
ON A CLASS OF SINGULAR SECOND ORDER
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Introduction.* Singular second order differential equations with a
non-linear parameter play an important role in mathematical physics.
For instance, the radial wave equation for a relativistic particle with
zero spin in a centrally symmetric potential field, V(r), the Klein-
Gordon equation:

+*V(r)T _ W + 1) _ / J*£.Yltt = 0

he J r2 V h / J
[' = d/dr]

contains the energy parameter E in a nonlinear fashion. If V(r) =
aZ/r is a Coulomb field the transformation x — 2(1 — E2)ll2r will
transform equation (1) into a Whittaker equation

( 2 )

where

& = EaZ(l - ΐ; 2)- 1/ 2

and

m = [(l + 1/2)2 - α2^2]1/2 .

The eigenvalues are the roots of a transcendental equation [ 1 ]

= log (1 - E2)1'2 .

For more general potentials than the Coulomb potential the spectral
properties of a second order differential equation with a non-linear
parameter are more difficult to obtain. For second order equations
with a linear parameter the analytical methods of Weyl [7] and
Titchmarsh [5] for the Schrδdinger equation

(3) x"(r) + [ λ - U(r)]α?(r) = 0

may be used. These methods have been extended by Titchmarsh [6],

Received April, 11, 1963.

285



286 B. W. ROOS

Sangren and the author [2, 3, 4] to the investigation of the spectral
properties and related expansion theorems of a system of two first
order differential equations

b(r)]x2(r) = 0

r) = 0

with singular coefficients. The class of equations of the form (4) is
very wide and includes, for instance, not only the non-relativistic
radial Schrδdinger equation but also the relativistic radial Dirac equa-
tions [3]. More examples may be cited of second order differential
equations which may be conveniently discussed in terms of the system
(4). This is not altogether surprising since in the process of deriving
a mathematical model for a physical phenomenon some second order
differential equations are actually derived from a system of first order
equations.

In this paper we propose to investigate the asymptotic properties
of a class of singular second order equations with a non-linear para-
meter by the simple expediency of reducing the second order equation
to a system of equations of the form (4). We will illustrate our
discussion by proving a spectral theorem for a member of this subclass:

(5) x"(r) + /(r)a'(r) + [X2g(r) + Xh(r) + k{r)]x(r) = 0 .

The arguments will be presented for the case of a semi-infinite interval
[0, co) where the point r = 0 is assumed to be a regular point and
the equation is only singular for r —> co. The coefficients /, g, h and
k are assumed to be real valued continuous functions of r and we
will impose the initial condition

(6) p-\0) cos βx(0) + p(0)(λ + I)-1 sin βx'(0) = 0

where β is a real parameter and p a function defined in section (4).
For β = 0 the initial condition reduces to the condition x(0) = 0 at
r = 0.

We transform the second order equation into a system of the
form (4) and proof a spectral theorem for this system. An equivalent
theorem for equation (5) may be deduced from this theorem.

2 Transformation, of (5) into (4). Consider the system of equa-
tions

( 4 ) v[(r) - [λα(r) + b(r)]x2(r) = 0

<{r) + [\c(r) + diryix^r) = 0 .

Differentiating the first equation with respect to r and making appro-
priate substitutions from the second equation, we obtain
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( 7 ) x[>{r) __ λ*'(r) + b'(r) χ[{r) + ( λ α + b)(χc + tf) ( r ) = Q #

λα(r) + 6(r)

Equation (7) is equivalent to equation (3) if the following identifica-
tions are made:

xx(r) = x(r)

a(r) = α(0)exp[-j/(r)dr]

( 8 ) δ(r) = 6(0) exp [ - j/(r) dr]

c(r) = α"

and the condition

( 9 ) h(r) - a

is imposed for all r. Without loss of generality we may assume that
α(0) = 6(0) = 1 and consequently we obtain a system of two first order
equations which is equivalent to equation (5):

x[{τ) - (λ + l)E-\r)x2{r) - 0

x[(r) + [\g(r) + k(r)]E(r)x1(r) = 0

where

This system is defined over the interval [0, oo) with initial condition

<11) P~1(0)x1(0) cos β + p(0)x2(0) sin β = 0 .

3 Preliminary remarks. On the finite interval (0, r0) let

v(r, λ) = [vx(r, λ), va(r, λ)] , w(r, λ) = [^(r, λ), w2(r, X)]

be two vector solutions of (10) which satisfy the initial conditions

î(O) = - sin β v2(0) - cos β

wx{ϋ) = -cos/3 wa(0) = -sin/3 .

The Wronskian, Wr(v, w)f is defined by the relation

(13) Wr(v, w) = ^(r)^ 2 (r) - ^ ( r ) ^ ( r ) .

Prom equations (10) for v and w we obtain
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dr

which implies that Wr(v, w) is independent of r. Furthermore, since
wo(v, w) — 1 by (12) we may conclude that Wr(v, w) = 1 for all r, and
that v and w are two independent solutions of (10). Consequently a
linear combination of these two independent solutions

(14) w(r, λ) + l(K)v(r, λ)

will be a solution of (10). It is known [2] that for Sturmian boundary
conditions at r = 0 the eigenvalues for which this solution exists will
be real, nondegenerate, discrete and extend from λ = -co t o λ = +oo.
The corresponding eigenfunctions are real functions of r. For the
singular case the spectrum can be investigated by considering [the
limit of the solution (14) for r —> oo. As in the case of singular
second-order differential equations it can be shown [3] by a limit-point,
limit-circle argument that for Im λ Φ 0 the system (10) will have a
vector solution

(15) z(r, λ) = w(r, λ) + m(X)v(r, λ)

which is L2(0, oo). The function m(λ) depends upon a limit of circles
in the complex λ-plane and for r0 —• oo is either a limit-point or a
point on a limit-circle. In the limit-circle case all solutions of system
(10) are L2(0, oo) and if a system is in the limit-circle case for a
particular λ it will be in the limit-circle case for all other λ's
Furthermore, m(λ) is analytic for Im λ Φ 0 and m(λ) = m(λ). The
spectral distribution function is determined by the imaginary part of
m(λ) and the spectrum associated with a problem for which the spectral
distribution function is uniquely determined is the set of non-constancy
points of this distribution function. The set of all discontinuity points
of the spectral distribution function comprises the point spectrum.
The continuous spectrum is the set of all continuity points of this
function which are in the spectrum.

4» Order properties. In order to determine the analytical character
of m(λ) we must first derive the order properties of the solutions of
(10) for large values of r. The asymptotic behavior can be obtained,
by introducing a transformation [2] of the independent variable:

a(r) - Γ{(λ

:
= {(1 + λ-^^s) +

Jo

Assume temporarily that λ is fixed and ImX > 0. The choice of a
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suitable branch cut leads to the principal value of the square root
function. Here and in all other cases in which roots of complex
quantities appear we will assume that the principal value of the roots
have to be taken.

The transformation

r —> a{r)

(17) Ul(r) = F(r)x2(r) u2(r) = G(r)x2(r) - F'^φ^r)

yields a new system of equations:

(18) f
da

where

(19)

(20) F(r, λ) = (1 + λ)

(21) G(r, λ) =

R, F and G are functions of λ but for ease of writing we will sup-
press λ in the subsequent discussion.

The reason for introducing this particular transformation is that
in the new system of equations the coefficients may be bounded for
large values of r and λ for cases in which the coefficients were not
bounded in the old system.

The system (18) is equivalent to the system of integral equations:

UiM = Ui(0) cos a(r) + U2(0) sin a(r)

+ \ Ui(s)S(s) sin [a(r) — a(s)]ds
JO

= — Ui(0)sinα(r) + U2(0)cosα(r)

i cos [a(r) — a(s)]ds

as may be verified by substitution of (\Jlf \J2) into (18) and by defin-
ing S(r) by the relation

(23) S(r) = G'{r)F~\r) .

We may state the following lemma:

LEMMA.

( i ) Let g(r) tend steadily to + °° and [g'(r) = o(gμ) where
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0 < μ < 3/2, g'(r) ^ 0 and g"{r) is ultimately of one sign for r -» oo.
(ii) Let f(r) = o{gv) with v < 0 and f'{r) = o(gω) with ω < 0 /or

r—> oo cmd Zβ£ f(r) = L(0, oo).
(iii) Lei fc(r) αwd us ^r«ί and second derivatives be 0(1) for

r —» oo

ίftew I I iS(s) I ds is uniformly bounded with respect to all λ such that
Jo

1 (1 + λ-1)^ + λ"^) I is bounded away from zero.

For ultimately there will be an Ro such that for r > Ro, S(r)
will approach to

Furthermore, since

0 < μ < | ,

we have

\* [g'(s)Yg~°ι\s)ds = 0(1)

and

\R g"(s)g-3'Xs)ds = 0(1) .

The same conditions ensure that for r—* oo, Ima(r)—* +co and that
S(r), α(r) and F(r) are real for r —> oo and Im λ —> 0. Consider the
functions

= exp [i«(r)]{Ui(0) cos α(r) + U2(0) sin a(r)}

+ \V1(s)S(s) exp [i{a(r) - a(s)}] sin [α(r) - a(s)]ds
(24)

^2(r, λ) - Lf2(r, λ) exp [i
= exp [ία(r)]{Us(0) cos α(r) - Ui(0) sin α(r)}

V1(s)S(s) exp [i{α(r) - a(s)}] cos [α(r) - a(s)]ds .
Jo

Applying a lemma of a previous paper [2] it can be shown that

i Vό{r, λ) I sS [| Ui(0, λ) I + I U2(0, λ) |] exp [ j j S(s) \ds~\ j = 1, 2 .

Consequently since I | S(s) | ds is uniformly bounded with respect to
Jo
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X, it follows that

Ui(r,λ)-O{exp[-iα(r)]} i = 1, 2

and for a fixed X with Im λ > 0 and r —> co we obtain:

(25) \J3(r, λ) = [Mj(X) + o(l)] exp [-

ivhere

2Λf1(λ) = Ui(0, λ) + ί(J2(0, λ) + ΓUi(«)S(*) exp [ίa(s)]ds
Jo

2M2(λ) = U2(0, λ) - iUi(0, λ) + f "Ui(«)S(β) exp [ia(s)]ds .
JO

Tor Im λ —> 0 and according to (22) and (25)

(J^r, λ) = μ(X) sin a(r) + v(X) cos a(r) + o(l)

(J2(r, λ) = /je(λ) cos a(r) — v(X) sin

where

- U*(0) + ΓUi(«)S(β) cos a(s) ds
Jo

= Ui(0) - ΓUi(β)S(β) sin α(s) ώs
Jo

S oo

I S(s) I ds is uniformly bounded, these integrals are uni-
0

formly convergent with respect to λ while μ and v are continuous
functions of λ. According to section (3) we have

Wr(v, w) = Ui,U2^ - ILUit,

and for r —* co

(26) μwυυ - μΌυw = 1 .

For large values of | λ | and fixed finite r we obtain

α(r) = XΦ(r) + Ψ(r)

where

Φ(r) = [[g
Jo

and

- M\k(s) + g(s)][9(s)]-ll2ds .
2 JO
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If we define p(r) by the relation

p(r) =

then

F(r) = p(r)

G(r) = OiX-1), S(r) = OiX'1) .

Hence

Ui(0) = MO) + O(λ-1)]a;2(0)
U2(0) = [-P~\O)

A similar argument as the one presented above shows that for large
| λ | :

χ(r) = x,(r) = p(r) sin [a(r) - β] + 0{[exp | τ \ Φ(r)]\ X I"1}

where τ — IrnX.

5. A spectral theorem. We are now in a position to proof the
following spectral theorem for the system of equations (10).

THEOREM. Let f, g and k satisfy the conditions imposed in
Lemma 1. The system (10) with initial conditions (11) will have a

—>

two component vector solution x = (xl9 x2) over the interval [0, oo)
and the values of λ for which such a solution exist are in the con-
tinuous spectrum.

As was stated in section (3) the spectral properties of system (10)
depend on the analytic character of m(λ) as a function of the complex
variable λ in the limit for Im λ —> 0. From WeyPs limit-point, limit-
circle theorem it follows that for Im λ Φ 0 (10) always will have at
least one two component vector solution

z(r, λ) = w(r, λ) + m(X)v(r, λ)

which is in L2(0, oo). For r—> oo, Ima(r)-+ oo and

Si = Wχ(r, λ) + m(λ)i;1(r, λ)

- {G(λ)ikUλ) - F(X)M2W(X) + m(X){G(X)Mlυ(X) - F(X)M2υ(X)\

+ o(l)}exp[-iα(r)]

z2 = w2(r, X) + m(X)v2(rf X)

+ m(\)F(\)Mlυ(\) + o(l)] exp [-ia(r)] .

Hence if z is to be in L2(0,
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G(r, λ)Mlυ(λ) - F(r,

but by (25) for r -> co

2Λf1,(λ) = Ui.(0, λ) + *IL(O, λ) + i fV- ' 'Sf
Jo

and

U»(0, λ) = F-χ(0, λ) sin /S + G(0, λ) cos β

LUO, λ) = F(0, λ) cos /9 .

Hence

2M1V(X) = M,(λ) + ΐju,(λ)

2ikflM(λ) = y.(λ) + ίjuβ(

2AΓ,.(λ) = A««(λ) - w (

and

^ +
μl + υl μl + υl

and

— Im m(X) = — .

Since, by (26) μυ and oυ cannot vanish simultaneously, this shows
that Im m(X) is a continuous non vanishing function of λ. Consequently
the spectral distribution function is continuous and λ will be in the
continuous spectrum [6]. The results of this section can now imme-
diately be applied to obtain similar statements with respect to the
spectral properties of equation (5).

APPENDIX. The example referred to in section (1)

(Al) u" + 2r-ιuf + [λ2 + 2XeV(r) + e2V\r) - 1(1 + l)r~2 - l]u = 0

does not satisfy the conditions of the theorem. Of course, it is always
possible to reduce equation (Al) into a system of equations. For
instance, for a Coulomb potential

V(r) -

the following system of equations seems suitable

x[(r) - Xa(r)x2(r) = 0

<{r) + [xc(r) + airfixάr) - 0 .
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In this case we obtain the auxiliary equations

a(r)c(r) = 1

2 dX \ a I 4 V a

For

a'I a — —2u'lu

we obtain

a(r)d(r) = 2c2^r"1

The solution of this equation which is finite at r —» oo is a spherical
Hankel function of imaginary argument and complex order

u(r) = rhip-ll2(ir)

where

p = [e4^2 - i(i + 1)

For r —> oo

_ r — —iπ(ip -j j
u(r) —+ — { e X p

and it may be verified that for this substitution S(r) is not L(0, oo)
which would render the above approach invalid. This same obstacle
was found for the Dirac equation for an electron in a Coulomb field
[3] Fortunately these cases may be solved exactly and the difficulties
encountered are purely academic.
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