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The function σn{v) and the polynomial Φn{v) have been defined in
[2] and [3] respectively. Let Jy(z) be the Bessel function of the first
kind, and j v , m be the zeros of z~*Jv(z), then

( 1 ) <?M = E (Jv,m)-2n , n = 1, 2, 3, ,

(2) ί».(υ) = 4 Π ( y + A)r*/*V.(y)f

where [#] is the greatest integer ^x.
σn{v) is a rational function of v with rational coefficient. ^w(v) is

a polynomial in v with positive integral coefficients, and has degree
1 — 2n + JZl=1[njk], All real zeros of φn(v) lie in the interval (—n9

— 2). These polynomials also satisfy certain congruences [3].
Let Bn and Gn be the Bernoulli and Genocchi numbers:

( 3 ) B. = :

( 4 ) G

The symmetric function σΛ(i;) can be expressed in terms of the Ber-
noulli and Genocchi numbers by means of the following formulas:

(5) . . ( ! ) = ("I) l

where by JB% and Gn we understand the even-suffix numbers B2n and

G2. [2].
In a previous paper [4] a structure of Φn(v) has been given. This

in turn leads, through (2), to a corresponding structure of σn(v). And
since for v = 1/2, σn(y) is expressible in terms of the Bernoulli number
Bn it is natural to enquire about a structure of Bn corresponding to
that of σn(v).

Three formulas from a previous paper [4, (8), (15), (18)] will be
used here. They are written down as formulas (7), (8) and (9).
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O/2]

(7) ^ g
where ak = 2, & < [n/2], and for & = [w/2],

_ 2 if % is odd,

1 if n is even,

ΩM = Π (v + β)'< * >, e(β, fc, n) = [JL] - [ A ] -

(8) ffff
i=2

where ( i ) c(w) is the number of components of ΦJy),
(ii) at most one % = 0,

«(»> /9/w __ 9
(iii) Σ2*< = Λ - ι Γί = 1 V n - 1

(iv) Σ %; = 1 ~ %*> + Σ Γ—1 , for all i, and
3=2 s = l L S J

(v) given an integer s, 1 < s < n, n > 3, there exists £ such
that 0 < nis ^ [w/s].

[Λ/2]

( 9 ) c(n) = Σ c(^)c(^ - k) , c(l) = 1 .

We shall obtain specific information about certain components of
ΦJp) which will be used later on. We begin with

(10) For 2 < s < n, (v + s)ίnlsl is a factor of some component of
Φn(v), and if s — 2, (v + β)t»/ 3-i i s a factor of a component of
^(v), n > 3.

Consider the first part of the statement. We observe that if 2 < s < w,
the statement is true for w = 4, 5, 6, 7 (see [3]). Assume the state-
ment to be true for k = 4, 5, , w — 1. Take the kth term of (7),
Tk = ctkΩk(v)φk(v)φn-k(v), k ^ 4, n ^ 8. Then some component of
0*O>)0 -*(y) has a factor (i; + s)ίlclsl+Un-k)ls\ However, Ωk{v) has a factor
(v + s) if and only if e(s, fc, w) = 1. Therefore, some component of
Tk which is a component of Φn(v) has a factor

The second part of the statement may be proved by a similar method.
The following may be obtained from (10)

(11) max (nti) - [n/j], 2 < j < n,

= [n/2] - 1, i = 2 .
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(12) For s > 2, and m such that (2m + l)s + m < n, the product

U(n, m) = Π {y + (2λ + 1)8 + λ p / ( 2 λ + 1 ) s + λ ]

λ=0

is a factor of some component of Φn(v).

Proof. We shall use induction. Define the set of integers

Im — {integers x: (2m + l)s + m < x < (2m + 3)s + m + 1},

m = 0, 1, 2, .

If w G Jo, /7(w, 0) = (v + s)c%/s] and (v + 8)ίnlal is a factor of some com-
ponent of Φn(v) by (10). Assume that for k ^ m — 1, w e 7fc implies
Π (n, k) is a factor of some component of Φn{v). Let n e Im, and sup-
pose n = (2m + l)s + m + i, 1 ^ i ^ 2s. Then ^ — 2ί — (2m + l)s
+ m — ίe Im_x. Take formula (7), and consider the (2ΐ)-th term,

T2i = o(2iΩ2i{v)φ2i{v)Φn-.2i{v) .

By induction hypothesis there are components V1 of Φ2ί(v) and F2 of
Φn-2i(v) such that /7i and Π2 are factors of Vλ and F 2 respectively,
where

Hi = Π {̂  + (2λ + l)s + χ}^/(2λ+i)s+λ] ̂Π
λ=0

p - 2 i / ( 2 λ + 1 ) l + λ ]^2 = Π {̂  + (2λ + l)s + λ}1

λ=0

and (2p + l)s + p < 2i, (2m — l)s + m — 1 < n — 2i. Since the term
T2i yields a component of Φn(v)9 we have that oc2iΩ2i{v) Π1Π2 is a factor
of cc2iΩ2iV1V2 = F, where F is a component of #Λ(y). However,

n-l

Hence after a simplification, we obtain

J2 = P(v)Π(n, m) ,

where P(v) is a polynomial in v of degree ^ 0 . Thus the term T2i

yields a component V of ^w(v) such that Π(n, m) is a factor of V.

l>/2]

(13) V(n) Ξ 2W-2 Π (v + r) 1 1 1^- 1, n ^ 2, is a component and the only
r=2

component of Φn{v) with the greatest numerical factor 2%~2.

Proof. First we shall show that V(n) is a component of ^%(v).
Observe that for n = 2, 3, 4, F(w) is a component of 0n(v). Assume:
V(m) is a component of Φm(v), 2 ^ m ^ ί i - l , Consider the first term
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Tx of (7): 2\ — 2i21(v)^_1(v). There is a component V(n - 1) of Φn-&)
such that

[w-l/2]

V(n - 1) = 2W-3 Π (v + tf-1'1*-1 .
r=2

Hence 2i3i(v) V(w — 1) is a component of ΦJμ). Substituting the ex-
pression for Ω^v), we obtain

2Ωx(v) V(n - 1) = 2%-2 Cff (v + r ) ^ " 1 = V(n) .
r=2

The second part of the statement that V(n) is the only component of
φn(v) with the greatest numerical factor 2n~2 may be proved by
induction.

(14) Vx(n) ΞΞ (v + *)V(n) , ^ ^ 4, is a component of φn(v) .

This may be proved by considering the first term ϊ\ of (7) and using
induction.

(15) For v — 1/2, the value of VΊ(n) is less than the value of any
other component of ΦJv).

Proof. Take the Λth term Tk of (7), .

Tk = akΩk(v)φk(v)φn_k(v) .

VΊ(n) is obtained from TΊ. For k = 2, 3 and v = 1/2, the smallest
components of 2\ correspond to the smallest components of φn-k(v),
because ockΩk{v)φk(v) is constant. We observe that for n = 4, 5, 6, 7,
Fχ(^) is less than any other component of ΦJμ)9 v — 1/2. Assume
that for v — 1/2, V^m) is less than any other component of Φm{v),
4 ^ m < n. Using the induction hypothesis it is seen that for v = 1/2,
Vλ{n) is less than any component obtained from Tk, k = 2, 3. For
fe ̂  4, w ^ 8, akΩk(v) V1{k) Vx{n — &) is a component of 0n(i;) and its
value at v = 1/2 is less than the value of any other component ob-
tained from Tk. Thus among all components of Φn{v) there is a set S
of exactly [n/2] minimum components

S =

Obviously Vι(n) 6 S. We claim: V^n) is less than any other element
of S. It suffices to show that

n ) i k φ l

akΩk(v)V1(k)V1(n - k)
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A verification of this inequality is left to the reader.
Let (8) be multiplied by 22~n(v + 2)1~c%/2]. Then considering (7),

induction yields the following

(16) n - [n/2] - 1 ^ nt - ni2.

THEOREM. The Bernoulli number Bn has the following repre-
sentation :

( 2 Ui)

.<•> 30 if n = 1 ,
where 1. Σ (^a^-1 = 5 if n = 2 ,

i = 1 1 */ n = 3 for n > 3 ,

2. αi lf( ί Σ

3. 2rιaτ = *- .5-7-9 (2n - 1) ,

— .5.7.9 (2n~ 1) > 2r% > 7*
7

4. n = 2 , r2 = 0 r< ̂  0 , i =£ 2 ,

6. the g.c.d. ( 2 r i a l 9 2 r 2 α 2 , •••) = 1, and

7 . given an odd integer s, 5 < s ^ 2n — 1, £/&βrβ is
£/&αί st2^/s-i] divides a. ifs = 5 then s1271'8'1^1 divides

ai9 for some i.

Proof. Substitute (2) in (8) and let v = 1/2, then in view of (5)
the following is obtained after some simplification

7^ ^ 1.) \tdiYbj I \~\

- X 1=1

where r< = n — 2 — w< ̂  0 by (13). Note that

i f (2Λ + l ) c % / / b ] ~^

is divisible by 5 for each i, because by (11) [n/2] — ni2 ^ 1. And
— 1 + Σίft=2 {[njk] — nik} = n — 3 by (8, (iv)). Therefore, we may write

fc=2 m = l
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where Σ S im = n - 3, 0 ^ im < [w/2] by (11).

and ix = [n/2] — 1 — ni2,

ί» = D&A] — nih , h = m + 1 , m > 1 .

Thus property 2 is verified.
By (13) and (14), V(w) and VΊ(n) are components of 0Λ(v). If the

components of φn(v) are ordered in such a way that Vx{n) is the first
and V(n) is the second component, then for v — 1/2, the values of
Vx(n) and V(n) correspond to 2riax and 2r2a2. By actual calculation it
is seen that 2 ^ = 4/7 5 7 9 (2rc — 1), n = 2, r2 = 0. Therefore,
by (15) 2r*ai < 4/7 5 7 9 (2% - 1), i > 1. Since r{ = n ~ 2 - nif

it follows from (13) that r, =£ 0, \ί %Φ2. By (16),

r< = n — 2 — n< ̂  [̂ /2] — 1 — ni2 = iλ .

Hence for each i,

2ridi = 2ri Σ ( 2 m + 3) ί w

m = l

= 2 r *" < 1 10 < 1

m

Properties 3 and 4 are proved. Property 5 is derived from (8, (iii))

= 22-w^-1 ( IΣ 2~ r ί = Σ 22~n+ni = 22~w Σ (
i i i \ n-l

Concerning property 6, in view of 4, it suffices to prove that g.c.d.
(at, a2, ••.) = ! . Note that each at is a product of odd integers. By
(12), Π (w, m) is a factor of a component, say VPf of ^n(y). However,

where P{v), a product of linear factors, is a polynomial in v of degree
>0. Pip) is not divisible by any factor of Π{n,m). For v = 1/2,
/Z(^, m) is divisible by all odd factors q(2s + 1), g = 1, 3, 5, , which
are less than n. Therefore, for v — 1/2, P(v) is not divisible by any
factor q(2s + 1). Since P(v), for v — 1/2, corresponds to some α< the
latter does not contain any factor q(2s + 1). Thus for each s > 2,
there is α̂  which is not divisible by q(2s + 1), ? = 1,3,5, . Hence
the g.c.d. (αx, α2, ) = 1.

Suppose s — 2m + 1. Take a component F' of Φn(v) which does
not have the factor (v + m). It may be shown that there exists such
a component V. Then
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F'22-* Π1 (v + fc)W«

where the polynomial Q(v) has a factor (y + m)ίnlml

9 m > 2. For
y = 1/2, Q(v) corresponds to some at and (v + m)c%/m] corresponds to
the factor (2m + l) c % / m ] of α ίβ However, if m = 2 than S^'23"1 is a
factor of Ui for some i. This completes the proof of the theorem.

We remark that the Genocchi number Gn and the numbers defined
by L. Carlitz (see [1]).

may be expressed in a manner similar to (17). In fact, for the num-
bers ar we have the following

(18) ar = {(r - 1) !}2 Σ 2" Π P"'1™ .
1=1 fc=2

A list of first few Bernoulli numbers expressed according to the
theorem is given below.

B1 = — (30) ,
20-6-3 ;

τ> 4 ! / Cv

B 8! / 1 J_\
20 64 9 V22 5 7 / '

R = 1 0 ! ( 1 + ! i 1
5 2 0 6 5 l l V 2 2 5 9 7 9

+
20 65 l l V22 5 9 7-9 2 5 7

1B 1 2 1 / 1 1 1
6 20 6β 13 \ 2 2 5 9 11 7-9-11 2-5-7920 6β 13 \ 2 2 5 9 11 7-9-11 2-5-7-9 2-5-7-11

i 1 I
2 2 5 7 2

B = U l (
7

I ^
22 5 72 23 52 9/ '

20 67 15 V 22 5 9 11 13 7-9-11-13 2 5 7 9 11

1 . 1 + 1
2 5 7 11 13 2-5 7 9 13 2-5 72 9

1
+22 52 7 11 22 5 72 13 23 52 7 9

1 , 1
23 52 9 11 23 52 9 13
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