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CONVOLUTION IN FOURIER-WIENER
TRANSFORM

J. YEH

Let C be the Wiener space and K be the space of com-
plex valued continuous functions on 0 <¢ <1 which vanish at
t =0, The Fourier-Wiener transform of a functional F[x],
x € K, is by definition

Gly] = SwF[x +iyldw, yekK.

o
Let E, be the class of functionals F[x] of the type

Flo]l = 0y [S:m(t)dx(t), . S:an(t)dx(t)]

where 0,(¢;, -++,,) is an entire function of the 7 complex
variables {{;} of the exponential type and {a;} are n linearly
independent real functions of bounded variation on 0 < ¢ < 1.
Let E,, be the class of functionals which are mean continuous,
entire and of mean exponential type.

We define the convolution of two functionals F', F', to be

E Pl = | [ 5 | R Gt e, wek.

Then if F\,F;€FE, or F,, F;€FE,, the convolution of F,,F,
exists for every x€ K and furthermore

G"1 * GFz[z] = GF1 [ﬁ] GFZ[—— 2z1_/2

], ze K.

Let K be the space of complex-valued continuous functions
defined on 0 < ¢ < 1 which vanish at ¢ = 0 and let C be the Wiener
space, namely the subspace of K which consists of real-valued elements
of K. Let F[x] = F[x(-)] be a functional which is defined throughout
K. 1If it exists, the functional

(1.1) Gly] = SwF[x +iylde, yek
[
is called the Fourier-Wiener transform of F'[z].

The first class E, of functionals is defined as follows: A functional
F'[«] belongs to E, if

(1.2) Fla] = @F[S:al(t)dx(t), . S:an(t)dw(t)]
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where @,(;, +++,{,) is an entire function of the n complex variables
{¢;} of exponential type

1.3) [@p(Cyy ooy o) | < Mertiéal++18nD)

and a;(t) are » linearly independent real functions of bounded variation
on 0 =<¢=<1. The function @, as well as the constants M and a depend
on F.

The second class E,, consists of functionals F'[x] which are mean
continuous, entire and of mean exponential type: that is, E, is the
class of functionals satisfying the following three conditions;

1° lim,_. F[#™] = F[x] holds for all # and 2™ in K for which
1
lim, ... S | 2™(t) — x(t) Pt = 0.

0

2° F[x + \y] is an entire function of the complex variable ) for
all x and y in K; and

3° there exist positive constants A, and B, depending on F' such
that

(L.4) | Flz]| < Ay exp {BF<S | 2(t) [2dt>m} for all xe K.

According to Theorems 1 and A, [3], if F'[x] belongs to E,or E,,
its transform G|y] exists for all y € K and belongs to the same class.

We now define the convolution of two functionals F'[x] and F[x]
to be

_\" Yyt Yy—x
(1.5) (Fl*F,)[x]—SoFl[ S ]Fz[ - ]dwy, ve K

if the integral in the right side exists.
The result of this paper is stated in the following two theorems:

THEOREM 1. If F\z], F)x]<c E,, the convolution (1.5) exists for

every wc K. Morcover, the Fourier-Wiener transform Gp.[2] of
(1.5) exists and satisfies

1.6) Grarl2]l = GFl[z—frZ]GFa[— %] for every ze K .

THEOREM II. Exactly the same as in Theorem I holds for any
two functionals belonging to E,,.

Theorem I and II will be proved in §2 and §3 respectively. From
these theorems follows the Parseval relation of [3].
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2. NoTATION. We introduce the notation @([{;],) for the funec-
tion &, +-+,¢,) of m complex variables, @([{;],,[{5]..) for the funec-
tion @&y, +++,&,, ¢, -+, L) of m 4+ m complex variables. In particular,
@(¢;1,, ¢') stands for the function @((,, ---,C,, () of n + 1 complex
variables.

We first make a few remarks on the entire functions of exponential

type.

REMARk 1. If @&, 2.(¢,],) are two entire functions of ex-
ponential type, the two factors in the right hand and consequently
the left hand of

2.1) 2([C51 [E31,) = (275 + ED1DPA(27(Es — L)L)

are entire functions of exponential type of the » complex variables
Ciy oo, &, for fixed f, -+, &, and, similarly, of the n complex variables
C{y cy C:L for ﬁXed Cly ct Yy Cn'

Remark 2. If o(u,, «--,u,, ) is continuous in the n + 1 variables
for —o0o <u; < 0,7=1,2,.--,m and {€ R, a region in the complex
plane, and is analytic in { € R for fixed u,, -, %,, the uniform con-
vergence over R of the integral

Sm e Sw (p(u’lv ey Uy, C)dul b dun
implies that the integral is an analytic function of { € R.

Remark 3. If @(¢]., [¢5].) is an entire function of exponential
type of 2n complex variables, the integral

|" e eaen e exp (gt - - — gz -,

is an entire function of exponential type of the % complex variables
C{y ctcy (::1,0

Proof of Theorem I. For F|z], Fx]ec E,,

(2.2) Fllz] = (D([S:aj(t)dx(t)]n) , i=1,2

where @,([(;].), © = 1, 2, are two entire functions of exponential type
of m complex variables. We first prove the theorem for the special
case where {«;(t)} are an orthonormal set on 0 < ¢ < 1. We quote a
result by Paley and Wiener [7] which states that for any orthonormal
set of real functions {@;({)} of bounded variation on 0 < ¢ <1, the
equality
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2.3) S:W<[S:aj(t)dx(t)]n>dwx = 7—;]7;/2 S:O eee Sjmw([ufln)

X exp{—u} — «++ —ulldu, «+- du,

holds for every function Z'([u;],) for which the integral on the right
side exists as an absolutely convergent Lebesgue integral. By (1.5),
(2.2), (2.1), (2.3),

Fo Pl = o[ [ wavw | [ [aods ] )a

’
n

@0 = L1 ol [ [t )

- ﬂ-nIZ

X exp{—u} — «++ —ulldu, +-- du,

for every x € K, where the last integral exists becuase @([¢;],, [{].) is

an entire function of exponential type in {{;} for fixed {;} according

to Remark 1. This proves the existence of (F,xF,)[x] for every x € K.
Now according to Remark 3,

[ ot e exp -t - - — i, - e,

is an entire function of exponential type of {{}}, and hence, Theorem
1, [3] applies to the last member of (2.4). Thus the Fourier-Wiener
transform of (F,+F,)[x] namely G,.[z], exists for every ze K and is
given by (1.1) as

(2.5)
Grordil = " LI o 17 0w, [ [astvdo + s [z | )
X exp{—ui — oo —ulldu, -+ dun}dwx .
Now since

| e 16 + g1 exp (-1 — - — gidg, - g,

is an entire function of exponential type of {{} for fixed {7}, (2.3)is
applicable to the last integral of (2.5). Thus

Georfil = 27 o 7 o(fw,, [0 + i [avaan] )

X exp{—u} — v} — +¢v —ul — vi}du, --- du,dv, --- dv,

= ﬂl S:o S:@([z-l/?(uj + ;44 S:aj(t)dz(t)ﬂﬂ)

X @2<[2"’2<u,- —v; — 1% S:aj(t)dz(t)ﬂn)

X exp{—uj = v} — «++ —u; — i}y, -+ du,dv, - -+ dv, ,
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Let
uj = 27"%u; + vy ,
?);--”:2—”2(@(/3'—'?7.,'), j:1,2,"',’n

and apply (2.3) to the result of this transformation. By (2.2), (1.1)
we have

Grorfe) = {[, 0| [ atdat) + 2 [ atde) | e}
(s - & o] o

SO E AR

This proves Theorem I for the special case.
In the general ease where a;(t) are n linearly independent real
valued functions of bounded variation on 0 < ¢ <1, according to the

argument on p. 493, [3], we can write F[«], 2 = 1, 2 defined by (2.2)
as

Filz) = ot(| | asaz)| ) i=1,2
where @¥([{,],) are entire functions of exponential type of {{;} and «(t)

are 1 orthonormal functions of bounded variation on 0 < ¢ < 1. Now
the result for the special case applies and the theorem is proved.

3. LEMMA. Let {F, ||}, Fiz], {F,.[x]}, F.lx] be such that
1° 3.1) lim,... F,,[2] = F[z] for every xe K, i1 =1, 2.
2° the Fourier-Wiener transform exists for every F, . [x] n =

1,2,---,2=1,2; the convolution (F,,xF,,)[x] ewxists, its Fourier-
Wiener transform also exists and satisfies

(3.2) GFx,n*Fz,n[z] - GFI’”[%]GFz’n[_.z_f/;] ’

Sor every ze K, for n=1,2, -++; and

3° (8.3) |F[o]l = Aexp{B||[z]|[}, n=12--,1=1,2
where A, B, >0,2>¢>0and |||2]]| = max,<;<.|2()|. Then the Fourier-
Wiener transforms of Fyx], F)[x], the convolution of Fi[x], F\|x] and
the Fourier-Wiener transform of the convolution exist and (1.6) holds.
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Proof of the lemma. By (1.5), (1.1), the equality (3.2) can be
written as

Sw{SwFln[y + x ‘-{— %z]an[U — X .—— iz]dwy}dwx
oo 21/2 21/2

= v e ,I:z s e e
= {SOF1 n[x + 21/z]d x}{SGFz,n[x——zm]dwm} , n=1,2, .

We prove the lemma by justifying the passing to the limit under the
integral signs on both sides of (3.4). To do this, we observe that for
any p complex numbers &, ---, {,,

(3.4)

@5 |sol =

(pmax (&l oo 16 0) T =23 161
k k=1

An estimate of the first integrand on the right hand side of (3.4) is
given by (3.3) and (3.5) with p = 2:

66 |FJe+ 22| = Acxn B2 + 12l

21/2

Since i exp {4B |||z ||**})d,x is finite according to [4], the right side

of (3. 6) is integrable with respect to x over the entire Wiener space
for fixed 2. By (3.1) with dominated convergence and by (1.1)

3.7) lim |72 + g{j_z]dwx = @[ Z]
for every z<€ K and similarly

. (v 2
(3.8) lim SgF[x 21/2]«1 z =G, [—2_/_] ,

for every z€ K. From (3.3) and (3.5) with » = 3, the integrand of
the left side of (3.4) is seen to be bounded by A*exp {18B(|||z|||*® +
Nyl + || z]l*®)}. The repeated integral of the above expression
with respect to y and then with respect to x over the entire Wiener
space is finite for every z€ K. Thus by (3.1) with dominated conver-
gence and by (1.5), (1.1),

@9 tim ({7 L2, [ L2 ag)de = G
nooo JO ¢ 21/2 21/2 172
for every z€ K. By letting n — o on both sides of (3.4) and by (3.7),
(3.8) and (3.9), the lemma is established.
Proof of Theorem II. Let Fi[x]le E,,1=1,2, and let ¢,(t), p,(t),- -
be a complete orthonormal set of real valued continuous functions on the
interval 0 < ¢ <1 which vanish when ¢t = 0. Let
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(8.10) F, 2] = F[; Pi(+) S:w(t)%(t)dt] n=12---,2=12,
and let
g™ = }; 2.+) S:x(t)%(t)dt : n=1,2, -
By 1° in the definition of E,,,
(8.11) lim Fy,[2] = Fil«]

for every xe K,© =1, 2, and F, [x],© =1, 2, satisfy 1° of the lemma.
To show that 2° of the lemma is satisfied, let us define @;,([¢;1.)
by

(3.12) 0uCl) = F| S0e)],  m=12-i=12.

To show that each @,, is an entire function of exponential type of n
complex variables, we set

x(t) = C1§Dl(t’) + oo + L@ D) A L @ii(t) + oo+ LD,

y(@) = @) .
From (3.12) it follows that @,,([¢,],) = Fila(t) + Cy®)] and by 2° in
the definition of E,, @;, is an entire function of {;. From the arbi-
trariness of the choice of {; from {{;} and by Hartogs’ regularity
theorem, @;, is an entire function of the » complex variables {¢;} for

n=1,2,---,2=1,2, That @,, is of exponential type follows from
(8.12) and 3° of the definition of E,:

100,10 | = A, exo {Br (| chgvj(t)l at)"}
éAFiexp{ (;V_:,‘l| ])1/2}

= Ay, exp {Bpi ]}:_; | I} .

This proves the asserted property of @;,. On the other hand from
(3.10), (3.12)

(3.13) Folol = 0, [ =02, ] ) . m=1,2i=12.

Now if we let a;(t) = @,(t)dt n=1,2, , then Dby integration by
1

parts Sw(t)cpj(t)dt = Saj(t)dw(t), and (3.13) becomes
0

Fo o] = @i,,,([goa](t)dx(t)]ﬂ) . om=1,2-,1=1,2
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where by definition a;(t) are of bounded variation on 0 <¢ <1. There-
fore each F; ,[x] satisfies the conditions of Theorem I, [3] and hence
its Fourier-Wiener transform exists. Moreover by Theorem I the con-
volution (F;,,.*F,,)[*] exists and satisfies (3.2) for every zc K for
n=1,2,---. Thus 2° of the lemma is satisfied.

Finally, let A be the greater of A,, A, and B be the greater of
By, By, in 3° of the definition of £,. By (3.10), (3.14)

Pzl = Aexo {B([ | S 00 [s0m e as) ")

< Aexp {B(SO | 2(E) | dt)llz}
= Aexp{Bl||2||[%}

for 1 > ¢ > 0 and 3° of the lemma is satisfied.
By the conclusion of the lemma, Theorem II is proved.
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