A REPRESENTATION OF THE BERNOULLI
NUMBER B,

NAND KISHORE

The function 0,(v) and the polynomial ¢,(v) have been defined in
[2] and [3] respectively. Let J,(2) be the Bessel function of the first
kind, and j,,,, be the zeros of z7J,(z), then

(1) 0',,(!)) = ”;21 (jv,m)ﬁzn ’ n =1, 2,8, .-,

(2) #u) = 4 I1 (& + B*Mo, ) ,

where [#] is the greatest integer =u.

0,(v) is a rational function of v with rational coefficient. ¢,(v) is
a polynomial in v with positive integral coefficients, and has degree
1—2n 43" [n/k]. All real zeros of ¢,(v) lie in the interval (—mn,
—2). These polynomials also satisfy certain congruences [3].

Let B, and G, be the Bernoulli and Genoechi numbers :

_ X~ (n
(3) B,,_Q(A)Bk, n#1,
(4) G, =2(1 — 2B, .

The symmetric function o¢,(v) can be expressed in terms of the Ber-
noulli and Genocchi numbers by means of the following formulas:

(5) 0.(5) = (-0 L B
(6) 0.(~5)= (D6,

where by B, and G, we understand the even-suffix numbers B,, and
G2n [2]'

In a previous paper [4] a structure of ¢,(v) has been given. This
in turn leads, through (2), to a corresponding structure of o,(v). And
since for v = 1/2, 0,(v) is expressible in terms of the Bernoulli number
B, it is natural to enquire about a structure of B, corresponding to
that of o,(v).

Three formulas from a previous paper [4, (8), (15), (18)] will be
used here., They are written down as formulas (7), (8) and (9).
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(7) 5.0) = 3 ADEIBuald)

where a, = 2, k <[n/2], and for k = [n/2],
2 if n is odd,

o = . .
1 if » is even,

20) = L 0 + syer, ofs, b, m) = [ 2] - [£] - [2=E].

S 8 S

c(n) n—1
(8) 6,0) = 3,24 0L @ + 4y ,
where (i) ¢(n) is the number of components of ¢,(v),
(ii) at most one »; = 0,
(iif) S 2% = ot (2"" - 2) ,

n—1
(iv) MZ_,I n; =1—2n+ i [%] , for all ¢, and
T=2 s=1

(v) given an integer s, 1 <s <m, » > 3, there exists % such
that 0 < n;, < [n/s].

(9) o(n) =[:§jj ok)yen — k), e(l)=1.

We shall obtain specific information about certain components of
6,(v) which will be used later on. We begin with

(10) For 2<s<mn, (v+ s)*1 ig a factor of some component of
#,(v), and if s =2, (v + s)"/1* is a factor of a component of
$a(v), 7> 3.

Consider the first part of the statement. We observe that if 2 < s < n,
~ the statement is true for » =4, 5,6, 7 (see [3]). Assume the state-
ment to be true for k =4,5, ---,n — 1. Take the kth term of (7),
T, = .2,V V)9, (), £ =4, =8, Then some component of
$,(V)$,—(v) has a factor (v + s)lé/s1+ln=kis1 However, 2,(v) has a factor
(v + s) if and only if e(s, k,n) = 1. Therefore, some component of
T, which is a component of ¢,(v) has a factor

(1) + s)[k13]+[(%—k/s)]+E(s.k.n) — (p + s)[nls] .

The second part of the statement may be proved by a similar method.
The following may be obtained from (10)
(11) max (n;;) = [n/j], 2 <j <m,
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(12) For s> 2, and m such that (2m + 1)s + m < n, the product
TI(n, m) = ﬁo {V 4 (2N + 1)s + AJn/@rFnetAl
is a factor of some component of ¢,(v).
Proof. We shall use induction. Define the set of integers
I, = {integers z: 2m + 1)s + m <o < (2m + 3)s + m + 1},
m=20,1,2 «--.

If nel, II(n,0) = + s)™1 and (v + s)*/*1 is a factor of some com-
ponent of ¢,(v) by (10). Assume that for ¥ <m — 1, ne I, implies
II (n, k) is a factor of some component of ¢,(v). Let ne I,, and sup-
pose n=02m+1s+m+14, 1=1=2s. Then n—2t=2m + 1)s
+m — teI,.,. Take formula (7), and consider the (2¢)-th term,

Ty = 032::(V)P0i(V)P (V)

By induction hypothesis there are components V; of ¢,(v) and V, of
#,-:(v) such that II, and II, are factors of V, and V, respectively,
where

”1 — ﬁ {)) + (2)\’ + 1)3 + N}[Zi/(2k+l)s+)x] ,

m—1
HZ — H {)J + (2)\] + 1)3 + 7\‘}[11—2i/(2>\+1)s+)»] s
A=0

and Cp + s+ <2, @Cm — s+ m—1<n— 2. Since the term
T.; yields a component of ¢,(v), we have that a,;2,(v) II,1I, is a factor
of a,2,,V,V,=V, where V is a component of ¢,(v). However,

n—1
in(v) = ;r[;[l (v + ,r)s(r.zi,n) .

Hence after a simplification, we obtain
Uy 2.,V 11,11, = P()II(n, m) ,

where P(v) is a polynomial in v of degree =0. Thus the term T,

yields a component V of ¢4,(v) such that II(n, m) is a factor of V.
[n/2]

(13) Vin) =2 I (v + )", n = 2, is a component and the only

r=2

component of ¢,(v) with the greatest numerical factor 22,

Proof. First we shall show that V(n) is a component of ¢,(v).
Observe that for » = 2, 3,4, V(n) is a component of ¢,(v). Assume:
V(m) is a component of ¢,(v), 2 =< m =< n — 1. Consider the first term
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T, of (7): T, = 22,(v)¢,—,(¥). There is a component V(n — 1) of ¢,,(v)
such that

[n—1/2]
Vin—1) =2 T (v + r)eiat
r=2

Hence 22,(v)V(n — 1) is a component of ¢,(v). Substituting the ex-
pression for 2,(v), we obtain

20,() Vin — 1) = 2o [ﬁf © + P = Vn) .

The second part of the statement that V(n) is the only component of
¢,(v) with the greatest numerical factor 2"* may be proved by
induction.

19 Vim= AV

Wi n = 4, is a component of ¢,(v) .

This may be proved by considering the first term T, of (7) and using
induction.

(15) For v =1/2, the value of Vy(n) is less than the value of any
other component of #,().

Proof. Take the kth term T, of (7), .
T, = a.2,(v)$, (V)i (V) .

Vin) is obtained from 7). For k¥ = 2,3 and v = 1/2, the smallest
components of T, correspond to the smallest components of ¢,_.(»),
because «,Q,(v)¢.(v) is constant. We observe that for » = 4,5,6, 7,
Vi(n) is less than any other component of 4,(v), v =1/2. Assume
that for v =1/2, Vy(m) is less than any other component of ¢,(v),
4 = m < n. Using the induction hypothesis it is seen that for v = 1/2,
Vin) is less than any component obtained from 7T,, k =2,3. For
k=4, n=8, a,2,0)Vy(k)Vi(n — k) is a component of ¢,(v) and its
value at v =1/2 is less than the value of any other component ob-
tained from 7T,. Thus among all components of ¢,(v) there is a set S
of exactly [n/2] minimum components

S = {aka(u) Vi) Vin — k) :1 =k =< [%]} .
Obviously Vin)e S. We claim: Vy(n) is less than any other element
of S. It suffices to show that

Vi(n)

1, k-1,
) Vil Vi — k) T
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A verification of this inequality is left to the reader.
Let (8) be multiplied by 2*"(v + 2)**, Then considering (7),
induction yields the following

(16) n—[n2—-1=n —n,;.

THEOREM. The Bernoulli nmumber B, has the following repre-
sentation :

| _ (D7) @ gy
17 B,, - ( 2 2 ’
40 206-@n 1) =W
c(n) 30 ’l:f n=1 ’
where 1. > (2"a,)* = 5ifn=2
=1

1if n=3; forn>3,
z-aﬁ;ﬁ@m+3w,1§@w=n—3,Ogim<Fq,
m=1 m=1

3. 2%, = %-5.7.9......(2,,@ -1,

%-5-7-9------(% S>> e, > T, > 1,

4. rn=2, r,=0; r,#=0, ©1+2,
b, 327 = grep (2" —2),
@ n—1
6. the g.c.d. (2"a,, 27a, --+) =1, and
7. given an odd integer s, 5 < s =< 2n — 1, there is © such

that st *—1 divides a;; 1f s =15 then s**=11 divides
a;, for some 1.

Proof. Substitute (2) in (8) and let v = 1/2, then in view of (5)
the following is obtained after some simplification
(__l)n—l(zn) ! c(n)

n—1 -1
B, = {57 TL @k + pyianal ™
206" @n + 1 & I1, 2k + 1)

where v; = n — 2 — n;, = 0 by (13). Note that
'rﬁl (2k + 1)[n/lc]-nﬂc
k=2

is divisible by 5 for each %, because by (11) [#/2] — n, = 1. And
—1 + Syzi{ln/k] — ny} = » — 8 by (8, (iv)). Therefore, we may write

a;= 57T @6 + Doare = ] @2m + 3)in,
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where >\%2% 4, =n— 8, 0 =<1, <[n/2] by (11).

and ’I;1=[’n/2]—1_niz;
Uy = [0/R] — 1y, R=m+1, m>1,

Thus property 2 is verified.

By (13) and (14), V(n) and Vi(n) are components of ¢,(v). If the
components of ¢,(v) are ordered in such a way that Vi(n) is the first
and V(n) is the second component, then for v = 1/2, the values of
Vi(n) and V(n) correspond to 2"a, and 2"a,. By actual calculation it
is seen that 2na, = 4/7-5-7-9-++-+(2n — 1), 7, = 2, 7, = 0. Therefore,
by (15) 2ria, < 4/7-5-7-9----(2n — 1), > 1., Since r,=n — 2 — n,,
it follows from (13) that 7, # 0, if 2 = 2. By (16),

ri=n—2—n=2[n2—1—n,=1.

Hence for each %,
2ig, = 245 (2m + 3)'s
= 274105 S, (2m + B)'n > T,
Propertieé 3 and 4 are proved. Property 5 is derived from (8, (iii));

Z P Z Q—ntng — 22—n 227% — 22—nn—1 (zn - 2) .

Concerning property 6, in view of 4, it suffices to prove that g.c.d.
(ay, @y +++) = 1. Note that each a; is a product of odd integers. By
12), II (n, m) is a factor of a component, say V,, of ¢,(v). However,

V2 L @ + B = (P,
k=2

where P(v), a product of linear factors, is a polynomial in v of degree
>0. P(v) is not divisible by any factor of II(n,m). For v =1/2,
II(n, m) is divisible by all odd factors ¢(2s + 1), ¢ =1, 3,5, ---, which
are less than n. Therefore, for v = 1/2, P(v) is not divisible by any
factor q(2s + 1). Since P(v), for v = 1/2, corresponds to some a; the
latter does not contain any factor q(2s + 1). Thus for each s> 2,
there is a; which is not divisible by ¢(2s + 1), ¢ =1,3,5,---. Hence
the g.c.d. (a, a;, ) =1.

Suppose s =2m + 1. Take a component V' of ¢,(v) which does
not have the factor (v + m). It may be shown that there exists such
a component V’. Then
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Ve ,,I;I (v + k"M = {Q)},

where the polynomial Q(v) has a factor (v + m)*™, m > 2, For
v =1/2, Q(v) corresponds to some a; and (v + m)™™ corresponds to
the factor (2m + 1)*/™ of a,. However, if m =2 than 5"/3-! is a
factor of @; for some 4. This completes the proof of the theorem.

We remark that the Genocchi number G, and the numbers defined
by L. Carlitz (see [1]).

a,=2"r!(r — 1!, (0),

may be expressed in a manner similar to (17). In fact, for the num-
bers @, we have the following
c(r) r—1

(18) a, = {(r — 1)Ip 3, 2ri T] Kros-tr41

1=1 k=2

A list of first few Bernoulli numbers expressed according to the
theorem is given below.

21!

B, = m(?ﬁ) ’

B=— % (5),

B =5 (1),

B =- 20?6!4-9 (221-5 +%>’

B = 20?25!-11 (zz.;-g * 7%9 + 2-;-7>’

Bo=- 20-162;6!-13 <22.5-19-11 + 7-91-11 * 2-5%7-9 * 2-5-17.11

1 1 )
Tosr T wm9)

141 1 1 1
B, = (
"= 20.6.15 \ 2.5.9.1.13 | 7-9-11-13 | 2.5.7.9.11
1 1 1
t557.11.13  2.5:7.9.18 T 2.5.7.9
N 1 N 1 1

2*.5%.7-11 2-5-7%-13 + 23.5%.7-9

1 1
+ 2%.5%-9-11 + 23-52~9-13)'
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