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MONOTONE APPROXIMATION

O. SHISHA

How close can one approximate a monotone function by a
monotone polynomial of degree < n, or a convex function by
a convex polynomial of degree < n? This leads to the follow-
ing general question. Let % and n be given, and suppose a
real fuction f satisfies f*)(x) = 0 throughout a closed, finite
interval [a,b]. How close can one approximate f on [a, b] by
a polynomial of degree =< n whose kth derivative, too, is = 0
there? We give an answer to the question.

2. THEOREM 1. Let k and p be integers, 1 < k < p, and let a
real function f satisfy throughout [a, b]

SP@) =0,
[fP(5) — f () | = Nay — @],
N\ being a constant. Then for every integer n(= p) there exists «

real polynomial Q,(x) of degree’ < m such that
(a) QF(x) =0 throughout [a, b],
—1

(b) Max|f@) - Q@) = 2:(F) " G- T m+1-v] .

3. To prove Theorem 1, we begin by quoting the following result
of J. Favard [2] and N. Ahiezer and M. Krein [1] which strengthens
a previous result of D. Jackson.

THEOREM 2. (Favard, Ahiezer-Krein) Let f (with period 2r)
map the reals into the reals, and satisfy for every real x,, x,

(1) [f(@) — fle) ]| = Moy — ],

N being a constant. Then for n=20,1,2, .-+, there exists a
trigonometric polynomial T, (x) = S5, as™ cos ve + by sin va such that
MaXogao |S(@) — To(@) | < Mr/2)[1/(n + 1)].

From Theorem 2 one obtains by the method of [3], pp. 13-14 the
following

THEOREM 3. Let f be a real fumction satisfying (1) throughout
[a,b], N being a constant. Then for n=0,1,2, .-, there exists a

Received March 17, 1964,
1 By degree of a polynomial we mean its exact degree. (The degree of the poly-
nomial 0 is —1).
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polynomial P,(x) of degree = n such that

b —a
— P < T .
max | £(v) — P.(@)| < M =2

For future use, we make the following simple observation. (Com-
pare [3], p. 16).

LeMMA. Let f be a real function, continuous in [a,b] and
differentiable in (a,b). Let n be an integer (= 0), q,.—.(x) a real
polynomial of degree < n — 1, and let ¢ be such that |f'(x) — ¢, ()|
< ¢ throughout (a, b). Then there exists a polynomial P,(x) of degree
=< n such that

b—a
2 — P <gltb—a
(2) ?glgb!f(x) n(m)l_e4 n+1
To prove the lemma, set 7(x) = f(x) — Sx q.—(t)dt. Throughout

(a,b), |"(x)| <¢, and therefore, throughout [a,d], |7(x) — r(x)| <
elx, — «,|. By Theorem 3, there exists a polynomial 7,(x) of degree
=< nsuch that max,<.<, | 7(®)—7,(2)| =< e(x/4)(b—a)/(n+1). Setting P,(x)=
7.(2) + S ¢._(t)dt, we obtain (2).

From Theorem 3 and the Lemma one gets readily (cf. [3], pp.
16-17) the following

THEOREM 4. Let f be a real function satisfying throughout [a, b],
for some constant integer p(= 0) and some constant \,

[f P (@) — [T (@) [ = M@ — @] .

Then for every integer m(= p) there exists a polynomial P, (x) of
degree < n such that

max| f(z) — P@) | =\ Z0 - )| [T +1- "

3. Proof of Theorem 1. Let n be an integer = p. Set f,(v) =
F9(x) + M(z/4)(b — a)]”*[1I12-1(n + 1 —v)]". Then throughout [a, b],
| FiP0(2,) — f7 (@) | < N |@, — @,|. By Theorem 4, there exists a

n

real polynomial P,_,(x) of degree < » — k such that

max | £,(@) — P, (@) | < x[%(b — a)]p_k“[vli[k m+1— u)]_l .

aesz=<bh

So, throughout [a, b], P,_.(x) = f*(x) = 0. Let
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Q@) = [z_lf ‘”’f“) (@ — a)”]-l— gt"“ S" S‘ P, (t)dtdt, - - - db,

a

(t,+, being here and below, z). Then @Q,(x) is a real polynomial of
degree <, and Q"(x) = P,_,(x) = 0 throughout [a, b]. Furthermore,
throughout that interval, we have

@) =[50 —ap]+ [T [P reeaat, -
and therefore
@ = Q@ = | (e - P at - d

<of0-a] “[or1-o] g

< 2x(%)”""“(b —ap I+ 1 -]

4. The following Theorem 5 deals with a somewhat more general
situation than that of Theorem 1.

THEOREM 5. Let k and p be integers, 1 < k < p, and let a real
Junction f satisfy throughout [a, b]

fP@ =0,
|fP() | = M,

M being a constant. Let w(x) be the modulus of continuity of f@
wn [a,b]. Then for every integer n (= p) there exists a real poly-
nomial Q. (x) of degree = n such that

(a) Q¥ (x) = 0 throughout [a, b],
max | f(z) — Qu(®) |

O e 1)) oo e o] )

(an “empty” product means always 1).
Theorem 5 is proved by means of the following Theorem 6, in the
same way that Theorem 1 was proved by means of Theorem 4.

THEOREM 6. Let f be a real function having a bounded pth
(p = 0) derivative throughout [a,b]. Let w(x) be as in Theorem 5.
Then for every integer n (= p) there ewists a polynomial P.(x) of
degree < n such that throughout [a, b]
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-1

== (1 Dol o] (52

5. Theorem 6 follows from Theorem 3 by Jackson’s method ([3],
pp. 15-18). For the reader’s convenience we hereby prove Theorem
6 in full. We do it by induction on p. Suppose first p = 0. Let n
be an integer (= 0). Let ¢(x) be the function whose graph is obtained
by joining successively the points (§,, f(&,) (v = 0,1, ---, n + 1) of the
x, ¥y plane, where &, =a + [(b — a)/(n + 1)]v. For v=1,2 .- n+1
we have | #(&,) — ¢(&,_) | = o[(b — @)/(n + 1)]. Hence, if a < x, < 2, = b,
then

|$(@s) — d@) | %—i—lw(b—-a).
Xy — Uy T b—a n+1

By Theorem 3, there exists a polynomial P,(x) of degree =< n such
that throughout [a, ]

— Sn+1/ b_aib—azﬁ— __b—(l
[¢(x) — Py(2) | = b_a‘”(n+1>4 n+1 4w<fn+1>.

Clearly, for every z¢€|a,b], |f(®) — ¢(x)| < w[(b — a)/(n + 1)]. There-
fore, throughout [a,b], |f(x) — P.(2)| < [1 + (z/4)]w[(d — a)/(n + 1)].
This proves Theorem 6 when p = 0. Suppose the theorem was proved
for some p — 1 (= 0). We shall prove it for p. Let % be an integer
(= p). By our hypothesis there exists a polynomial P,_,(x) of degree
= n — 1 such that throughout [a, ]

|f'(@) — Pay(®) |

<G e -o] T w1 -»T of55y):

By the lemma, there exists a polynomial P,(x) of degree = n, such
that

max [f(®) — Pu() |

(e plie-of[Ler-]w(G58).

This completes the proof.
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