ON FINITE SUMS OF RECIPROCALS OF DISTINCT *n*TH POWERS

R. L. GRAHAM

Introduction. It has long been known that every positive rational number can be represented as a finite sum of reciprocals of distinct positive integers (the first proof having been given by Leonardo Pisano [6] in 1202). It is the purpose of this paper to characterize (cf. Theorem 4) those rational numbers which can be written as finite sums of reciprocals of distinct nth powers of integers, where n is an arbitrary (fixed) positive integer and "finite sum" denotes a sum with a finite number of summands. It will follow, for example, that p/q is the finite sum of reciprocals of distinct squares if and only if

$$\frac{p}{q}\in\left[0,\frac{\pi^2}{6}-1\right)\cup\left[1,\frac{\pi^2}{6}\right)$$
.

Our starting point will be the following result:

THEOREM A. Let n be a positive integer and let H^n denote the sequence $(1^{-n}, 2^{-n}, 3^{-n}, \cdots)$. Then the rational number p/q is the finite sum of distinct terms taken from H^n if and only if for all $\varepsilon > 0$, there is a finite sum s of distinct terms taken from H^n such that $0 \le s - p/q < \varepsilon$.

Theorem A is an immediate consequence of a result of the author [2, Theorem 4] together with the fact that every sufficiently large integer is the sum of distinct nth powers of positive integers (cf., [8], [7] or [3]).

The main results. We begin with several definitions. Let $S = (s_1, s_2, \cdots)$ denote a (possibly finite) sequence of real numbers.

DEFINITION 1. P(S) is defined to be the set of all sums of the form $\sum_{k=1}^{\infty} \varepsilon_k s_k$ where $\varepsilon_k = 0$ or 1 and all but a finite number of the ε_k are 0.

DEFINITION 2. Ac(S) is defined to be the set of all real numbers x such that for all $\varepsilon > 0$, there is an $s \in P(S)$ such that $0 \le s - x < \varepsilon$. Note that in this terminology Theorem A becomes:

$$(1) P(H^n) = Ac(H^n) \cap Q$$

Received May 13, 1963.

¹ This result has also been obtained by P. Erdös (not published).

where Q denotes the set of rational numbers.

DEFINITION 3. A term s_n of S is said to be smoothly replaceable in S (abbreviated s.r. in S) if $s_n \leq \sum_{k=1}^{\infty} s_{n+k}$.

THEOREM 1. Let $S=(s_1, s_2, \cdots)$ be a sequence of real numbers such that:

- 1. $s_n \mid 0$.
- 2. There exists an integer r such that $n \ge r$ implies that s_n is smoothly replaceable in S.

Then

$$Ac(S) = \bigcup_{\pi \in P_{\pi-1}} [\pi, \pi + \sigma)$$

where $P_{r-1} = P((s_1, \dots, s_{r-1}))$ (note that $P_0 = \{0\}$) and $\sigma = \sum_{k=r}^{\infty} s_k$ (where possibly σ is infinite).

Proof. Let $x \in \bigcup_{\pi \in P_{r-1}} [\pi, \pi + \sigma)$ and assume that $x \notin Ac(S)$. Then $x \in [\pi, \pi + \sigma)$ for some $\pi \in P_{r-1}$. A sum of the form $\pi + \sum_{i=1}^k s_{i_t}$ where $r \leq i_1 < i_2 < \dots < i_k$ will be called "minimal" if

(2)
$$\pi + \sum_{t=1}^{k-1} s_{i_t} < x < \pi + \sum_{t=1}^{k} s_{i_t}$$

(where a sum of the form $\sum_{t=a}^{b}$ is taken to be 0 for b < a). Note that since $x \notin Ac(S) \supset P(S)$ then we never get equality in (2). Let M denote the set of minimal sums. Then M must contain infinitely many elements. For suppose M is a finite set. Let m denote the largest index of any s_j which is used in any element of M and let $p = \pi + \sum_{k=1}^{n} s_{j_k} + s_m$ be an element of M which uses s_m (where $r \leq j_1 < j_2 < \cdots < j_n < m$ and possibly n is zero). Thus we have

$$\pi + \sum_{k=1}^{n} s_{j_k} < x < \pi + \sum_{k=1}^{n} s_{j_k} + \sum_{k=1}^{\infty} s_{m+k}$$

since s_m is s.r. in S. Therefore there is a least $d \ge 1$ such that $x < p' = \pi + \sum_{k=1}^n s_{j_k} + \sum_{t=1}^d s_{m+t}$. Hence p' is a "minimal" sum which uses s_{m+d} and m+d>m. This is a contradiction to the definition of m and consequently M must be infinite. Now, let $\delta = \inf\{p-x: p \in M\}$. Since $x \notin Ac(S)$ then $\delta > 0$. There exist $p_1, p_2, \dots \in M$ such that $p_n - x < \delta + \delta/2^n$. Since $s_n \downarrow 0$ then there exists c such that $n \ge c$ implies that $s_n < \delta/2$. Also, there exists m such that $m \ge m$ implies that m uses an m for some m implies that m uses an m for some m in the m implies that m implies that

$$p_w - s_{k_n} - x > p_w - \frac{\delta}{2} - x \ge \delta - \frac{\delta}{2} = \frac{\delta}{2} > 0$$

which is a contradiction to the assumption that p_w is "minimal." Thus, we must have $x \in Ac(S)$ and consequently

$$\bigcup_{\pi \in P_{r-1}} [\pi, \pi + \sigma) \subset Ac(S).$$

To show inclusion in the other direction let $x \in Ac(S)$ and suppose that $x \notin \bigcup_{\pi \in P_{r-1}} [\pi, \pi + \sigma)$. Thus, either x < 0, $x \ge \sum_{k=1}^{\infty} s_k$, or there exist π and π' in P_{r-1} such that $\pi + \sigma \le x < \pi'$ where no element of P_{r-1} is contained in the interval $[\pi + \sigma, \pi')$. Since the first two possibilities imply that $x \notin Ac(S)$ (contradicting the hypothesis) then we may assume that the third possibility holds. Therefore there exists $\delta > 0$ such that

$$(4) x \leq \pi' - \delta.$$

Let p be any element of P(S). Then $p = \sum_{t=1}^m s_{i_t} + \sum_{u=1}^n s_{j_u}$ for some m and n where

$$1 \leq i_1 < i_2 < \cdots < i_n \leq r - 1 < j_1 < j_2 < \cdots < j_n$$
.

Thus for $\pi^* = \sum_{t=1}^m s_{i_t}$ we have $p \in [\pi^*, \pi^* + \sigma)$. Consequently any element p of P(S) must fall into an interval $[\pi^*, \pi^* + \sigma)$ for some $\pi^* \in P_{r-1}$ and therefore, if p exceeds x then it must exceed x by at least δ (since $p \notin [\pi + \sigma, \pi')$ and thus by (4) $p > x \in [\pi + \sigma, \pi')$ implies $p \ge \pi' \ge x + \delta$). This contradicts the hypothesis that $x \in Ac(S)$ and hence we conclude that $Ac(S) \subset \bigcup_{\pi \in P_{r-1}} [\pi, \pi + \sigma)$. Thus, by (3) we have $Ac(S) = \bigcup_{\pi \in P_{r-1}} [\pi, \pi + \sigma)$ and the theorem is proved.

THEOREM 2. Let $S = (s_1, s_2, \cdots)$ be a sequence of real numbers such that:

- 1. $s_n \downarrow 0$.
- 2. There exists an integer r such that n < r implies that s_n is not s.r. in S while $n \ge r$ implies that s_n is s.r. in S.

Then Ac(S) is the disjoint union of exactly 2^{r-1} half-open intervals each of length $\sum_{k=r}^{\infty} s_k$.

Proof. By Theorem 1 we have $Ac(S) = \bigcup_{\pi \in P_{r-1}} [\pi, \pi + \sigma)$ where $\sigma = \sum_{k=r}^{\infty} s_k$ and $P_{r-1} = P((s_1, \cdots, s_{r-1}))$. Let $\pi = \sum_{k=1}^{n} s_{i_k}$ and $\pi' = \sum_{k=1}^{n} s_{j_k}$ be any two formally distinct sums of the s_n where $1 \le i_1 < \cdots < i_n \le r-1$ and $1 \le j_1 < \cdots < j_n \le r-1$ and we can assume without loss of generality that $\pi \ge \pi'$. Then either there is a *least* $m \ge 1$ such that $i_m \ne j_m$ or we have $i_k = j_k$ for $k = 1, 2, \cdots, v$ and

u > v. In the first case we have

$$egin{aligned} \pi &= \sum\limits_{k=1}^{u} s_{i_k} = \sum\limits_{k=1}^{m-1} s_{j_k} + \sum\limits_{k=m}^{u} s_{i_k} \ &> \sum\limits_{k=1}^{m-1} s_{j_k} + \sum\limits_{k=1}^{\infty} s_{i_m+k} \ ext{(since } s_{i_m} \ ext{is not s.r. in } S) \ &\geq \pi' + \sigma \ ext{(since } j_m \geq i_m + 1) \ . \end{aligned}$$

In the second case we have

$$egin{aligned} \pi &= \sum\limits_{k=1}^{u} s_{i_k} = \sum\limits_{k=1}^{v} s_{j_k} + \sum\limits_{k=v+1}^{u} s_{i_k} \ &> \sum\limits_{k=1}^{v} s_{j_k} + \sum\limits_{k=1}^{\infty} s_{i_{v+1}+k} \ (ext{since} \ s_{i_{v+1}} \ ext{is not s.r. in} \ S) \ &\geq \pi' + \sigma \ (ext{since} \ i_{v+1} + 1 \leq i_v + 1 \leq r) \ . \end{aligned}$$

Thus, in either case we see that $\pi > \pi' + \sigma$. Consequently, any two formally distinct sums in P_{r-1} are separated by a distance of more than σ and hence, each element π of P_{r-1} gives rise to a half-open interval $[\pi, \pi + \sigma)$ which is disjoint from any other interval $[\pi', \pi' + \sigma)$ for $\pi \neq \pi' \in P_{r-1}$. Therefore $Ac(S) = \bigcup_{\pi \in P_{r-1}} [\pi, \pi + \sigma)$ is the disjoint union of exactly 2^{r-1} half-open intervals $[\pi, \pi + \sigma)$, $\pi \in P_{r-1}$, (since there are exactly 2^{r-1} formally distinct sums of the form $\sum_{k=1}^{r} \varepsilon_k s_k$, $\varepsilon_k = 0$ or 1) where each interval is of length σ . This proves the theorem.

We now need three additional lemmas in order to prove the main theorems.

LEMMA 1. Let $S = (s_1, s_2, \cdots)$ be a sequence of nonnegative real numbers and suppose that there exists an m such that $n \ge m$ implies that $s_n \le 2s_{n+1}$. Then $n \ge m$ implies that s_n is s.r. in S (i.e., $s_n \le \sum_{k=1}^{\infty} s_{n+k}$).

Proof. If $\sum_{k=1}^{\infty} s_k = \infty$ then the lemma is immediate. Assume that $\sum_{k=1}^{\infty} s_k < \infty$. Then

$$n \geq m \Longrightarrow s_{n+k} \geq rac{1}{2} s_{n+k-1}$$
 , $k=1,2,3,\cdots$ $\Longrightarrow \sum_{k=1}^\infty s_{n+k} \geq rac{1}{2} \sum_{k=1}^\infty s_{n+k-1} = rac{1}{2} s_n + rac{1}{2} \sum_{k=1}^\infty s_{n+k}$.

Therefore, $s_n \leq \sum_{k=1}^{\infty} s_{n+k}$, i.e., s_n is s.r. in S.

LEMMA 2. Suppose that $k \leq (2^{1/n} - 1)^{-1}$ and k^{-n} is s.r. in H^n (where H^n was defined to be the sequence $(1^{-n}, 2^{-n}, \cdots)$). Then $(k+1)^{-n}$ is also s.r. in H^n .

Proof.

$$k \leq (2^{1/n} - 1)^{-1} \Longrightarrow \frac{1}{k} \leq 2^{1/n} - 1$$

$$\Longrightarrow \left(1 + \frac{1}{k}\right)^n \geq 2$$

$$\Longrightarrow k^{-n} \geq 2(k+1)^{-n}.$$

Since by hypothesis, $\sum_{j=k+1}^{\infty} j^{-n} \geq k^{-n}$, then by (5)

$$\sum_{j=k+2}^{\infty} j^{-n} \geq k^{-n} - (k+1)^{-n} \geq 2(k+1)^{-n} - (k+1)^{-n} = (k+1)^{-n}$$
 .

Hence, $(k+1)^{-n}$ is s.r. in H^n and the lemma is proved.

LEMMA 3. Suppose that $k \ge (2^{1/n}-1)^{-1}$. Then k^{-n} is s.r. in H_n .

Proof.

$$egin{aligned} r & @>> r \ge (2^{1/n}-1)^{-1} \ & & => rac{1}{r} \le 2^{1/n}-1 \ & & => \left(1+rac{1}{r}
ight)^n \le 2 \ & => r^{-n} \le 2(r+1)^{-n} \ . \end{aligned}$$

Therefore, by Lemma 1, r^{-n} is s.r. in H^n .

THEOREM 3. Let t_n denote the largest integer k such that k^{-n} is not s.r. in H^n and let P denote $P((1^{-n}, 2^{-n}, \dots, t_n^{-n}))$. Then

$$Ac(H^n) = \bigcup_{\pi \in P} [\pi, \pi + \sum_{k=1}^{\infty} (t_n + k)^{-n})$$

is the disjoint union of exactly 2^{t_n} intervals. Moreover, $t_n < (2^{1/n} - 1)^{-1}$ and $t_n \sim n/\ln 2$ (where $\ln 2$ denotes $\log_e 2$).

Proof. With the exception of $t_n \sim n/\ln 2$, the theorem follows directly from the preceding results. The following argument, due to L. Shepp, shows that $t_n \sim n/\ln 2$.

Consider the function $f_n(x)$ defined by

(6)
$$f_n(x) = x^n \left(\sum_{k=1}^{\infty} \frac{1}{(x+k)^n} - \frac{1}{x^n} \right)$$

for $n=2, 3, \cdots$ and x>0. Since

$$f_n(x) = \sum_{k=1}^{\infty} \left(1 + \frac{k}{x}\right)^{-n} - 1$$

then $f_n(x) < 0$ for sufficiently small x > 0, $f_n(x) > 0$ for sufficiently

large x, and $f_n(x)$ is continuous and monotone increasing for x > 0. Hence the equation $f_n(x) = 0$ has a unique positive root x_n and from the definition of t_n it follows by (6) that $0 < x_n - t_n \le 1$. Thus, to show that $t_n \sim n/\ln 2$, it suffices to show that $x_n \sim n/\ln 2$. Now it is easily shown (cf., [4], p. 13) that for a > 0, $(1 + \alpha/n)^{-n}$ is a decreasing function of n. Thus, $f_n(\alpha n)$ is a decreasing function of n and since $f_2(2\alpha) < \infty$ for $\alpha > 0$ then

$$egin{aligned} \lim_{n o\infty}f_n\left(lpha n
ight) &=\lim_{n o\infty}\sum_{k=1}^\infty\left(1+rac{k}{lpha n}
ight)^{-n}-1\ &=\sum_{k=1}^\infty\lim_{n o\infty}\left(1+rac{k}{lpha n}
ight)^{-n}-1\ &=-1+\sum_{k=1}^\infty e^{-k/lpha}=(e^{1/lpha}-1)^{-1}-1 \end{aligned}$$

since the monotone convergence theorem (cf., [5]) allows us to interchange the sum and limit. Suppose now that for some $\varepsilon > 0$, there exist $n_1 < n_2 < \cdots$ such that $x_{n_i} > n_i(1/\ln 2 + \varepsilon)$. Then

$$\begin{aligned} 0 &= \lim_{i \to \infty} f_{n_i} \left(x_{n_i} \right) \ge \lim_{i \to \infty} f_{n_i} \left(n_i \left(\frac{1}{\ln 2} + \varepsilon \right) \right) \\ &= \left(e^{(1/\ln 2 + \varepsilon)^{-1}} - 1 \right)^{-1} - 1 \\ &= \left(2^{1/(1 + \varepsilon \ln 2)} - 1 \right)^{-1} - 1 > 0 \end{aligned}$$

which is a contradiction. Similarly, if for some ε , $0 < \varepsilon < 1/ln 2$, there exist $n_1 < n_2 < \cdots$ such that

$$x_{n_i} < n_i \Big(rac{1}{ln\,2} - arepsilon\Big)$$
 ,

then

$$0 = \lim_{i \to \infty} f_{n_i}(x_{n_i}) \le \lim_{i \to \infty} f_{n_i} \left(n_i \left(\frac{1}{\ln 2} - \varepsilon \right) \right)$$

$$= (e^{(1/\ln 2 - \varepsilon)^{-1}} - 1)^{-1} - 1$$

$$= (2^{1/(1 - \varepsilon \ln 2)} - 1)^{-1} - 1 < 0$$

which is again impossible. Hence we have shown that for all $\varepsilon > 0$, there exists an n_0 such that $n > n_0$ implies that

$$n\left(\frac{1}{\ln 2} - \varepsilon\right) \leq x_n \leq n\left(\frac{1}{\ln 2} + \varepsilon\right)$$

or equivalently

$$-\varepsilon \leq \frac{x_n}{n} - \frac{1}{\ln 2} \leq \varepsilon$$
.

Therefore, $\lim x_n/n = 1/\ln 2$ and the theorem is proved.²

The following table gives the values of t_n for some small values of n.

\underline{n}	t_n	$[(2^{1/n}-1)^{-1}]$
1	0	1
2	1	2
3	2	3
4	4	5
5	5	6
10	12	13
100	?	143
1000	?	1442

We may now combine Theorem 3 and Theorem A (cf. Eq. (1)) and express the result in ordinary terminology to give:

THEOREM 4. Let n be a positive integer, let t_n be the largest integer k such that $k^{-n} > \sum_{j=1}^{\infty} (k+j)^{-n}$ and let P denote the set $\{\sum_{j=1}^{n} \varepsilon_{j} j^{-n} : \varepsilon_{j} = 0 \text{ or } 1\}$. Then the rational number p/q can be written as a finite sum of reciprocals of distinct nth powers of integers if and only if

$$\frac{p}{q} \in \bigcup_{\pi \in P} [\pi, \pi + \sum_{k=1}^{\infty} (t_n + k)^{-n})$$
.

COROLLARY 1. p/q can expressed as the finite sum of reciprocals of distinct squares if and only if

$$\frac{p}{q} \in \left[0, \frac{\pi^2}{6} - 1\right) \cup \left[1, \frac{\pi^2}{6}\right).$$

COROLLARY 2. p/q can be expressed as the finite sum of reciprocals of distinct cubes if and only if

$$\frac{p}{q} \in \left[0, \zeta(3) - \frac{9}{8}\right) \cup \left[\frac{1}{8}, \zeta(3) - 1\right) \cup \left[1, \zeta(3) - \frac{1}{8}\right) \cup \left[\frac{9}{8}, \zeta(3)\right)$$

where $\zeta(3) = \sum_{k=1}^{\infty} k^{-3} = 1.2020569 \cdots$

REMARKS. In theory it should be possible to calculate directly from the relevant theorems (cf., [2], [3]) an explicit bound for the number of terms of H^n needed to represent p/q as an element of $P(H^n)$. However, since the theorems were not designed to minimize such a bound, but rather merely to show its existence, then understandably, this calculated bound would probably be many orders of

² In fact, it can be shown that x_n has the expansion $n/1n^2 - 1/2 + c_1n^{-1} + \cdots + c_kn^{-k} + 0(n^{-k-1})$ for any k.

magnitude too large. Erdös and Stein [1] and, independently, van Albada and van Lint [9] have shown that if f(n) denotes the least number of terms of $H^1 = (1^{-1}, 2^{-1}, \cdots)$ needed to represent the integer n as an element of $P(H^1)$ then $f(n) \sim e^{n-\gamma}$ where γ is Euler's constant.

It should be pointed out that a more general form of Theorem A may be derived from [2] which can be used to prove results of the following type:

COROLLARY A. The rational p/q with (p, q) = 1 can be expressed as a finite sum of reciprocals of distinct odd squares if and only if q is odd and $p/q \in [0, (\pi^2/8) - 1) \cup [1, \pi^2/8)$.

COROLLARY B. The rational p/q with (p, q) = 1 can be expressed as a finite sum of reciprocals of distinct squares which are congruent to 4 modulo 5 if and only if (q, 5) = 1 and

$$\frac{p}{q} \in \left[0, \alpha - \frac{13}{36}\right) \cup \left[\frac{1}{9}, \alpha - \frac{1}{4}\right) \cup \left[\frac{1}{4}, \alpha - \frac{1}{9}\right) \cup \left[\frac{13}{36}, \alpha\right)$$

where
$$\alpha = 2(5 - \sqrt{5})\pi^2/125 = \sum_{k=0}^{\infty} ((5k+2)^{-2} + (5k+3)^{-2}) = 0.43648 \cdots$$

It is not difficult to obtain representations of specific rationals as elements of $P(H^n)$ (for small n), e.g.,

$$rac{1}{2}=2^{-2}+3^{-2}+4^{-2}+5^{-2}+6^{-2}+15^{-2}+18^{-2}+36^{-2}+60^{-2}+180^{-2}$$
 , $rac{1}{3}=2^{-2}+4^{-2}+10^{-2}+12^{-2}+20^{-2}+30^{-2}+60^{-2}$, $rac{5}{37}=2^{-3}+5^{-3}+10^{-3}+15^{-3}+16^{-3}+74^{-3}+111^{-3}+185^{-3}+240^{-3}+296^{-2}+444^{-3}+1480^{-3}$, etc.!

REFERENCES

- 1. P. Erdös and S. Stein, Sums of distinct unit fractions, Proc. Amer. Math. Soc., 14 (1963), 126-131.
- 2. R. Graham, On finite sums of unit fractions, Proc. London Math. Soc., (to appear).
- 3. _____, Complete sequences of polynomial values, Duke Math. Jour. (to appear).
- 4. P. P. Korovkin, Inequalities, Random House, New York (1961).
- 5. M. Loève, Probability Theory, Van Nostrand, Princeton, (1960).
- 6. Leonardo Pisano, Scritti, vol. 1, B. Boncompagni, Rome (1857) 77-83.
- 7. K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Quart. Jour. of Math., 5 (1954), 241-259.
- 8. R. Sprague, Über Zerlegungen in n-te Potenzen mit lauter verschiedene Grundzahlen, Math. Zeit., 51 (1947-48), 466-468.
- 9. P. J. van Albada and J. H. van Lint, Reciprocal bases for the integers, Amer. Math. Monthly 70 (1963), 170-174.

BELL TELEPHONE LABORATORIES, INC.