ON FINITE SUMS OF RECIPROCALS OF
DISTINCT »TH POWERS

R. L. GRAHAM

Introduction. It has long been known that every positive rational
number can be represented as a finite sum of reciprocals of distinet
positive integers (the first proof having been given by Leonardo
Pisano [6] in 1202). It is the purpose of this paper to characterize
(cf. Theorem 4) those rational numbers which can be written as finite
sums of reciprocals of distinet nth powers of integers, where n is an
arbitrary (fixed) positive integer and “finite sum” denotes a sum with
a finite number of summands. It will follow, for example, that p/q
is the finite sum of reciprocals of distinet squares' if and only if
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Our starting point will be the following result:

THEOREM A. Let n be a positive integer and let H™ denote the
sequence (1, 27", 87", ...). Then the rational nmumber plq is the
finite sum of distinct terms taken from H™ if and only if for all

& >0, there is a finite sum s of distinct terms taken from H™ such
that 0 < s — plg < e.

Theorem A is an immediate consequence of a result of the author
[2, Theorem 4] together with the fact that every sufficiently large
integer is the sum of distinet nth powers of positive integers (cf.,

(8], [7] or [3]).

The main results. We begin with several definitions. Let S =
(84, 83, -+ +) denote a (possibly finite) sequence of real numbers.

DEFINITION 1. P(S) is defined to be the set of all sums of the

form 35, &8, where ¢, = 0 or 1 and all but a finite number of the
g, are 0,

DEFINITION 2. Ac(S) is defined to be the set of all real numbers
« such that for all ¢ > 0, there is an se P(S) such that 0 < s — 2 < ¢.
Note that in this terminology Theorem A becomes:

(1) P(H™) = Ac(H*) N Q

Received May 13, 1963.
1 This result has also been obtained by P. Erdos (not published).
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where @ denotes the set of rational numbers.

DEFINITION 3. A term s, of S is said to be smoothly replaceable
wn S (abbreviated s.r. in S) if s, < 351 8,1

THEOREM 1. Let S = (s, 8y, +++) be a sequence of real numbers
such that:

1. s,]0.

2. There exists an integer r such that n = r implies that s, is
smoothly replaceable in S.

Then

Ac(S) = eg Nz, 7w+ 0)

where P,_, = P((sy, -, s,_,)) (note that P, = {0}) and o = 3.7, s.(where
possibly o s infinite).

Proof. Let x€ Uep, [, 7w+ 0) and assume that © ¢ Ac(S). Then
x € [, w + o) for some w € P,_,. A sum of the form = + 33*, 8;, where
r=1<1< -+ <1 will be called “minimal” if

k—1 k
(2) ”+§3it<‘”<”+§13¢t

(where a sum of the form 3!, is taken to be 0 for b < a). Note
that since @ ¢ Ac(S) D P(S) then we never get equality in (2). Let
M denote the set of minimal sums. Then M must contain infinitely
many elements. For suppose M is a finite set. Let m denote the
largest index of any s; which is used in any element of M and let
P=7+ 3.8, + S, be an element of M which uses s, (where r» <
1< 3. < +++ < J, < m and possibly n is zero). Thus we have

n+,§sjk<w< n+’%sjk+;sm+t

since s, is s.r. in S. Therefore there is a least d =1 such that
e<p =r+ 2418, + 1 8u. Hence 9’ is a “minimal” sum which
uses S,4, and m 4+ d >m. This is a contradiction to the definition
of m and consequently M must be infinite. Now, let § = inf{p —a: pe M}.
Since @ ¢ Ac(S) then 6 > 0. There exist p, D, -+ € M such that
D, — %< 0+0/2" Since s,|0 then there exists ¢ such that » = ¢
implies that s, < 0/2. Also, there exists w such that » = w implies
that p, uses an s, for some k = ¢ (since only a finite number of p;
can be formed from the s, with k < ¢). Therefore we can write
P, =T + 2718, Where k, = c. Hence
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D o >p 2 = 2 >
which is a contradiction to the assumption that p, is “minimal.”
Thus, we must have x € A¢(S) and consequently
(3) U [r, 7+ d)c Ae(S) .

TEP, 1

To show inclusion in the other direction let x € Ac¢(S) and suppose

that « € Usep,_, [7, © 4+ 0). Thus, either © <0, x = 375, or there
exist 7 and 7’ in P,_, such that 7 + ¢ < © < @’ where no element of
P,_, is contained in the interval [7 + o, 7). Since the first two pos-
sibilities imply that x ¢ Ac(S) (contradicting the hypothesis) then we
may assume that the third possibility holds. Therefore there exists
0 > 0 such that

(4) r<w —96.

Let » be any element of P(S). Then p = >\, 8, + =18, for some
m and n where

1S53 <6< <, 2r—1<4<5H< -+ <J,.

Thus for n* = 3, s;, we have pe[n*, n* 4 0). Consequently any
element p of P(S) must fall into an interval [7*, #* + o) for some
w* e P,_, and therefore, if p exceeds « then it must exceed & by at
least 0 (since p¢[m + o, n’) and thus by (4) p > x€[x + o, ') implies
p=7n =2+ 9). This contradicts the hypothesis that xe Ae(S) and
hence we conclude that Ac(S)C User, ,[7, # + 6). Thus, by (3) we
have Ac(S) = Uzer,_,[7,  + 0) and the theorem is proved.

THEOREM 2. Let S = (8, 8, *++) be a sequence of real numbers
such that:

1. s,|0.

2. There exists an integer r such that n < r implies that s, s
not s.r. wn S while n = r implies that s, s s.x. in S.

Then Ac(S) is the disjoint union of exactly 27 half-open inter-
vals each of length 7. s,.

Proof. By Theorem 1 we have Ac(S) = Urep,,[7, © + 0) Where
6=735%,8 and P, = P((s,++,8,0)). Let #=3%,s;, and «' =
>-18;, be any two formally distinct sums of the s, where 1=
< o<t =r—1land 155,< -+ <jJ,=7r—1and we can assume
without loss of generality that 7 = n’. Then either there is a least
m =1 such that 4, # j, or we have 7, =4, for k=1,2,---,v and
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w > v. In the first case we have

% m—1 u
= gsik = gsf,‘ + gsik
m—1
Zs,k + Zszmﬂc (since s; is not s.r. in S)
=7a' + o (since j, =1, +1).

In the second case we have

T =

%
Z sjk Z sik

k=v+1

mg

v
> Z, . T Zs,mﬂ, (since s;, , is not s.r. in S)

=7’ + 0 (since t,u+1=<4,+1=7).

Thus, in either case we see that 7 > 7' + 0. Consequently, any two
formally distinet sums in P,_, are separated by a distance of more
than ¢ and hence, each element @ of P,_, gives rise to a half-open
interval [z, 7 + o) which is disjoint from any other interval [7’, 7’ + 0)
for 7 # n' € P,_,. Therefore Ac(S) = U:er,_,[7, 7 + 0) is the disjoint
union of exactly 2" half-open intervals [z, 7 + o), we P,_,, (since
there are exactly 2" formally distinct sums of the form >7Zie.s,, &, =
0 or 1) where each interval is of length o. This proves the theorem.

We now need three additional lemmas in order to prove the main
theorems.

LEMMA 1. Let S = (s, 8, +++) be a sequence of nonnegative real
numbers and suppose that there exists an m such that n = m
implies that s, <2s,... Then n=m implies that s, is s.r. in S (i.e.,

sn é Z?ca:l sn+k)’

Proof. If >\7..s, = o then the lemma is immediate. Assume
that >5.;s, < . Then

n2m=sn+k2%sn+k_l, £k=1,2,38, .-
’;:.1 = 2 = n+k—-1 2 sn 2 k=lsn+k .

Therefore, s, < >iv; Sps, 1.€., .8, I8 s.r: in S.

LEMMA 2. Suppose that k- < (2" — 1)~ and k™™ 4s s.r. in H"
(where H"™ was defined to be the sequemce (17,27", +++)). Then
(k + 1)=™ s also s.r. in H™.
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Proof.

k< (@ — 1)t — lt <o _1

I 1y

(5) (1 + k) >2
— k" =20k +1)".

Since by hypothesis, >3 7™ = k™™, then by (5)

Sz k- DTz 20k + D)7 — 4+ D)7 = (4 1)

J=k+2
Hence, (kK + 1)™™ is s.r. in H™ and the lemma is proved.
LEMMA 3. Suppose that £ = (2¥* — 1)~*. Then k™™ is s.r. in H,.

Proof.
rzk=r=(@"—-1)"

— 1l _oan_

r

—(1+) =2

r

=—r " =2r+ 1.

Therefore, by Lemma 1, " is s.r. in H",
THEOREM 3. Let t, denote the largest integer k such that k=
18 not s.r. in H™ and let P denote P((1™", 27", «++,t;"). Then
AdH" = Ulr, @ + 3 (¢, + b))
nEP k=1

18 the disjoint union of exactly 2i» intervals. Moreover, t, < (2V"— 1)
and t, ~ nf[ln 2 (where In 2 denotes log, 2).

Proof. With the exception of ¢, ~ n/in 2, the theorem follows
directly from the preceding results. The following argument, due to
L. Shepp, shows that ¢, ~ n/ln 2.

Consider the function f,(x) defined by

(6) Fulw) = w(g-(xi—k) - %)

for n =2,8,--- and « > 0. Since
f@=51+2)7" -1
k=1 x

then f,(¢) < 0 for sufficiently small 2 > 0, f,(x) >0 for sufficiently
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large x, and f,(x) is continuous and monotone increasing for « > 0.
Hence the equation f,(x) = 0 has a unique positive root #, and from
the definition of ¢, it follows by (6) that 0 < @, — ¢, < 1. Thus, to
show that ¢, ~ n/ln 2, it suffices to show that z, ~ n/ln 2. Now it is
easily shown (cf., [4], p. 13) that for @ >0, (1 + a/n)™ is a decreas-
ing function of n. Thus, f.(an) is a decreasing function of % and
since fy(2a) < o« for a > 0 then

lim ., (en) = lim 3\ ( + —’f-)'" ~1

n—oo k= an

=Ellm( k>—“—1

1n—00
= 1+ SeHe = (¢ — 1)1 —1
k=1

since the monotone convergence theorem (cf., [5]) allows us to inter-
change the sum and limit. Suppose now that for some & > 0, there
exist n, <m, < +++ such that @, > n,(1/ln2 + ¢). Then

0 = lim oy o) 2 i £ (g5 + <))
— (e(l/mz+e)'1 —_ 1)—1 -1

—_ (21/(1+Bln2) — 1)—-1 — 1 > O

which is a contradiction. Similarly, if for some ¢, 0 < e < 1/ln2,
there exist n, < n, < -+- such that

1
o < 1G5 = )

then

0 = limf, () < lim o (m 75 — ¢))
— (eu/znz—z)“'l —1)1t-1
- (21/(1—31%3) — 1)—1 _ 1 < 0

which is again impossible. Hence we have shown that for all ¢ > 0,
there exists an n, such that » > n, implies that

n(-%%—— )gwn§n<ﬁl—§+s>

or equivalently

z, 1
n n2

A
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Therefore, lim «,/n = 1/In 2 and the theorem is proved.’

The foﬁs;ving table gives the values of ¢, for some small values
of n.

n_ tw [@" — 1)~
1 0 1
2 1 2
3 2 3
4 4 5
5 5 6
10 12 13
100 ? 143
1000 ? 1442

We may now combine Theorem 8 and Theorem A (cf. Eq. (1))
and express the result in ordinary terminology to give:

THEOREM 4. Let n be a positive integer, let t, be the largest
wnteger k such that k= > >S5, (k + j)™ and let P denote the set
{Xin, €57 &= 0 or 1}. Then the rational number plq can be written
as a finite sum of reciprocals of distimct nth powers of integers if
and only if

LeUln,z+ Xt +hb)™).
q TEP k=1

COROLLARY 1. p/q can expressed as the finite sum of reciprocals
of distinct squares if and only if

efo, 2 —1)u[1,2).

COROLLARY 2. p/q can be expressed as the finite sum of recipro-
cals of distinct cubes if and only if

%f[mcwr—%)u[%&@y-Qu[Lc@y—%)U[%3g$>
where {(8) = X, k™ = 1.2020569- - -

REMARKS. In theory it should be possible to calculate directly
from the relevant theorems (cf., [2], [3]) an explicit bound for the
number of terms of H" needed to represent p/¢ as an element of
P(H"). However, since the theorems were not designed to minimize
such a bound, but rather merely to show its existence, then under-
standably, this calculated bound would probably be many orders of

2 In fact, it can be shown that x, has the expansion #n/ln2 — 1/2 +em~t 4+ ---
+ cxn—* + O(n—*—1) for any k.
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magnitude too large. Erdos and Stein [1] and, independently, van
Albada and van Lint [9] have shown that if f(n) denotes the least
number of terms of H* = (17, 27, ---) needed to represent the integer
n as an element of P(H") then f(n)~e** where v is Euler’s constant.

It should be pointed out that a more general form of Theorem A
may be derived from [2] which can be used to prove results of the
following type:

COROLLARY A. The rational p/qg with (p, @) = 1 can be expressed
as a finite sum of reciprocals of distinct odd squares if and only if
q s odd and p/q |0, (7*/8) — 1) U [1, 7?/8).

COROLLARY B. The rational p/g with (p, q) = 1 can be expressed
as a finite sum of reciprocals of distinct squares which are congruent
to 4 modulo 5 if and only if (¢,5) =1 and

2efoa)o3 Do a- 2oL
where a = 2(5 — V' 5)7*/125 = 357, ((5k + 2)~* + (5k + 3)~%) = 0.43648- - -

It is not difficult to obtain representations of specific rationals as
elements of P(H") (for small n), e.g.,

=27 4 87+ 47+ 57 + 67 + 157 4 187 4 867 + 60~ + 1802,

I

2724+ 47 4+1077 + 12724 207+ 30 4 602,

274+ 570 4+ 107 + 1570 4 167 + T47° 4 11172 4 1857* + 240~°

-ogl"-" |~ po|H

+ 2967% + 4447° + 1480~°, ete.!

REFERENCES

1. P. Erdés and S. Stein, Sums of distinct unit fractions, Proc. Amer. Math. Soc.,
14 (1963), 126-131.

2. R. Graham, On finite sums of wnit fractions, Proc. London Math. Soc., (to appear).
3. , Complete sequences of polynomial values, Duke Math. Jour. (to appear).
4. P. P. Korovkin, Inequalities, Random House, New York (1961).

5. M. Lo&ve, Probability Theory, Van Nostrand, Princeton, (1960).

6. Leonardo Pisano, Scritti, vol. 1, B. Boncompagni, Rome (1857) 77-83.

7

Qu

. K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions,
art. Jour. of Math., 5 (1954), 241-259.

8. R. Sprague, Uber Zerlegungen in n-te Potenzen mit lauter verschiedene Grundzahlen,

Math. Zeit., 51 (1947-48), 466-468.

9. P. J. van Albada and J. H. van Lint, Reciprocal bases for the integers, Amer. Math.

Monthly 70 (1963), 170-174.

BELL TELEPHONE LABORATORIES, INC.





