A REPRESENTATION OF THE BERNOULLI NUMBER B_n

NAND KISHORE

The function $\sigma_n(\nu)$ and the polynomial $\phi_n(\nu)$ have been defined in [2] and [3] respectively. Let $J_{\nu}(z)$ be the Bessel function of the first kind, and $j_{\nu,m}$ be the zeros of $z^{-\nu}J_{\nu}(z)$, then

(1)
$$\sigma_n(\nu) = \sum_{m=1}^{\infty} (j_{\nu, m})^{-2n}, \qquad n = 1, 2, 3, \cdots,$$

$$\phi_n(
u) = 4^n \prod_{k=1}^n (
u + k)^{[n/k]} \sigma_n(
u)$$
 ,

where [x] is the greatest integer $\leq x$.

 $\sigma_n(\nu)$ is a rational function of ν with rational coefficient. $\phi_n(\nu)$ is a polynomial in ν with positive integral coefficients, and has degree $1-2n+\sum_{k=1}^n [n/k]$. All real zeros of $\phi_n(\nu)$ lie in the interval (-n,-2). These polynomials also satisfy certain congruences [3].

Let B_n and G_n be the Bernoulli and Genocchi numbers:

$$B_n = \sum\limits_{k=0}^n \left(rac{n}{k}
ight) B_k$$
 , $n
eq 1$,

$$G_n = 2(1-2^n)B_n.$$

The symmetric function $\sigma_n(\nu)$ can be expressed in terms of the Bernoulli and Genocchi numbers by means of the following formulas:

$$\sigma_n \left(rac{1}{2}
ight) = (-1)^{n-1} \, rac{2^{2n-1}}{(2n)\,!} \, B_n \; ,$$

(6)
$$\sigma_n\left(-\frac{1}{2}\right) = (-1)^n \frac{2^{2n-2}}{(2n)!} G_n,$$

where by B_n and G_n we understand the even-suffix numbers B_{2n} and G_{2n} [2].

In a previous paper [4] a structure of $\phi_n(\nu)$ has been given. This in turn leads, through (2), to a corresponding structure of $\sigma_n(\nu)$. And since for $\nu = 1/2$, $\sigma_n(\nu)$ is expressible in terms of the Bernoulli number B_n it is natural to enquire about a structure of B_n corresponding to that of $\sigma_n(\nu)$.

Three formulas from a previous paper [4, (8), (15), (18)] will be used here. They are written down as formulas (7), (8) and (9).

Received November 28, 1963.

(7)
$$\phi_n(\nu) = \sum_{k=1}^{\lfloor n/2 \rfloor} \alpha_k \Omega_k(\nu) \phi_k(\nu) \phi_{n-k}(\nu) ,$$

where $\alpha_k = 2$, $k < \lfloor n/2 \rfloor$, and for $k = \lfloor n/2 \rfloor$,

$$\alpha_k = \frac{2}{1} \text{ if } n \text{ is odd,}$$

$$\Omega_k(\nu) = \prod_{s=1}^{n-1} (\nu + s)^{\varepsilon(s,k,n)}, \, \varepsilon(s,k,n) = \left[\frac{n}{s}\right] - \left[\frac{k}{s}\right] - \left[\frac{n-k}{s}\right].$$

(8)
$$\phi_n(\nu) = \sum_{i=1}^{c(n)} 2^{n_i} \prod_{j=2}^{n-1} (\nu + j)^{n_{ij}}$$
,

where (i) c(n) is the number of components of $\phi_n(\nu)$,

(ii) at most one $n_i = 0$,

(iii)
$$\sum_{i=1}^{c(n)} 2^{n_i} = n^{-1} \binom{2n-2}{n-1}$$
,

(iv)
$$\sum_{j=2}^{n-1} n_{ij} = 1 - 2n + \sum_{s=1}^{n} \left[\frac{n}{s} \right]$$
, for all *i*, and

(v) given an integer s, 1 < s < n, n > 3, there exists i such that $0 < n_{is} \le [n/s]$.

(9)
$$c(n) = \sum_{k=1}^{\lfloor n/2 \rfloor} c(k)c(n-k)$$
, $c(1) = 1$.

We shall obtain specific information about certain components of $\phi_n(\nu)$ which will be used later on. We begin with

(10) For 2 < s < n, $(\nu + s)^{\lfloor n/s \rfloor}$ is a factor of some component of $\phi_n(\nu)$, and if s = 2, $(\nu + s)^{\lfloor n/s \rfloor - 1}$ is a factor of a component of $\phi_n(\nu)$, n > 3.

Consider the first part of the statement. We observe that if 2 < s < n, the statement is true for n = 4, 5, 6, 7 (see [3]). Assume the statement to be true for $k = 4, 5, \cdots, n-1$. Take the kth term of (7), $T_k = \alpha_k \Omega_k(\nu) \phi_k(\nu) \phi_{n-k}(\nu)$, $k \ge 4$, $n \ge 8$. Then some component of $\phi_k(\nu) \phi_{n-k}(\nu)$ has a factor $(\nu + s)^{\lfloor k/s \rfloor + \lfloor (n-k)/s \rfloor}$. However, $\Omega_k(\nu)$ has a factor $(\nu + s)$ if and only if $\varepsilon(s, k, n) = 1$. Therefore, some component of T_k which is a component of $\phi_n(\nu)$ has a factor

$$(\nu + s)^{[k/s] + [(n-k/s)] + \varepsilon(s,k,n)} = (\nu + s)^{[n/s]}$$
.

The second part of the statement may be proved by a similar method.

The following may be obtained from (10)

(11)
$$\max (n_{ij}) = [n/j], \ 2 < j < n,$$
$$= [n/2] - 1, \ j = 2.$$

(12) For s > 2, and m such that (2m + 1)s + m < n, the product

$$\prod(n, m) \equiv \prod_{\lambda=0}^{m} \{ \nu + (2\lambda + 1)s + \lambda \}^{[n/(2\lambda+1)s+\lambda]}$$

is a factor of some component of $\phi_n(\nu)$.

Proof. We shall use induction. Define the set of integers

$$I_m = \{ ext{integers } x \colon (2m+1)s + m < x < (2m+3)s + m+1 \}, \ m = 0, 1, 2, \cdots.$$

If $n \in I_0$, $\Pi(n, 0) = (\nu + s)^{[n/s]}$ and $(\nu + s)^{[n/s]}$ is a factor of some component of $\phi_n(\nu)$ by (10). Assume that for $k \leq m-1$, $n \in I_k$ implies $\Pi(n, k)$ is a factor of some component of $\phi_n(\nu)$. Let $n \in I_m$, and suppose n = (2m+1)s + m+i, $1 \leq i \leq 2s$. Then $n-2i = (2m+1)s + m-i \in I_{m-1}$. Take formula (7), and consider the (2i)-th term,

$$T_{2i} = \alpha_{2i}\Omega_{2i}(\nu)\phi_{2i}(\nu)\phi_{n-2i}(\nu)$$
 .

By induction hypothesis there are components V_1 of $\phi_{2i}(\nu)$ and V_2 of $\phi_{n-2i}(\nu)$ such that Π_1 and Π_2 are factors of V_1 and V_2 respectively, where

$$II_1 = \prod_{\lambda=0}^p \{
u + (2\lambda + 1)s + \lambda \}^{[2i/(2\lambda+1)s+\lambda]}$$
 ,

$${\it \Pi}_{2}=\prod_{\lambda=0}^{m-1}\{
u+(2\lambda+1)s+\lambda\}^{[n-2i/(2\lambda+1)s+\lambda]}$$
 ,

and (2p+1)s+p<2i, (2m-1)s+m-1< n-2i. Since the term T_{2i} yields a component of $\phi_n(\nu)$, we have that $\alpha_{2i}\Omega_{2i}(\nu)$ $\Pi_1\Pi_2$ is a factor of $\alpha_{2i}\Omega_{2i}V_1V_2=V$, where V is a component of $\phi_n(\nu)$. However,

$$arOmega_{2i}(
u) = \prod_{r=1}^{n-1} (
u + r)^{arepsilon(r,2i,n)}$$
 .

Hence after a simplification, we obtain

$$\alpha_{2i}\Omega_{2i}(\nu)\Pi_1\Pi_2=P(\nu)\Pi(n,m)$$

where $P(\nu)$ is a polynomial in ν of degree ≥ 0 . Thus the term T_{2i} yields a component V of $\phi_n(\nu)$ such that $\Pi(n, m)$ is a factor of V.

(13) $V(n) \equiv 2^{n-2} \prod_{r=2}^{\lfloor n/2 \rfloor} (\nu + r)^{\lfloor n/r \rfloor - 1}, \ n \ge 2$, is a component and the only component of $\phi_n(\nu)$ with the greatest numerical factor 2^{n-2} .

Proof. First we shall show that V(n) is a component of $\phi_n(\nu)$. Observe that for $n=2,3,4,\ V(n)$ is a component of $\phi_n(\nu)$. Assume: V(m) is a component of $\phi_m(\nu)$, $2 \le m \le n-1$. Consider the first term

 T_1 of (7): $T_1=2\varOmega_1(\nu)\phi_{n-1}(\nu)$. There is a component V(n-1) of $\phi_{n-1}(\nu)$ such that

$$V(n-1)=2^{n-3}\prod_{r=2}^{[n-1/2]}(\nu+r)^{[n-1/r]-1}$$
 .

Hence $2\Omega_1(\nu) V(n-1)$ is a component of $\phi_n(\nu)$. Substituting the expression for $\Omega_1(\nu)$, we obtain

$$2\varOmega_{\scriptscriptstyle 1}(
u)\,V(n-1)=2^{n-2}\prod_{r=2}^{{{ \llbracket n/2
ceil}}}(
u+r)^{{{ \llbracket n/r
ceil}-1}}=\,V(n)$$
 .

The second part of the statement that V(n) is the only component of $\phi_n(\nu)$ with the greatest numerical factor 2^{n-2} may be proved by induction.

(14)
$$V_1(n) \equiv \frac{(\nu+3)\,V(n)}{4(\nu+2)}$$
 , $n \ge 4$, is a component of $\phi_n(\nu)$.

This may be proved by considering the first term T_1 of (7) and using induction.

(15) For $\nu = 1/2$, the value of $V_1(n)$ is less than the value of any other component of $\phi_n(\nu)$.

Proof. Take the kth term T_k of (7),

$$T_k = lpha_k \Omega_k(
u) \phi_k(
u) \phi_{n-k}(
u)$$
 .

 $V_1(n)$ is obtained from T_1 . For k=2,3 and $\nu=1/2$, the smallest components of T_k correspond to the smallest components of $\phi_{n-k}(\nu)$, because $\alpha_k \Omega_k(\nu)\phi_k(\nu)$ is constant. We observe that for n=4,5,6,7, $V_1(n)$ is less than any other component of $\phi_n(\nu)$, $\nu=1/2$. Assume that for $\nu=1/2$, $V_1(m)$ is less than any other component of $\phi_m(\nu)$, $4 \leq m < n$. Using the induction hypothesis it is seen that for $\nu=1/2$, $V_1(n)$ is less than any component obtained from T_k , k=2,3. For $k \geq 4$, $n \geq 8$, $\alpha_k \Omega_k(\nu) V_1(k) V_1(n-k)$ is a component of $\phi_n(\nu)$ and its value at $\nu=1/2$ is less than the value of any other component obtained from T_k . Thus among all components of $\phi_n(\nu)$ there is a set S of exactly [n/2] minimum components

$$S = \left\{ lpha_{\scriptscriptstyle k} \varOmega_{\scriptscriptstyle k}(
u) \, V_{\scriptscriptstyle 1}\!(k) \, V_{\scriptscriptstyle 1}\!(n-k) : 1 \leqq k \leqq \left[rac{n}{2}
ight]
ight\}$$
 .

Obviously $V_1(n) \in S$. We claim: $V_1(n)$ is less than any other element of S. It suffices to show that

$$\lim_{
u o 1/2}rac{V_{1}(n)}{lpha_{k}arOmega_{k}(
u)\,V_{1}(k)\,V_{1}(n-k)}< 1$$
 , $\,k
eq 1$.

A verification of this inequality is left to the reader.

Let (8) be multiplied by $2^{2-n}(\nu+2)^{1-[n/2]}$. Then considering (7), induction yields the following

$$(16) n - [n/2] - 1 \ge n_i - n_{i2}.$$

Theorem. The Bernoulli number B_n has the following representation:

(17)
$$B_n = \frac{(-1)^{n-1}(2n)!}{20 \cdot 6^n \cdot (2n+1)} \sum_{i=1}^{c(n)} (2^{ni}a_i)^{-1},$$

where 1.
$$\sum_{i=1}^{\mathfrak{c}(n)} (2^{ri}a_i)^{-1} \equiv \begin{array}{c} 30 \;\; if \;\; n=1 \;, \\ 5 \;\; if \;\; n=2 \;, \\ 1 \;\; if \;\; n=3 \; : \;\; for \;\; n>3 \;. \end{array}$$

$$a_i = \prod\limits_{m=1}^{n-2} \left(2m+3
ight)^{i_m}$$
 , $\sum\limits_{m=1}^{n-2} i_m = n-3$, $0 \leq i_m < \left[rac{n}{2}
ight]$,

$$egin{aligned} 3. & 2^{r_1}a_1=rac{4}{7}\cdot 5\cdot 7\cdot 9 \cdot \cdot \cdot \cdot \cdot (2n-1) \; , \ & rac{4}{7}\cdot 5\cdot 7\cdot 9 \cdot \cdot \cdot \cdot \cdot (2n-1) > 2^{r_i}a_i > 7^{n-3} \; , \quad i>1 \; , \end{aligned}$$

4.
$$r_1 = 2$$
, $r_2 = 0$; $r_i \neq 0$, $i \neq 2$,

5.
$$\sum_{i} 2^{-r_i} = 2^{2-n} \cdot n^{-1} \binom{2n-2}{n-1}$$
,

6. the g.c.d.
$$(2^{r_1}a_1, 2^{r_2}a_2, \cdots) = 1$$
, and

7. given an odd integer s, $5 < s \le 2n - 1$, there is i such that $s^{\lfloor 2n/s - 1 \rfloor}$ divides a_i ; if s = 5 then $s^{\lfloor 2n/s - 1 \rfloor - 1}$ divides a_i , for some i.

Proof. Substitute (2) in (8) and let $\nu = 1/2$, then in view of (5) the following is obtained after some simplification

$$B_n = rac{(-1)^{n-1}(2n)\,!}{20\!\cdot\!6^n\!\cdot\!(2n+1)}\sum_{i=1}^{c(n)}\left\{2^{r_i}\!\cdot\!5^{-1}\prod_{k=2}^{n-1}(2k+1)^{[n/k]-n_{ik}}
ight\}^{-1}$$
 ,

where $r_i = n - 2 - n_i \ge 0$ by (13). Note that

$$\prod_{k=2}^{n-1} (2k+1)^{[n/k]-n_{ik}}$$

is divisible by 5 for each *i*, because by (11) $[n/2] - n_{i2} \ge 1$. And $-1 + \sum_{k=2}^{n-1} \{[n/k] - n_{ik}\} = n - 3$ by (8, (iv)). Therefore, we may write

$$a_i \equiv 5^{-1} \prod_{k=2}^{n-1} (2k+1)^{[n/k]-n} = \prod_{m=1}^{n-2} (2m+3)^{i_m}$$
 ,

where $\sum_{m=1}^{n-2} i_m = n-3$, $0 \le i_m < \lfloor n/2 \rfloor$ by (11).

and
$$i_{\scriptscriptstyle 1} = [n/2] - 1 - n_{i_2}$$
 , $i_{\scriptscriptstyle m} = [n/h] - n_{i_k}$, $h = m+1$, $m>1$.

Thus property 2 is verified.

By (13) and (14), V(n) and $V_1(n)$ are components of $\phi_n(\nu)$. If the components of $\phi_n(\nu)$ are ordered in such a way that $V_1(n)$ is the first and V(n) is the second component, then for $\nu=1/2$, the values of $V_1(n)$ and V(n) correspond to $2^{r_1}a_1$ and $2^{r_2}a_2$. By actual calculation it is seen that $2^{r_1}a_1=4/7\cdot5\cdot7\cdot9\cdot\cdots\cdot(2n-1)$, $r_1=2$, $r_2=0$. Therefore, by (15) $2^{r_i}a_i<4/7\cdot5\cdot7\cdot9\cdot\cdots\cdot(2n-1)$, i>1. Since $r_i=n-2-n_i$, it follows from (13) that $r_i\neq 0$, if $i\neq 2$. By (16),

$$r_i = n - 2 - n_i \ge \lceil n/2 \rceil - 1 - n_{i2} = i_1$$
.

Hence for each i,

$$egin{align} 2^{r_i}a_i&=2^{r_i}\sum\limits_{m=1}^{n-2}{(2m+3)^{i_m}}\ &=2^{r_i-i_1}10^{i_1}\sum\limits_{m=2}^{n-2}{(2m+3)^{i_m}}>7^{n-3} \;. \end{align}$$

Properties 3 and 4 are proved. Property 5 is derived from (8, (iii));

$$\sum\limits_{i}2^{-r_{i}}=\sum\limits_{i}2^{2-n+n_{i}}=2^{2-n}\sum\limits_{i}2^{n_{i}}=2^{2-n}n^{-1}inom{2n-2}{n-1}$$
 .

Concerning property 6, in view of 4, it suffices to prove that g.c.d. $(a_1, a_2, \dots) = 1$. Note that each a_i is a product of odd integers. By (12), $\prod (n, m)$ is a factor of a component, say V_p , of $\phi_n(\nu)$. However,

$$V_p 2^{2-n} \prod_{k=2}^{n-1} (
u + k)^{-\lceil n/k
ceil} = \{P(
u)\}^{-1}$$
 ,

where $P(\nu)$, a product of linear factors, is a polynomial in ν of degree >0. $P(\nu)$ is not divisible by any factor of H(n, m). For $\nu=1/2$, H(n, m) is divisible by all odd factors q(2s+1), $q=1,3,5,\cdots$, which are less than n. Therefore, for $\nu=1/2$, $P(\nu)$ is not divisible by any factor q(2s+1). Since $P(\nu)$, for $\nu=1/2$, corresponds to some a_i the latter does not contain any factor q(2s+1). Thus for each s>2, there is a_i which is not divisible by q(2s+1), $q=1,3,5,\cdots$. Hence the g.c.d. $(a_1,a_2, \dots)=1$.

Suppose s=2m+1. Take a component V' of $\phi_n(\nu)$ which does not have the factor $(\nu+m)$. It may be shown that there exists such a component V'. Then

$$V'2^{2-n}\prod\limits_{k=2}^{n-1}(
u+k)^{[n/k]}=\{Q(
u)\}^{-1}$$
 ,

where the polynomial $Q(\nu)$ has a factor $(\nu + m)^{[n/m]}$, m > 2. For $\nu = 1/2$, $Q(\nu)$ corresponds to some a_i and $(\nu + m)^{[n/m]}$ corresponds to the factor $(2m+1)^{[n/m]}$ of a_i . However, if m=2 than $5^{[n/2]-1}$ is a factor of a_i for some i. This completes the proof of the theorem.

We remark that the Genocchi number G_n and the numbers defined by L. Carlitz (see [1]).

$$a_r = 2^{2r} r ! (r-1)! \sigma_r(0)$$

may be expressed in a manner similar to (17). In fact, for the numbers a_r we have the following

(18)
$$a_r = \{(r-1)!\}^2 \sum_{i=1}^{c(r)} 2^{r_i} \prod_{k=2}^{r-1} k^{k_{ik}-[r/k]}.$$

A list of first few Bernoulli numbers expressed according to the theorem is given below.

$$\begin{split} B_1 &= \frac{2\,!}{20\cdot 6\cdot 3} \, (30) \,\,, \\ B_2 &= -\frac{4\,!}{20\cdot 6^2\cdot 5} \, (5) \,\,, \\ B_3 &= \frac{6\,!}{20\cdot 6^3\cdot 7} \, (1) \,\,, \\ B_4 &= -\frac{8\,!}{20\cdot 6^4\cdot 9} \, \left(\frac{1}{2^2\cdot 5} + \frac{1}{7}\right) \,\,, \\ B_5 &= \frac{10\,!}{20\cdot 6^5\cdot 11} \, \left(\frac{1}{2^2\cdot 5\cdot 9} + \frac{1}{7\cdot 9} + \frac{1}{2\cdot 5\cdot 7}\right) \,\,, \\ B_6 &= -\frac{12\,!}{20\cdot 6^5\cdot 13} \, \left(\frac{1}{2^2\cdot 5\cdot 9\cdot 11} + \frac{1}{7\cdot 9\cdot 11} + \frac{1}{2\cdot 5\cdot 7\cdot 9} + \frac{1}{2\cdot 5\cdot 7\cdot 11} \right. \\ &\qquad \qquad + \frac{1}{2^2\cdot 5\cdot 7^2} + \frac{1}{2^3\cdot 5^2\cdot 9}\right) \,\,, \\ B_7 &= \frac{14\,!}{20\cdot 6^7\cdot 15} \, \left(\frac{1}{2^2\cdot 5\cdot 9\cdot 11\cdot 13} + \frac{1}{7\cdot 9\cdot 11\cdot 13} + \frac{1}{2\cdot 5\cdot 7\cdot 9\cdot 13} + \frac{1}{2\cdot 5\cdot 7\cdot 9\cdot 11} \right. \\ &\qquad \qquad + \frac{1}{2\cdot 5\cdot 7\cdot 11\cdot 13} + \frac{1}{2^3\cdot 5^2\cdot 7\cdot 11} + \frac{1}{2^3\cdot 5^2\cdot 9\cdot 13} + \frac{1}{2^3\cdot 5^2\cdot 7\cdot 9} \\ &\qquad \qquad + \frac{1}{2^3\cdot 5^2\cdot 9\cdot 11} + \frac{1}{2^3\cdot 5^2\cdot 9\cdot 13}\right) \,\,. \end{split}$$

BIBLIOGRAPHY

- 1. L. Carlitz, A sequence of integers related to the Bessel functions, Proc. Amer. Math. Soc., 14 (1963), 1-9.
- 2. N. Kishore, The Rayleigh function, Proc. Amer. Math. Soc., 14 (1963), 527-533.
- The Rayleigh polynomial, to appear in Proc. Amer. Math. Soc..
 A structure of the Rayleigh polynomial, Duke Math. Journal, 31 (1964), 513-518.

UNIVERSITY OF TOLEDO