functions .

Let .7’ be the set of all « defined on m’ with the property that
Vo= (m) e F, and ¥, = Vi, Y — Y

Let 4 e o7’. If there exist Scm* X m* such that +(a A b) =
sup {[a A b, F A 91| (f, 9) € S}, where [a A b, f A g] = f(a)g(b) — f(b)g(a),
then + is stmple. If 4(a A D) =[a A b, f A g] for some (f, g) € S then
we write (f, g)e S(a A b).

We now norm m X m’ and m X m’* by [|(a,@)|| =|la]|| + ||«
and ||(a¢, Q) || = lla]l + ||{|| where aem, aem/, Lem™ and || || is
the appropriate norm.

Suppose that A is a bounded closed subset of ,m for some » and
40 is a real-valued continuous function on 4 x ,m’ with +, € F,, where
P(@) = y(a, &) for each a € A and @€ ,m’, with &k and K of (iv) inde-
pendent of a.
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LeEmMMA 8.1. Let + be as in the last paragraph. Then ~ has
an extension +r, on ,m X ,m’ which satisfies all of the conditions
tmposed on + with A replaced by ,m.

Proof. Let h be defined on A x ,m/* by
1 e (2

Wa,§)  oreeum y(a, @)

It is easy to see that k = h(a,{) = K and that % is uniformly con-
tinuous. The McShane Extension Theorem (15], applied to &, yields
an extension k defined on ,m x ,m{* which has the same bounds and
modulus of continuity as h. Let i(a, @) = max {k(a, {le, {]| € mi*}.

Let F', be the collection of all such functions +,. Let .o be the
set of all v defined on m x m’ such that +, € &', there exists K =
k>0 with klla|l £ ¥(e,a) < K||a|| for all aem, aem/, +, =
¥ Gm x m')e F, and 4, < Y1, P — Y.

Let 4+€ &7, a, and & in m' and suppose that ai* — a’* for all
(¢, k). Then ,a,— ,a for all n. Hence +,.(,a, ,&) = lim y,(,a, &) =
liminf 4(a, @,). Thus (a, @) < liminf ¥(a, a,).

Suppose that 4, € F, with k|| ol = +v.(.a, @) < K||,«|] for all
(a, ®). Let +,(,a, ,&) = max (v,(,a, @), k|| ,&]]) for » >n. Then
¥y € F, for such p and « =lim+, is in .&. Furthermore, + is an
extension of 4, and is simple if +r, is.

If xeC(Q, m) we define, for each € o,

Py, ) = lim 3, mln P (2(p), <=, J), o<_Z(x).

lloll-0 JE€T PE

Suppose that «e 7. It is easy to verify that P(y, )=
lim P(+p,, x).
In [17] the definition for the Peano area of x# was equivalent to

P(x) = sup >, sup SS[ 0z, 8J) | .

o<l g(x) JET 1

If Range « is contained in a Euclidean space (which we can
suppose is contained in m) then P(x) is the usual Peano area of =.
Let +ry(a, @) = ||a||. Evidently € 7.

LEMMA 3.2. P(4, x) = P(x).

An inequality in one direction is obvious. The difficult inequality
follows from a result of Cesari [U= V, 3].

LemmaA 3.3. P(+r, ) =nliﬁn02‘me., inf, er ¥(@(D), Ny T) where
o < F (&), ), or Z(x), and
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P(y,x) = lim 3 inf 4 (x(p), <z, D)), o< 2®@).
iloll-0 DeEw PED
The proof makes use only of the definitions and the results con-
necting <z, J) with {\,, L(J)).

LemMmaA 3.4. If x and y are Fréchet equivalent then P(y, x) =
P(y, y). Furthermore, P(y, +) is cyclically additive.

We understand that the space of Fréchet surfaces is given the
Fréchet metric.
If & is a Fréchet surface then P(+, &) = P(¥, @) for any x € .

THEOREM 3.1. P(v, ) s lower semi-continuous both on C(Q, m)
and on the space of Fréchet surfaces.

The results of the Corollary to Theorem 2.1 enable us to use the
standard arguments.

THEOREM 3.2. If xi converges uniformly to «* for each 1, then
P(+p, ®) < liminf P(4pr, ©,).

There is nothing to show if e F, for some n. Otherwise we
make use of the fact that the limit of an increasing sequence of lower
semi-continuous functions is again lower semi-continuous.

4. Our next step is to show that the expected formula holds for
P(+r, ) whenever x is smooth enough. What follows is drawn from
{4; §828, 30, 32, 12.10 and 12.12].

Let ze€ C(Q, m). If L(x"*) < o then the interval function whose
value on R is <z, R)" is differentiable and its derivative _#(«*) is
the generalized Jacobian of x* = (2%, x*). If x' and «* have ordinary
first derivatives almost everwhere in Int @ then 7 (%) = xixk — pigk
almost everwhere. We define the generalized Jacobian of x on m' by
[_#@]* = _#(=*). Since P(y, x) is superadditive, it has a derivative
almost everywhere. By Jensen’s inequality,

SLQF(%, F(®) = melgl np(x(r),sgq _F(w))

for each square ¢ contained in Int Q. It follows that P’(vy, @, p) =

v(2(p), #(w, p)) almost everywhere. Thus P(y, %) = gg“/'(m' _Z(@)).
We wish to show that the equality holds for « sufficiently smooth.
The proper requirement would be absolute continuity in the sense of
‘Cesari, but we shall content ourselves with showing that the equality
holds if z is a D-map [21].
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THEOREM 4.1. If x is a D-map on a Jordan region Q and + €
then P(y, ) = qu ¥(@, 7 ().

Proof. Since « is a D-map, P(+, | -) is an absolutely continuous
interval function. Hence, by the preceding paragraph, we need only
show that P(vy, x) = Sgn,k(w, _# (x)). Furthermore, if ¢ > 0, then there

exists a finite collection ¢ of non-overlapping squares contained in
Int Q such that

P, ) —e < S min v (a(), || 7 @)
= 2|l v@ s =] ve _s@)

g€aT

where we have used the fact that « is a D-map to obtain ¢ and the
equality of <{x, ¢> and “q S (@).

If &7 is a polyhedron then there exists a quasilinear representation
¢ of & on the unit square and P(v, &) = Sgw(w, _#Z(x)). Since

SSH _FZ@)|| is often referred to as the elementary area of &7, we

shall regard SS«/r(w, _~ (%)) as the elementary area of & corresponding

to the (nongeometric) area 4. Let us write & (v, &?) for this quantity.
That the elementary area is lower semi-continuous with respect to
Fréchet convergence follows from Theorems 3.1 and 4.1.

Now let .&“be a Fréchet surface of the type of the two-cell. We
define a Lebesgue area for & as follows:

L(y, &) = liminf & (v, &)
S

where the convergence is with respect to the Fréchet metric. That
L(+, +) is lower semi-continuous with respect to Fréchet convergence,
and therefore with respect to uniform convergence, follows in the
usual manner.

If kElla|] < (e, a) = K||a|| and xe C(Q, m) then it is easy to see
that kEL(x) < L(v, ) < KL(x).

5. Let <" be the collection of all continuous nonnegative valued
functions 4 on m X m which are positively homogeneous of degree
two, convex, and for which there exists K=k >0 such that
Elllell’ + [18]] = ¥(a, b) = K[[[a|]* + [[b]]*] for all (a,b)em X m.

Let ye 2", ¢ A d # 0, and 7 be the plane determined by ¢ and d.

Lemma 5.1. Leta # 0,aer, 7, ={per|(a A p)/ic A d) > 0} and
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f(®) = 4(a, p)lla A p|| on w,. Then the set E(a) of relative minima
of f is closed and convex, and f is constant on E(a).

Proof. Suppose that » and ¢ are in E(a) and that ||a A ¢ —
la Ap||=k>0. Let ow)=qy(, wp+ (11— w)yq) and A(w)=
la A q|| — kw. Since @ is convex and @(w)/A(w) is (—1/k) times the
slope of the line joining (||a A ¢q||/k, 0) to (w, p(w)), it follows that
0, (0)), (1, »(1)), and (ja A q||/k, 0) are collinear and /A is constant
on [0,1]. If k= 0 the convex function ® has horizontal tangents at
(0, #(0)) and at (1, #(1)). Hence @, and therefore ®/A, are constant
on [0, 1].

Now define g(a) to be the value assumed by f on E(a). If k and
K are related to v in the usual way then k < g(a) < 2K.

Lemma 5.2. g ts continuous (on w).

Proof. Let 0+ a,— a +# 0and g(a,) = ¥(a,, p,)/||a, A p,|| where
a,, o and p, are all in 7. We can suppose that p,— p,. Since
9(a,) = 2K for all n, liminf ||a, A p,|] > 0. Hence g(a) < liminf g(a,).
On the other hand, suppose that g(a) = ¥(a, p)/||la A p||. Now g(a,) <
¥(a,, p)flla, A pl|, for sufficiently large =, and so limsup g(a,) < 9(a).

Since g is positively homogeneous of degree zero we can define
K(c A d) = MaXerer 9(@).

Now we use 4 to generate an area A+ by the formulas

Ay(a ANb) =K@ Ab)|la Ab|
and

A¥(@) = inf 3 Ay, AD,).

apANby=a

LEMMA 5.8. If Ay (a A b) = (a, b) then ||a||/L = ||b]| = |la]|lL
where L = (K + VEK* — IY)/k.

Proof. Let ||b] = t*||a|| where ¢ > L. Then <(ta,b/t) =
K@|a|+ t||0]]") = 2K’ ||| < k(1 + t) [|a|* = ¥(a, b) which is a
contradiction.

If @ A b= 0 then by an application of the Hahn-Banach Theorem,
[17], there exist f,gem; such that [a Ab,fAg]l=I|la Ab|l and
max (| ()], lg()DZllr|| £ | f(r)| + | 9(r) | whenever 7 is linearly dependent
upon a and b. Hence (f3(r) + ¢*(r))/2 < || r|]* = 2(f*(r) + 9*(r)) for all
such » and (e[’ + |[0[)/4 =7+ [sIF=4(la|l+ [[b]f) if r=
acosd —bsind and s =asind + bcosd.

Let o' ={¥veo2"|¥(acosf — bsinb, asinf + bcos ) = ¥(a, b)
for all 4, ¢ = lim ¢,(a, b) and +, < ¥, Where ¥,(a, b) = ¥(,a, ,b)}.
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Let =7 be the collection of all continuous functions on m xmXm
for which there exist constants K = k > 0 such that k(|| b|]* + ||c|)=
¥(a,b,¢) < K(|b|*+ ||c|]) for all a, b, cem and such that ¥,e &',
where (b, ¢) = ¥(a, b, ¢). If 4 € <& then ¥,(a, b, ¢) = (¥,).(b, ¢). We
may write 4, for ¥,|(,m X ,m X ,m). Let &, ={veT|¥ = ¥.}.

LEMMA 5.4. If ¥ € &' then Ay(aAb) = min {y(c, d)|cAd = a A\b}.
The proof is straight-forward.
If € 2" then let N = 2(y)""

LeMMA 5.5. Let ve€9 and (a,b)em x m. If there ewist
(f, 9) e m* x m* such that (f, g) is a supporting linear functional to
(the convex function) N at (a, b) and if f(a) = g(b) = N(a, b)/2, f(b)=
g(a) = 0, then Ay(na + ¢b, pa + ab) = [(Aa + ¢b) A (pa + ob), f A g]
whenever N6 — (P = 0.

Proof. N(a, pa+ 0b)= (1 + 0)N(a,b)/2 implies that (a, pa+0d) =
1+ 0)*y(a, b)/4 = o3 (a, b). It follows from Lemma 5.4 that Ay(aAbd) =
V(a, b).

LEMMA 5.6. Let € =2’ and suppose that Ay(a A b) = ¥(a, b).
Let (f', g') e m* X o* satisfy f'(a) = g'(b) = N(a, b)/2, f'(b) = g'(a) =0,
where © is the plane determined by a and b. Then (f',9) is a
supporting linear functional to N|(zx X w) at (a, b).

Proof. We write N for N|(r X 7). Let A, ¢, o, 0 be real numbers,
a' =xa+ b and b’ = pa + ob. By hypothesis, A\d — ¢ > 1 implies
N(a',b) > N(a,b). We must show that N(a’, b') = (A + 0)N(a, b)/2
for all A, ¢, p, 0. However, since N is convex, we can suppose that
I =11, ||, |pe|land |6 — 1| are all less than 1/2, which implies that
Ao — (0 > 0. Let:, = (n + N)/(n + 1), ¢, = ¢/(n + 1), p, = p[(n + 1),
g,=m+ o)n+1), a, =Na + 2,0, 0, = p,a+ o,band t < (A + 0)/2.
Then (a,, b,) = (n(a, b) + (a’, ¥))/(n + 1) and, for sufficiently large m,
MOy = [0, = (0 + n(\ + 0) + A0 — pp)(n + 1) > (n + ¢Ff(n + 1)
For such =, N(a,, b,) > (n + t)N(a, b)/(n + 1). Thus =nN(a,d) +
N@',b) > (n + t)N(a, b) and N(a’,d’) >tN(a,b). Hence N(a', V)=
(A + 0)N(a, b)/2.

LEMMA 5.7. Let ¥ <’ and suppose that Ay(a A b) = ¥(a, b).
Then there exist (f, g)e m* x m* such that (f,g) is a supporting
linear functional to N at (a,bd) and f(a) = g(b) = N(a, b)/2, f(b) =
g(a) = 0.
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This lemma follows from the preceding and the Hahn-Banach
Theorem.

If vye o' let S() ={(f, 9)|(f, 9) supports N for some (a, b) and
f(a) = g(b) = N(a, b)/2, f(b) = g(a) = 0}.

THEOREM 5.1. If € <’ then
Ay(a A\ b) = sup {[a A b, f A 9] (f, 9)e S} .

Proof. Suppose that A+v(a A b) = (a,d). Then Ay(a Ab) =
N¥a, b)/4 = [a A b, f A g] for some (f, 9) € S(¥), by Lemma 5.7. Now
let (¢,d)em x m. If we choose # so that f(c)siné + f(d)cosf =0
and let ¢/ =ccosf —dsinf, d'=csinf + dcosf, then we obtain

[eANd, fAGl=[c AN, fAgl=Ff(c)d) = (f(c)+ 9(d))y4

= N, d')[4 = (¢, &) = ¥(c, d) = Ay (c A d) .

LemMMA 5.8. Let ¥, =" and +(a, b) = max, ¥a cos § — bsin 6,
asinf + bcos ). Then Ay, = Av.

Proof. Let o/ Ab # 0. There exist a, and b, with a, A b, =
a’ A b such that Av(a, A b)) = (a;,, b;) and there exists  such that
¥(ay, b)) = Jro(a, b) where @ = a,cos§ — b, sin§ and b = a,sin 6 + b,cos 6.
Let m be the plane determined by &’ and b and N, = 2(¢,)"%. If both
N,|(r X ) and N|(7r X 7) have unique supporting linear functionals
at (a, b) they must coincide since N = N, and N(a, b) = Ny(a, b). Thus
there exist f’ and ¢’ on « such that (f’, ¢’) is the supporting linear
functional and f'(e) = ¢'(b) = N(a, b)/2, f'(®) = g'(a) = 0. Thus
Nya, pa + ob) = (f'(a) + 0g’(d))* = (1L + 6)’N*(a, b)/4 whenever o > 0.
Hence Avr(a A b) = (a, b) = 4r(a, b) = Ay(a A b). If either N,|(m X )
or N|(r x ) does not have a unique supporting linear functional at
(a, b), let e >0 and choose N] on 7w X 7 to be strictly convex, of class
C"”, positively homogeneous of degree one and such that N, =
Ny < (@ + ¢)’N,. Let 4= N,’/4 and ' be defined for ¢ as v was
for 4. Then Ay < Ay = Ay < A + €)Av,.

THEOREM 5.2. Let M be a norm on m and +(a,b) = (M*a) +
M:®))/2. If M*(f) = sup{f(a)| M(a) =1} for all fem* then Ay =
where y(a A b) = sup{la N b, f A 91| M*(f) = M*(g) = 1}.

Proof. Suppose that @ A b+ 0. Then, by the argument of [17]
where M = || ||, there exist ¢, d € m and f, g € m* such that M*(f)=
M*@g)=1,cAd=aAb, f(c)= M()= M) = g(d), F(d) = g(c) =0,
and v(a Ab)=[a AbfAgl. It follows that (f,g)eS(¥) and so
AY¥ = 4. On the other hand, if (f, g)€ S(y) then there exists a and
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b with a A b= 0 such that (f, g) supports N at (a,d) and f(a)=
g(b) = N(a, b)/2, f() =g9g(a)=0. Since +(ta,b/t) has a relative
minimum at one, we see that M(a) = M(b). Now let cem, and
choose ¢ > 0 so that M(tb) = M(c). We have f(c) + M(c) = f(c) +
g(td) = 2((M*(c) + M*(tb)[2)"* = 2M (c). Thus M*(f) < 1 and, similarly,
M*(g) =1 and so 4 = A,

6. If v is a D-map on J then {xi} is defined almost everywhere
in Int J and is an element of m. We define #, = {¢i} and z, = {«}

1], Let D@ = {{(loul? + llo ), I0r %) = |[¥(, 0. A ), and

I(y, x) = ngp(w, %, ©,) Where all of the integrals are taken over IntJ.

Suppose that {z,} is a sequence of continuous funections on the
unit circle . Then {x,} satisfies the three point condition if there
is a 0>0 and w,;,€0%,1=1,2,3, such that ||w;, — w;,|| >0,
|| % (w;,) — %(w;,) || > 0 whenever 72+ 7, 9,7 =1,2,8.

If ye &7, if z, and « are D-maps on & and if z. converges
uniformly to « for each ¢, then I(y, x) < liminf I(y, x,) [13]. Hence
I(¥, ) < liminf I(¥, ;) for all € &.

If « is continuous on a Jordan region J into a Banach space B
and if .~ is the Fréchet surface determined by « then 8.5 is the
Fréchet curve represented by x|d.J.

The proof of the following lemma is modeled after a proof in [2].

LEMMA 6.1. Let He & where B = R, and suppose that H is of
class C" and strictly convex in tts last two arguments. Let <7 be
an open non-degenerate polyhedron in B. Let p, and q;, 1 =1, 2,3,
be distinct points of 8C and 07, respectively. Then there exists a.
D-map x* on & which represents < such that xz*(p;) = q; and
I(H, x*) = I(AH, z*).

Proof. We mention, first, two properties of H. If yis a D-map
and 7 is a conformal transformation, then I(H, y) = I(H, Ty). Also,
S Y s, (Y, Yus ) = S YiH,: UY, Yu, ¥,) Where H; = (9/0yi)H and H,; =
(0foy:)H.

Let K be the nonempty class of all representations of &2 on &
which are D-maps. Let I = inf,., I(H, x) and let {x,} be a minimizing
sequence in K. Since I(H, z,) = I(H, Tx,) for T as above, we can:
suppose that #,(p;) = ¢;. By Theorems 5 and 6 [21], the sequence {x,}
is equicontinuous. By deleting some terms, if necessary, we can
suppose that x, converges uniformly to x* where 2* € &# and x* is a.
D-map [21; Th. 8]. Thus «*c K and I(H, z*) = I.
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Now let @ and + be Lipschitzian with constant M on <. The
transformation U(u, v) = (o, B), a =u + ep(u, v), B = v + ey(u, v),
together with its inverse, is Lipschitzian if |¢| < 1/(8M). Set x(a, B) =
2*(u, v). Then « is a D-map. Let T be the conformal transformation
of domain # onto & which takes U(p;) onto p; and put X=2aT".
Then Xe K. Put

Je) = IH, X) = SS% D'H(x*, 28, — xa,, —wia, + via,)dudv

where D = 0(a, 8)/0(u, v). Then
0=2J(0) =
[, @ = B9, — 2F*0) + (8" = 6", — 2F*pldudo
where
E* = Zx;*ﬁz, (w*’ x:’ x:() ’
F* = S wxH (x*, ©%, «F) = X, wi* H,, (&%, o, ©)
and

G* = S ol H (%, o, «}) .
i

Since @ and + are arbitrary, we obtain

1) | (—4p.+ Bey =0 and || (4w +Bp)=0

where A = E* — G* and B= —2F*. By (1) and Haar’s lemma [13]

(2) SaR(Adv — Bdu) = 0

for almost all rectangles RC 2. For each h > 0 let
%ﬁz{(u,v)e@ﬂl[u—h,ﬁ—l-h] X [v—"h,v+ hlCcF}

and let A, and B, be the h-average functions of A and B defined on
&,. These functions are continuous and satisfy (2) for every rectangle

(u, v)
Rc &,. Let {(u,v)= | (A,dv — B,du), the integral being inde-
(o,
pendent of the (rectifiable) path joining (0,0) to (u, v). Now (., =
—B, and {,, = A,. Using the other part of (1) in a similar fashion
we obtain 7,, = —A4, and 7,, = —B,. Thus ¢, and 7, are harmonic
on 3. By [13; Th. 4.2, p. 74], {, and 7, both vanish on 8%%,. Thus
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E* = G* and F'* = 0 almost everywhere in &, and by Lemma 5.5,
AH(z*, 2 A x¥) = H(x*, x}, x¥) wherever these equalities hold.

If +e = and « is a D-map on an open set G then x is Ay-quasi-
conformal on G if ¥(z, ®,, x,) = Ay(x, ©, A\ %,) almost everywhere on
G. If J is a Jordan region then we say that « is Avy-quasi-conformal
on J rather than on IntJ.

LEMMA 6.2. Let <7 be an open non-degenerate polyhedron and
suppose that € <. If p;, and q;, 1 =1, 2,8, are distinct points of
0% and 0.7, respectively, then < has an Ay-quasi-conformal repre-
sentation x on & such that x(p;) = q..

Proof. There exist H, as in the last lemma with H, < H,., and
+ = lim H,. By Dini’s Theorem, we can suppose that ¥ < (1 + 1/n)H,
on || x B, Xx B,, where | &?| is the compact set covered by .
Let z,¢ & be AH,-quasi-conformal with «,(p;) = ¢;. Then, as before,
there exists a D-map € &” and we can suppose that x, converges
uniformly to . Hence I(y, %) < liminf I(V, ,) < liminf (1+1/n)I(H,,)=
liminf (1 + 1/n)I(AH,, x,) = liminf 1 + 1/n)I(AH,, ) < I(Av, x).

THEOREM 6.1. If S”1is an open mon-degenerate surface of finite
Lebesgue area, if e <7, and if p; and q;, ©=1,2,3, are distinct
points of 8% and 0. them & has an A+r-quasi-conformal represen-
tation x on & such that x(p;) = q..

Proof. There exist open non-degenerate polyhedra 7, — .&” such
that £ (4v, &) — L(A¥, 7). Let q;., 1 =1,2,3, be distinct points
of 8.7, such that q;,,— ¢;. There exist Avy-quasi-conformal represen-
tations x, of <7, such that z,.(p;) = ¢:;.. Hence, as before, there
exists a D-map x €.~ and we can suppose that x, converges uniformly
to z. Thus

I(¥, %) < liminf I(¥, «,) = liminf I(A¥, ©,) = liminf & (A7, &)
= L(A%, &) = I(A¥, %) .

7. A subset 57 of m is c-closed if a € 57~ whenever there exists
{a,} in .27 such that ai — a° for each 7. If 27 NS is c-closed for
each sphere S then 97 is locally c-closed. Evidently .9 is locally
c-closed if .2 is locally compact.

If &7 is a Fréchet surface of the type of a two-cell, let 8. be
the Fréchet curve defined by = |0% where x is a representation of &
on &. Let d(v,7,) be the Fréchet distance between the Fréchet
curves v, and 7, each of the type of ‘the circle.

If <# is a convex locally c-closed subset of m, if v is a simple
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closed curve in .5 and if 4 € & then

mlp, Z7) = liminf (), &)
d 3‘9;

,Y)=0

and
aly, 287 7) = inf Ly, S°)
9=y

where &7 is a polyhedron and .&”is a surface, each of the type of the
dise, and each is contained in .22 By Lemma 3.4 we can suppose
that each &7 in the definition of m(y, %, 7) is open non-degenerate.

Let T(.2#") be the set of all D-maps on & with range in %" and
T(o5y) ={xe T(F)|x|0&e).

LemMa 7.1. Let & be contained in 2%. Then there exists a
sequence of polyhedra {#} contained in ¢ with &F,— & and
g("l’; gn) - L(";’: y)'

Proof. Let us suppose that {aem|||a|| < 6} © 2 for some § > 0.
If .~ is a surface with representation «# and if o is a positive number,
let 0.7~ be the surface determined by px. Now suppose that {«,}
is a sequence of polyhedra with <, — & and (¥, €,) — L(v, S°).
Then {Z?,} can be chosen by &, = (0&,)/(0 + 2d(&,, &°)). If 2 has
an interior point other than 0, a translation reduces the problem to
the preceding. If .2# has no interior point, let B be the space spanned
by % and let Ly(y, &) be the area defined by restricting sequences
of polyhedra approximating & to be in B. Since Ly(v, &) = L(y, &)
as in [17] and the argument applies to L, the lemma is proved.

Now suppose .&7 is contained in %  and 8.9” =v. There exists
a sequence &#, of polyhedra contained in .2#" such that & (v, &) —
L(y, ). Hence, [12], m(yr, 22, 7) < liminf & (v, &,) = L(¥, &) and,
consequently, m(yr, 22, 7) < aly, % 7).

If G is an open connected set in the plane, if # = {«’} where each
2t is of class €, on G and if D(x) is finite, then x is of class &7, on G
[13]. If G is of class K, in particular, if G is the interior of a circle,
or the intersection of the interiors of two circles, then there exists
a function @ on 8G which plays the role of the boundary value function
for . We shall write ¢ |8G for @ and 2(p) for @(p) for pecoG.

Let x be of class <7, on Int &. Then z is a simple cone-function
for £ on Int & if

iy = (121821 + @ = lipla, 2+ ©,0
b q . p=1(0,0

whenever ¢ is contained in the convex hull of £(0%°). Now let x be
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of class 7, on a region J of class K. Then z is a cone-function for
x on J if there exists a conformal transformation T from J onto &
such that 2 = wT and w is a simple cone-function for x7°. By some
remarks in §5,

D(w)/4 = D(2) = 4D(w) .

We require some slight modification of one of Morrey’s results.
Let C(P, r) be the open circle with center P and radius 7.

LEMMA 7.2. Let x be class <2, on C(0, B) with D(x) = M < oo,
Suppose there is a number k > 0 such that

D(z|C(0, 1) = kD(H(, 7)), 0<r=<R,
whenever H(x, r) is a simple cone-function for x over C(0,r). Then
D(x|C(0, 7)) = M(r/R)"*" , 0<=r=R.

We use polar coordinates and let

v(r) = D €, ) = [ o[ Tlao, 0)11* + 0o, 0) a0} .

Since + is absolutely continuous on [0, E],

ry(r) = | T llar, 0) |1 + [ a(r, 0) (1140

for almost all » in [0, R].
Now we compute

DG, ) = | [ “pllla(r, 0)1 + l|2u(r, 0)|1dods

=\ [Te[ 2] I autr, 9) 11 [apdo + ([ o1l wotr, 0) 1 doas

Tr=2 ("

2 SOSZ‘OS:H (1, P) |[*dpdpdd + 2_1S:” wo(r, 0) ||*d0

2 2%
= T2 L au(r, @) e < 6ry'(r)
for almost all 7, where we have made use of the fact that diamz(0%") =
(length x| 0%)/2.

Thus +(r) < 6kry’(r) and (r V) = 0,

The following lemma is usually stated for surfaces in Euclidean
space, but the proof, with trivial modifications, shows that it is true
for surfaces in m.

IA

LEMMA 7.3. Let {<} be a sequence of Fréchet surfaces such that
a0, v) — 0 where v is a simple closed curve. Suppose that x, s
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a D-representation of &, on & such that {x,} satisfies the three point
condition and such that {D(x,)} is uniformly bounded. Then {x,|0%}
1S equICONtLINUOUS.

THEOREM 7.1. If T(.2% ) is not empty and if ¥ € <7 then there
exists xe T (57, v) such that I(y, x) = inf {I(¥, y) |y e T(2#,7)}. In
addition, x s open mon-degenerate, A-yr-quasi-conformal and can be
chosen to take three distinct points of 0% into three distinct points

of 7.

Proof. If 2 were a finite dimensional subspace of m then the
first statement would follow from the remarks [13; p. 45]. The proof
there is sufficient to permit 9% to be a convex subset of a finite
dimensional space. This last condition may be deleted by replacing
[13; Th. 6.1] with Lemma 7.2. This part of the proof is essentially
the proof required for Theorem 7.2, and it is outlined after the state-
ment of that theorem.

If © were not open non-degenerate, there would exist a retraction
y of x, thus ye T( ¢, v), which would be open non-degenerate. By
the representation theorem there would exist an A+r-quasi-conformal
conformal map z, Fréchet equivalent to ¥ and taking three distinct
points of 9%  into three distinct points of v, and we would have
I(y, 2) = I(Av, 2) = I(AY, y) < LAV, ) = I(Ay, «) = I(¥, 2).

Similarly, the assumption that « is not A+-quasi-conformal leads
to a contradiction.

The theorem shows that there exists an open non-degenerate surface
& and a representation x of . which is A+-quasi-conformal such
that L(A+, &) = a(A+y, 527, 7). Furthermore, under suitable conditons
on ¥, « has certain differentiability properties [13; Ch. VII].

THEOREM 7.2. Let ve . If m(Avy, 5, 7) < o« then there
exists an open mon-degenerate surface & with an A+-quasi-conformal
representation x on % such that xe T(2,7) and a(Ay, 57,7) =
m(Ay, o, 7) = L(Avy, ).

Proof. Let {7} be a sequence of open non-degenerate polyhedra
in 9 with 0%, — v and & (Av, Z#,) — m(A+y, 9%, 7) = I. Then there
exist A+r-quasi-conformal representations y, of <2 such that {y,}
satisfies the three point condition and I(v, ¥,) < I + 1, for sufficiently
large n. Thus {D(y,)} is uniformly bounded and, by deleting some
terms if necessary, there is a function % such that ¥’ converges weakly
in & to ¥'. Since I(v, ) is lower semicontinuous with respect to this
convergence, I(4, ¥) = I and thus D(y) is finite and ¥ is in &#,. That
there exists & >0 for which D(z|J) < kD(H(x, J)), and H(z, J) is
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a cone-function for x over J, follows as in [13; p. 45]. With only
trivial changes, [13; p. 13, Th. 2.1] holds in our situation and it follows
that ¥ is continuous on each closed subset of Int #°. That ¥ is con-
tinuous on a neighborhood of 8% is proved as in [13; pp. 43-44] except
that we must replace the harmonic functions used there by cone-
functions. Thus y is continuous on & and is in <7, that is, ¥y is a
D-map. That range y C 9% and y|8% v follows from the fact that
range y is contained in a suitably large sphere and .  is locally c-
closed. Hence ye T(55, 7).

It is obvious that ¥ is open non-degenerate. Hence there exists
an A+-quasi-conformal function 2z which is Fréchet equivalent to y
and takes three distinct points of 8% into three distinct points of .
By Theorem 7.1 there exists x ¢ T (.57, 7) taking the same three points
into the proper image points such that

I(¥, ) = inf {I(y, w) |we T(F", 7} = I(¥, 2) = [(A¥, 2) = (47, 9)
= m(4y, 7%, 7) = a(Ad, %7, 7) = I(Av, %) = I(¥, @) .

Let &7 be the surface determined by .

Since each surface can be approximated arbitrarily closely in both
the Frechet metric and in A+-Lebesgue area, by polyhedra, it follows
that m(A4+, 5, v) < lim inf L(Av, .%%) whenever {%4} is a sequence
of surfaces in .57~ such that d(8.5%, v) — 0.

COROLLARY. Let {v.} be a sequence of Jordan curves in 2% with
AV, V) — 0. Then m(A+, v) < liminf m(Av, 577, 7,)-
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