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Introduction* It has long been known that every positive rational
number can be represented as a finite sum of reciprocals of distinct
positive integers (the first proof having been given by Leonardo
Pisano [6] in 1202). It is the purpose of this paper to characterize
{cf. Theorem 4) those rational numbers which can be written as finite
sums of reciprocals of distinct nth. powers of integers, where n is an
arbitrary (fixed) positive integer and "finite sum" denotes a sum with
a finite number of summands. It will follow, for example, that p\q
is the finite sum of reciprocals of distinct squares1 if and only if

Our starting point will be the following result:

THEOREM A. Let n be a positive integer and let Hn denote the
sequence (l~n, 2~~n, 3~w, ••••). Then the rational number pjq is the
finite sum of distinct terms taken from Hn if and only if for all
ε > 0, there is a finite sum s of distinct terms taken from Hn such
that 0 ^ s — pjq < ε.

Theorem A is an immediate consequence of a result of the author
[2, Theorem 4] together with the fact that every sufficiently large
integer is the sum of distinct nth. powers of positive integers (cf.,
[8], [7] or [3]).

The main results* We begin with several definitions. Let S =
(su s2, •••) denote a (possibly finite) sequence of real numbers.

DEFINITION 1. P(S) is defined to be the set of all sums of the
form Σ?=i εk8k- where εk = 0 or 1 and all but a finite number of the
εk are 0.

DEFINITION 2. Ac(S) is defined to be the set of all real numbers
x such that for all ε > 0, there is an s e P(S) such that 0 ^ s — x < ε.
Note that in this terminology Theorem A becomes:

(1) P(Hn) - Ac(Hn) n Q

Received May 13, 1963.
1 This result has also been obtained by P. Erdos (not published).
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where Q denotes the set of rational numbers.

DEFINITION 3. A term sn of S is said to be smoothly replaceable
in S (abbreviated s.r. in S) if sn ^ Σ*U*»+*

THEOREM 1. Let S = (slrs2, •••) be a sequence of real numbers
such that:

2. There exists an integer r such that n Ξ> r implies that sn is
smoothly replaceable in S.

Then

Ac(S) = U [π, π + <*)

where Pr_x = P((su , sr_x)) (note that Po = {0}) and σ = Y^^rsk(where
possibly σ is infinite).

Proof. Let x e \JπePr_1 [π, π + σ) and assume that x ί Ac(S). Then
x e [π, π + σ) for some π e Pr_i. A sum of the form π + Σ*U \ where
T g ix < i2 < < ik will be called "minimal" if

(2) π + Σ s ί f < x < π + Σ 8it
ί = l * t=l

(where a sum of the form Σ<*U is taken to be 0 for b < a). Note
that since x £ Ac(S) ID P(S) then we never get equality in (2). Let
M denote the set of minimal sums. Then M must contain infinitely
many elements. For suppose I is a finite set. Let m denote the
largest index of any sd which is used in any element of M and let
p = π + Σ*=i sdk + s™ b e a n element of M which uses sm (where r ^
θΊ < 32 < < 3n < m and possibly n is zero). Thus we have

n n oo

π +

since sm is s.r. in S. Therefore there is a least d^l such t h a t
x < p' = 7Γ + Σ l U s i fc + Σ*=i sm+f Hence p ' is a "minimal" sum which
uses sm+d and m + d > m. This is a contradiction to t h e definition
of m and consequently Mmust be infinite. Now, let δ = inί{p -x:pe M}.
Since x ί Ac(S) then δ > 0. There exist p l f p 2, e M such t h a t
p Λ — x < <5 + S/2\ Since sn [ 0 then there exists c such t h a t n^c
implies t h a t sn < δ/2. Also, there exists w such t h a t n^w implies
t h a t pn uses an sk for some k^c (since only a finite number of p,
can be formed from the sk wi th k < c). Therefore we can wri te
pw = 7Γ + Σ?=i sfc, where ATO ̂  c. Hence
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which is a contradiction to the assumption that pw is "minimal/'
Thus, we must have xeAc(S) and consequently

(3) U [π,π + σ)c:Ac(S) .

To show inclusion in the other direction let x e Ac(S) and suppose
that x e U^€Pr_! ίπ> π + σ) Thus, either x < 0, x ^ Σ~=isfc> o r there
exist π and TΓ' in P ^ such that π + σ ^ x < π' where no element of
Pr_x is contained in the interval [π + σ, TΓ'). Since the first two pos-
sibilities imply that x $ Ac(S) (contradicting the hypothesis) then we
may assume that the third possibility holds. Therefore there exists
δ > 0 such that

( 4) x g π' - 3 .

Let p be any element of P(S). Then p = ΣΓ=i S ^ + Σ2=i s% f° r s o m e

m and w where

I^i1<i2< < im ^ r - 1 < j \ < j 2 < < i n .

Thus for π* = ΣS=iβ<ί we have pe [TΓ*, TΓ* + σ). Consequently any
element p of P(S) must fall into an interval [π*, TΓ* + o) for some
TΓ* 6 Pr_i and therefore, if p exceeds x then it must exceed x by at
least δ (since p ί [π + 0", π') and thus by (4) p > x e [π + (7, TΓ') implies
p^ πf ^ x + δ). This contradicts the hypothesis that x e Ac(S) and
hence we conclude that Ac(S)c \Jπepr_1[

π>π + σ ) Thus, by (3) we
have Ac(S) = U^fv-J^ TΓ + σ) and the theorem is proved.

THEOREM 2. Le£ S = (5t, 52, •••) be a sequence of real numbers

such that:

1. 8.10.
2. There exists an integer r such that n < r implies that sn is

not s.r. in S while n^r implies that sn is s.r. in S.
Then Ac(S) is the disjoint union of exactly 2r~1 half-open inter-

vals each of length Σϊ=rsk.

Proof. By Theorem 1 we have Ac(S) = U*e/>,._! [^ π + σ) where
G = ΣΓ=r Sfc and Pr_x = P((sx, , s,^)). Let π = Σϊ=iβifc

 a n d π ' =
Σ*=i si* be any two formally distinct sums of the sn where 1 ^
ίi < < i u ^ T — 1 and 1 S ji < < U ^ ^ — 1 and we can assume
without loss of generality that TΓ Ξg TΓ'. Then either there is a least
m ^ 1 such that im Φ j m or we have ik = i^ for & = 1, 2, , v and
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u > v. In the first case we have

m—1

> Σ SJJC + Σ sim+k (since sim is not s.r. in S)

Ξ> TΓ' + σ (since i m ^ im + 1) .

In the second case we have

π = Σ sik = Σ s;* + Σ *<*

> Σβijfc + Σ 8*β+1+* (since «ίβ+1 is not s.r. in S)

^π'' +σ (since i β + i + l ^ iu + 1 ^ r) .

Thus, in either case we see that π > πf + σ. Consequently, any two
formally distinct sums in Pr_χ are separated by a distance of more
than σ and hence, each element π of Pr-± gives rise to a half-open
interval [TΓ, π + σ) which is disjoint from any other interval [TΓ', TΓ' + σ)
for TΓ Φ τr'eP r_!. Therefore Ac(S) = \Jnepr-.x\.π9π + σ) is the disjoint
union of exactly 2r~1 half-open intervals [TΓ, TΓ + σ), πe Pr-19 (since
there are exactly 2r~~1 formally distinct sums of the form Σί=i εΛ> εk —
0 or 1) where each interval is of length σ. This proves the theorem.

We now need three additional lemmas in order to prove the main
theorems.

LEMMA 1. Let S = (slf s2, •) be a sequence of nonnegative real
numbers and suppose that there exists an m such that n ^ m
implies that sn^2sn+1. Then n^m implies that sn is s.r. in S (i.e.,

&n = 2-Ak=l Sn+k)

Proof. If Σ?=i sk — °° then the lemma is immediate. Assume

that Σ*=iβ*< °° T h e n

n ^ m - = > sn+k ^ — Sn+k-!, fc = 1, 2, 3,

oo 1 °° 1 1 °°
;' Σ S%+fc = "77 2-iSn+k-l — ~X"Sw + -X" Σ Sn+k

Jfe=l 2 k=l 2 2 A=l

Therefore, sn ^ Σ?=iβ»+fc> ΐ e » sw ^s s r i n ^

LEMMA 2. Suppose that k-£(2rln — I ) " 1 ami &̂ % is s.r. in Hn

{where Hn was defined to be the sequence (l~n, 2~n, ••*)). Then
(k + 1)-* is also s.r. in H\
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Proof.

k ^ (2lln - I ) - 1 = > — ^ 2lln - 1
k

( 5 )

Since by hypothesis, Σ~=*+i 3~n ^ A"*, then by ( 5 )

Σ t n ^ Ar - (k + l)~n ^ 2(fc + 1)-" ~(k + 1)-" = (k + 1)-" .
j = k+2

Hence, (k + l)~w is s.r. in Hn and the lemma is proved.

LEMMA 3. Suppose that k ^ (21/Λ - I)"1. Then k~n is s.r. in Hn.

Proof.

r^"k=>r^ (2lln -I)-1

1 + - ^ 2
r /

— r~n ̂  2(r + 1)— .

Therefore, by Lemma 1, r~% is s.r. in Hn.
THEOREM 3. Let tn denote the largest integer k such that krn

is not s.r. in Hn and let P denote P((l~n, 2~n, •••, t~n)). Then

is the disjoint union of exactly 2tn intervals. Moreover, tn < (2lln— I)" 1

and tn ~ n\ln 2 (where In 2 denotes loge 2).

Proof. With the exception of tn ~ n\ln 2, the theorem follows
directly from the preceding results. The following argument, due to
L. Shepp, shows that tn ~ n/ln 2.

Consider the function fn(x) defined by

Στ4τcr Λ
*=i (x + kf xn

for n = 2, 3, and x > 0. Since
/.(*) = Σ ( i + -)~n -1

Λ=l\ X/

then fn(x) < 0 for sufficiently small ti > 0, fn(x) > 0 for sufficiently
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large x, and fn(x) is continuous and monotone increasing for x > 0.
Hence the equation fn(x) = 0 has a unique positive root xn and from
the definition of tn it follows by (6) that 0 < xn - tn ^ 1. Thus, to
show that tn ~ nβn 2, it suffices to show that xn ~ nβn 2. Now it is
easily shown (cf , [4], p. 13) that for a > 0, (1 + a/n)~n is a decreas-
ing function of n. Thus, f%{an) is a decreasing function of w and
since f%(2a) < oo for a > 0 then

limΛ {<*n) = lim Σ f 1 + —V* - 1

ί i + -& V M= Σ lim (

= - l + Σ e~kl" = (el/a> - 1 ) " 1 -

since the monotone convergence theorem (cf., [5]) allows us to inter-
change the sum and limit. Suppose now that for some e > 0, there
exist nx<n2< such that xH > n^l/ln 2 + e). Then

= (21/(1+εlw2) - I)-1 - 1 > 0

which is a contradiction. Similarly, if for some ε, 0 < ε < lβn 2,
there exist ^ < n2 < such that

then

0 = BmAίag g M m ^ K l ^ " £))
= (βd/ϊ a- )-1 _ l)-i _ 1

= (21/(1-8ϊ»2) - I)-1 - 1 < 0

which is again impossible. Hence we have shown that for all s > 0,
there exists an n0 such that n > n0 implies that

^ ε)^xn^ n(
ln2 ) \ln2

or equivalently

- ε ^ x» - 1 g e .
ϊ2
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Therefore, lim xjn

The following
of n.

n
1
2
3
4
5

10
100

1000

= l / » 2 and the theorem is

table gives the values of tn

proved.2

for some small values

K [(21/κ - I)-1]

0
1

2
4
5

12
1
?

1
2
3
5
6

13
143

1442

We may now combine Theorem 3 and Theorem A (cf. Eq. (1))
and express the result in ordinary terminology to give:

THEOREM 4. Let n be a positive integer, let tn be the largest
integer k such that k~n > 2?=i (& + J)~n and let P denote the set
{Σ* =i εjj~~n: εJ — 0 or 1}. Then the rational number p\q can be written
as a finite sum of reciprocals of distinct nth. powers of integers if
and only if

U
πβP

COROLLARY 1. p\q can expressed as the finite sum of reciprocals
of distinct squares if and only if

COROLLARY 2. p\q can be expressed as the finite sum of recipro-
cals of distinct cubes if and only if

Ά e Γθ, ζ(8) - A ) u Γ l , ζ ( 3 ) - l ) U Γl, ζ(3) - ± ) U Γ», ζ(3))
q L w 8/ L8 / L ' 8/ L8 /

where ζ(3) = Σ*U &~3 = 1.2020569-

REMARKS. In theory it should be possible to calculate directly
from the relevant theorems (cf., [2], [3]) an explicit bound for the
number of terms of Hn needed to represent p\q as an element of
P(Hn). However, since the theorems were not designed to minimize
such a bound, but rather merely to show its existence, then under-
standably, this calculated bound would probably be many orders of

2 In fact, it can be shown that xn has the expansion n/ln2 — 1/2 + cιn~ι

+ ckn~k + OOt-*-1) for any k.
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magnitude too large. Erdos and Stein [1] and, independently, van
Albada and van Lint [9] have shown that if f(n) denotes the least
number of terms of H1 — (I"1, 2~\ •) needed to represent the integer
n as an element of P(£P) then f{n) ~ en~y where 7 is Euler's constant.

It should be pointed out that a more general form of Theorem A
may be derived from [2] which can be used to prove results of the
following type:

COROLLARY A. The rational p\q with (p, q) = 1 can be expressed
as a finite sum of reciprocals of distinct odd squares if and only if
q is odd and pjq e [0, (π2/8) - 1) U [1, π2/8).

COROLLARY B. The rational p/q with (p, q) = 1 can be expressed
as a finite sum of reciprocals of distinct squares which are congruent
to 4 modulo 5 if and only if (q, 5) = 1 and

where a = 2(5 - vΊ>V/125 = Σ?=o((5A; + 2)~2 + (5k + 3)~2) = 0.43648-

It is not difficult to obtain representations of specific rationale as
elements of P(Hn) (for small n), e.g.,

— = 2~2 + 3-2 + 4-2 + 5-2 + 6~2 + 15-2 + 18-2 + 36~2 + 60~2 + 180-2,
Δ

— = 2-2 + 4-2 + 10-2 + 12-2 + 20-2 + 30-2 + 60-2,
3

A = 2~3 + 5"3 + 10-3 + 15-3 + 16-3 + 74"3 + 111"3 + 185~3 + 240~3

+ 296"2 + 444"3 + 1480-3, etc.!
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