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CONVOLUTION IN FOURIER-WIENER
TRANSFORM

J. YEH

Let C be the Wiener space and K be the space of com-
plex valued continuous functions on 0 ̂  t ^ 1 which vanish at
t = 0. The Fourier-Wiener transform of a functional F[x]9

x e K, is by definition

S w
F[x + iy]dwx, yeK.

0

Let EQ be the class of functionals F[x] of the type

F[x] = Φ

where 0*(Ci, * ,Cn) is an entire function of the n complex
variables {ζj} of the exponential type and {ctj} are n linearly
independent real functions of bounded variation on 0 ̂  ί ^ 1.
Let Em be the class of functionals which are mean continuous,
entire and of mean exponential type.

We define the convolution of two functionals Fl9 F2 to be

K .

Then if Fl9F2eEQ or Fl9F2eEm, the convolution of Fu F2

exists for every xe K and furthermore

'\ zeK.

Let K be the space of complex-valued continuous functions

defined on 0 ^ t ^ 1 which vanish at t — 0 and let C be the Wiener

space, namely the subspace of K which consists of real-valued elements

of K. Let F[x] — F[x( )] be a functional which is defined throughout

K. If it exists, the functional

F[x + ίy]dwx, yeK

o

is called the Fourier-Wiener transform of F[x\.

The first class EQ of functionals is defined as follows: A functional

F[x] belongs to Eo if

(1.2) F[x] = Φr^ax{b)dx(t), , j
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where Φr(ζu , ζΛ) is an entire function of the n complex variables
{ζj} of exponential type

(1.3) I ΦF(ζu . , ζ j | < Λfβ (iΛi+ »+ιW)

and aj(t) are n linearly independent real functions of bounded variation
on 0 ^ t ^ 1. The function ΦF as well as the constants M and a depend
on F.

The second class Έm consists of functionals F[x] which are mean
continuous, entire and of mean exponential type: that is, Em is the
class of functionals satisfying the following three conditions:

1° lim^o. F[x{n)] = F[x] holds for all x and x{n) in K for which

l i n w Γ I x{n)(t) - α?(ί) \2dt = 0.
Jo

2° F[cc + λ#] is an entire function of the complex variable λ for
all x and y in IT; and

3° there exist positive constants AF and BF depending on F such
that

(1.4) I F[x] I S A F exp j W Γ | α>(ί) |2ώέ) 1 / 2 | for all x e K.

According to Theorems 1 and A, [3], if F[x] belongs to EQ or Em,
its transform G[y] exists for all yeK and belongs to the same class.

We now define the convolution of two functionals Fλ[x] and F2[x\

to be

(1.5) (Ft*FM = ̂ [JL^Ly^JLz^d.y , x 6 K

if the integral in the right side exists.
The result of this paper is stated in the following two theorems:

THEOREM I. If F^x\, F2[x] e Eθ9 the convolution (1.5) exists for
every xeK. Moreover, the Fourier-Wiener transform GFi*F2[z] of
(1.5) exists and satisfies

(1.6) GFl,4z] = GFI[-^]GF2[- J L ] for every zeK.

THEOREM II. Exactly the same as in Theorem I holds for any
two functionals belonging to Em.

Theorem I and II will be proved in § 2 and § 3 respectively. From
these theorems follows the Parseval relation of [3].



CONVOLUTION IN FOURIER-WIENER TRANSFORM 733

2* NOTATION. We introduce the notation Φ([ζj]n) for the func-
tion Φ(ζu * ,ζΛ) of n complex variables, Φ([ζj]n, [ζ']m) for the func-
tion Φ(ζl9 , ζn, ζ[, , ζ'm) of n + m complex variables. In particular,
0([ζ;b, ζ') stands for the function Φ(ζlf , ζΛ, ζ') of w + 1 complex
variables.

We first make a few remarks on the entire functions of exponential

type.

REMARK 1. If ^([ζ D , 02([ζ;]«) are two entire functions of ex-
ponential type, the two factors in the right hand and consequently
the left hand of

(2.1) Φ([ζd]n9 [ζ;]J = (?1([2~1/2(ζi + ζ; )]J02([2-1/2(ζ; - ζfj)]n)

are entire functions of exponential type of the n complex variables
Ci, m ,ζn f° r fiχ^d ζί, β , ζn and, similarly, of the n complex variables
ζί, •••, ζ^ for fixed ζl9 •••, ζn.

REMARK 2. If <£?(%!, , un, ζ) is continuous in the w + 1 variables
for -oo < Uj < oo ,;/:=: 1, 2, , ΎI and ζ 6 i?, a region in the complex
plane, and is analytic in ζ e R for fixed ul9 ---9un9 the uniform con-
vergence over R of the integral

I ••• I φ ( u l f - - f u n 1 ζ ) d u 1 ••• d u n
J-oo J-oo

implies that the integral is an analytic function of ζ e i2.

REMARK 3. If <P([ζi]n, [ζy]J is an entire function of exponential
type of 2n complex variables, the integral

Γ Γ ΦdζAn,[c u e χ P { - c ί ζDdζ, •••dζn
J-oo J-oo

is an entire function of exponential type of the n complex variables

Proof of Theorem I. For F&x], F2[x] e Eo,

(2.2) Fax] = (Pt([ j W ) ^ * ) ] J , t = 1, 2

where 0;([ζi]J, i = 1, 2, are two entire functions of exponential type
of n complex variables. We first prove the theorem for the special
case where {ctj(t)} are an orthonormal set on 0 ^ t ^ 1. We quote a
result by Paley and Wiener [71 which states that for any orthonormal
set of real functions {a3{t)} of bounded variation on 0 ^ t ^ 1, the
equality
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(2.3) S / ( I J > H > " : c = £ SI Π/(1<"i >
x exp {—u\ — . . . — uDdUi dun

holds for every function Ψ([Uj]n) for which the integral on the right
side exists as an absolutely convergent Lebesgue integral. By (1.5),
(2.2), (2.1), (2.3),

(2 4)

x exp {—u\ — . . . — uDdUi dun

for every a? e K, where the last integral exists becuase Φ([ζj]n, [ζ;]J is
an entire function of exponential type in {ζ, } for fixed {ζ̂  } according
to Remark 1. This proves the existence of (F1^F2)[x] for every xe K.

Now according to Remark 3,

L [ ζ ' ] J e x p { ~ ζ l — a } d ζ i ' " d ζ n

is an entire function of exponential type of {ζj }, and hence, Theorem
1, [3] applies to the last member of (2.4). Thus the Fourier-Wiener
transform of (Fί^F2)[x] namely GFγfF^z\, exists for every zeK and is
given by (1.1) as

(2.5)

<w*i - \IML \~-X[n^> [\ >>*»<*)+ {h^^l)
x exp {—u\ — . . . — u2

n}duj duAdwx .

Now since

Γ Γ *><&,]., Kί + Cί'l.) exp {-ζϊ a)dζ1 -- dζn
J_βo J-co

is an entire function of exponential type of {ζ}} for fixed {ζ'f}, (2.3) is
applicable to the last integral of (2.5). Thus

GΊ'4*\ = J; SI * * \~_j
x exp {—u\ — v\ — — w4 — vljcJiii dundv1 - dvn

x

x exp {—«2i — ?| — — %* — -υ̂ cίM! duvdvx
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Let

v'} = 2-1'2(« i - v,) , j = l,2, ' ,n

and apply (2.3) to the result of this transformation. By (2.2), (1.1)
we have

±. ̂ aj

This proves Theorem I for the special case.
In the general ease where <Xj(t) are n linearly independent real

valued functions of bounded variation on 0 ̂  t ^ 1, according to the
argument on p. 493, [3], we can write Fi[x], i = 1, 2 defined by (2.2)
as

i = 1, 2

where 0?([ζi]J are entire functions of exponential type of {ζ̂ } and af

5{t)
are n orthonormal functions of bounded variation on 0 ̂  t ^ 1. Now
the result for the special case applies and the theorem is proved.

3. LEMMA. Let {Fltn[x]}9 F^x], {F2>n[x]}9 F2[x] be such that

1° (3.1) l i r n ^ Fifn[x] = F{[x] for every xeK, ί = 1, 2.

2° ίΛe Fourier-Wiener transform exists for every Fi>n[x] n =
1, 2, , i — 1, 2; ίfce convolution (Fltn*F2tn)[x] exists, its Fourier-
Wiener transform also exists and satisfies

for every ze K, for n = 1, 2, and

3° (3.3) |^,Jα;][^^exp{β| | |α; | | r ε }, n = 1, 2 . . , i = 1, 2
where A,B, >0, 2 > ε > 0 α^d |||g||| = maxOg^i|^(έ)|. T/̂ β̂  the Fourier-
Wiener transforms of F^x], F2[x], the convolution of Fx[x], F2[x] and
the Fourier-Wiener transform of the convolution exist and (1.6) holds.
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Proof of the lemma. By (1.5), (1.1), the equality (3.2) can be
written as

= { \ ' M * + U d A { \ > λ χ - ^ \ d A ' n=1'2'--
We prove the lemma by justifying the passing to the limit under the
integral signs on both sides of (3.4). To do this, we observe that for
any p complex numbers ζ l f •• , ζ p ,

(3.5)
V

V ζfc S pmaxίlζj,
2 - 8

<

An estimate of the first integrand on the right hand side of (3.4) is
given by (3.3) and (3.5) with p = 2:

(3.6)

exp {45 HI £ |||2~ε}cίw# is finite according to [4], the right side

of (3.6) is integrable with respect to x over the entire Wiener space

for fixed z. By (3.1) with dominated convergence and by (1.1)

< 3 7 > £2

for every z e K and similarly

(3.8)

for every 2GUT. From (3.3) and (3.5) with p = 3, the integrand of
the left side of (3.4) is seen to be bounded by A2 exp {18B(||| x |||2~s +
III 2/ IH2~ε + IIIz IH2~ε)} The repeated integral of the above expression
with respect to y and then with respect to x over the entire Wiener
space is finite for every ze K. Thus by (3.1) with dominated conver-
gence and by (1.5), (1.1),

for every ze K. By letting % ^ o o on both sides of (3.4) and by (3.7),
(3.8) and (3.9), the lemma is established.

Proof of Theorem II. Let F,[x] eEm,i = l, 2, and let φx{t),<p2(t),
be a complete orthonormal set of real valued continuous functions on the
interval 0 ^ t fg 1 which vanish when t = 0. Let
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(3.10) F i t n [ z ] = F J | > ; ( ) Ϋx{t)φj{t)dt]^ n = 1 , 2 , ••, i = 1 , 2 ,

and let

j=i Jo

By 1° in the definition of Em,

(3.11) limFi,n[x] = Fi[x],

for every a; e iΓ, i — 1, 2, and Fitn[x], ί = 1, 2, satisfy 1° of the lemma.

To show that 2° of the lemma is satisfied, let us define Φitn([ζj\n)

by

(3.12) ΦUltsΏ = Fi\t ^Ψ^)λ , n = 1, 2, , i = 1, 2 .

To show that each Φifn is an entire function of exponential type of n
complex variables, we set

From (3.12) it follows that ΦuMj\n) = ^[^ί*) + ζ*l/(ί)] and by 2° in
the definition of Em, Φi>n is an entire function of ζj9 From the arbi-
trariness of the choice of ζy from {ζj} and by Hartogs' regularity
theorem, Φitn is an entire function of the n complex variables {ζ̂  } for
n = 1, 2, , i = 1, 2. That <Piϊn is of exponential type follows from
(3.12) and 3° of the definition of Em;

^ΛFι

^AFι

exp

exp

exp

Ho
/n

(s
i = i

Ci l}

2 \ 1/2-1

t) dίj J

This proves the asserted property of Φi>n. On the other hand from
(3.10), (3.12)

(3.13) F,.M = 0<f.([ j W)?y(t)dί] J , » = 1, 2, , ΐ = 1, 2 .

S I

cpi(t)dt, n — 1,2, •••, then by integration by
x(t)cpj(t)dt = \ aXi)da;(i), and (3.13) becomes

o Jo

n = 1, 2, . . , 1 = 1, 2
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where by definition atj(t) are of bounded variation on 0 ^ t ^ 1. There-
fore each JFYJ^B] satisfies the conditions of Theorem I, [3] and hence
its Fourier-Wiener transform exists. Moreover by Theorem I the con-
volution (Fitn*Fitn)[x\ exists and satisfies (3.2) for every zeK for
n = 1, 2, •••. Thus 2° of the lemma is satisfied.

Finally, let A be the greater of AFl, AF% and B be the greater of
BFι, BF2 in 3° of the definition of Em. By (3.10), (3.14)

I Fi>n[x] I ̂  A exp [ ( [ | Σ

^ A exp {β HI α; HI2-}

for 1 > ε > 0 and 3° of the lemma is satisfied.
By the conclusion of the lemma, Theorem II is proved.
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